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1.1: Four Ways to Represent a Function

Determine whether a relation represents a function.
Find the value of a function.
Determine whether a function is one-to-one.
Use the vertical line test to identify functions.
Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child increases with
time. In each case, one quantity depends on another. There is a relationship between the two quantities that we can describe,
analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining Whether a Relation Represents a Function
A relation is a set of ordered pairs. The set of the first components of each ordered pair is called the domain and the set of the
second components of each ordered pair is called the range. Consider the following set of ordered pairs. The first numbers in each
pair are the first five natural numbers. The second number in each pair is twice that of the first.

The domain is . The range is .

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled with the
lowercase letter . Each value in the range is also known as an output value, or dependent variable, and is often labeled lowercase
letter .

A function  is a relation that assigns a single value in the range to each value in the domain. In other words, no -values are
repeated. For our example that relates the first five natural numbers to numbers double their values, this relation is a function
because each element in the domain, {1, 2, 3, 4, 5}, is paired with exactly one element in the range, .

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It would appear
as

Notice that each element in the domain, {even, odd} is not paired with exactly one element in the range, . For
example, the term “odd” corresponds to three values from the range,  and the term “even” corresponds to two values from
the range, . This violates the definition of a function, so this relation is not a function.

Figure  compares relations that are functions and not functions.

Figure : (a) This relationship is a function because each input is associated with a single output. Note that input  and  both
give output . (b) This relationship is also a function. In this case, each input is associated with a single output. (c) This
relationship is not a function because input  is associated with two different outputs.

Learning Objectives

{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)} (1.1.1)

{1, 2, 3, 4, 5} {2, 4, 6, 8, 10}

x

y

f x

{2, 4, 6, 8, 10}

{(odd, 1), (even, 2), (odd, 3), (even, 4), (odd, 5)} (1.1.2)

{1, 2, 3, 4, 5}
{1, 3, 5},

{2, 4}

1.1.1

1.1.1 q r
n

q
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A function is a relation in which each possible input value leads to exactly one output value. We say “the output is a function
of the input.”

The input values make up the domain, and the output values make up the range.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or

more outputs, do not classify the relationship as a function.

The coffee shop menu, shown in Figure  consists of items and their prices.

a. Is price a function of the item?
b. Is the item a function of the price?

Figure : A menu of donut prices from a coffee shop where a plain donut is $1.49 and a jelly donut and chocolate donut are
$1.99.

Solution

a. Let’s begin by considering the input as the items on the menu. The output values are then the prices. See Figure .

Figure : A menu of donut prices from a coffee shop where a plain donut is $1.49 and a jelly donut and chocolate donut are
$1.99.

Each item on the menu has only one price, so the price is a function of the item.

a. Two items on the menu have the same price. If we consider the prices to be the input values and the items to be the output,
then the same input value could have more than one output associated with it. See Figure .

Function

How To: Given a relationship between two quantities, determine whether the relationship is a function

Example : Determining If Menu Price Lists Are Functions1.1.1

1.1.2

1.1.2

1.1.3

1.1.3

1.1.4
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Figure : Association of the prices to the donuts.

Therefore, the item is a not a function of price.

In a particular math class, the overall percent grade corresponds to a grade point average. Is grade point average a function of
the percent grade? Is the percent grade a function of the grade point average? Table  shows a possible rule for assigning
grade points.

Table : Class grade points.

Percent
grade

0–56 57–61 62–66 67–71 72–77 78–86 87–91 92–100

Grade point
average

0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Solution

For any percent grade earned, there is an associated grade point average, so the grade point average is a function of the percent
grade. In other words, if we input the percent grade, the output is a specific grade point average.

In the grading system given, there is a range of percent grades that correspond to the same grade point average. For example,
students who receive a grade point average of 3.0 could have a variety of percent grades ranging from 78 all the way to 86.
Thus, percent grade is not a function of grade point average.

Table  lists the five greatest baseball players of all time in order of rank.

Table : Five greatest baseball players.
Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

a. Is the rank a function of the player name?
b. Is the player name a function of the rank?

Answer a

Yes

Answer b

yes. (Note: If two players had been tied for, say, 4th place, then the name would not have been a function of rank.)

1.1.4

Example : Determining If Class Grade Rules Are Functions1.1.2

1.1.1

1.1.1

Exercise 1.1.2

1.1.2

1.1.2
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Using Function Notation
Once we determine that a relationship is a function, we need to display and define the functional relationships so that we can
understand and use them, and sometimes also so that we can program them into computers. There are various ways of representing
functions. A standard function notation is one representation that facilitates working with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables  for height and  for age. The letters ,
,and  are often used to represent functions just as we use , ,and  to represent numbers and , , and  to represent sets.

Remember, we can use any letter to name the function; the notation  shows us that  depends on . The value  must be put
into the function  to get a result. The parentheses indicate that age is input into the function; they do not indicate multiplication.

We can also give an algebraic expression as the input to a function. For example  means “first add  and , and the result
is the input for the function .” The operations must be performed in this order to obtain the correct result.

The notation  defines a function named . This is read as “  is a function of .” The letter  represents the input
value, or independent variable. The letter , or , represents the output value, or dependent variable.

Use function notation to represent a function whose input is the name of a month and output is the number of days in that
month.

Solution

Using Function Notation for Days in a Month

Use function notation to represent a function whose input is the name of a month and output is the number of days in that
month.

The number of days in a month is a function of the name of the month, so if we name the function , we write 
 or . The name of the month is the input to a “rule” that associates a specific number (the output)

with each input.

Figure : The function  where 31 is the output, f is the rule, and January is the input.

For example, , because March has 31 days. The notation  reminds us that the number of days,  (the
output), is dependent on the name of the month,  (the input).

Analysis

Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels of geometric
objects, or any other element that determines some kind of output. However, most of the functions we will work with in this
book will have numbers as inputs and outputs.

A function  gives the number of police officers, , in a town in year . What does  represent?

Solution

When we read , we see that the input year is 2005. The value for the output, the number of police officers ,
is 300. Remember, . The statement  tells us that in the year 2005 there were 300 police officers in the

h a f

g h x y z A B C

h is f  of a

h = f(a)

f(a)

We name the function f ; height is a function of age.

We use parentheses to indicate the function input.

We name the function f  ; the expression is read as “ f  of a.”

(1.1.1)

h(a) h a a

h

f(a+b) a b

f

Function Notation

y = f(x) f y x x

y f(x)

Example : Using Function Notation for Days in a Month1.1.3

f

days = f(month) d = f(m)

1.1.5 31 = f(January)

f(March) = 31 d = f(m) d

m

Example : Interpreting Function Notation1.1.3B

N = f(y) N y f(2005) = 300

f(2005) = 300 (N)
N = f(y) f(2005) = 300
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town.

Use function notation to express the weight of a pig in pounds as a function of its age in days .

Answer

Instead of a notation such as , could we use the same symbol for the output as for the function, such as ,
meaning “  is a function of ?”

Yes, this is often done, especially in applied subjects that use higher math, such as physics and engineering. However, in
exploring math itself we like to maintain a distinction between a function such as , which is a rule or procedure, and the
output y we get by applying  to a particular input . This is why we usually use notation such as , and
so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a table. The table rows or columns display the corresponding input
and output values. In some cases, these values represent all we know about the relationship; other times, the table provides a few
select examples from a more complete relationship.

Table  lists the input number of each month ( , , and so on) and the output value of the number of
days in that month. This information represents all we know about the months and days for a given year (that is not a leap year).
Note that, in this table, we define a days-in-a-month function  where  identifies months by an integer rather than by
name.

Table : Months and number of days per month.

Month
number,

(input)

1 2 3 4 5 6 7 8 9 10 11 12

Days in
month, 

(output)

31 28 31 30 31 30 31 31 30 31 30 31

Table  defines a function  Remember, this notation tells us that  is the name of the function that takes the input 
and gives the output .

Table : Function 

1 2 3 4 5

8 6 7 6 8

Table  displays the age of children in years and their corresponding heights. This table displays just some of the data available
for the heights and ages of children. We can see right away that this table does not represent a function because the same input
value, 5 years, has two different output values, 40 in. and 42 in.

Table : Age of children and their corresponding heights.

Age in years, 
(input)

5 5 6 7 8 9 10

Exercise 1.1.3

d

w = f(d)

Q&A

y = f(x) y = y(x)
y x

f

f x y = f(x),P = W (d)

1.1.3 January = 1 February = 2

f D = f(m)

1.1.3

m

D

1.1.4 Q = g(n) g n

Q

1.1.4 Q = g(n)

n

Q

1.1.5

1.1.5

a
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Height in
inches, 
(output)

40 42 44 47 50 52 54

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

Which table, Table , Table , or Table , represents a function (if any)?

Table 
Input Output

2 1

5 3

8 6

Table 
Input Output

-3 5

0 1

4 5

Table 
Input Output

1 0

5 2

5 4

Solution

Table  and Table  define functions. In both, each input value corresponds to exactly one output value. Table 
does not define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using function notation.

The function represented by Table  can be represented by writing

Similarly, the statements

represent the function in Table .

Table  cannot be expressed in a similar way because it does not represent a function.

Does Table  represent a function?

Table 
Input Output

h

How To: Given a table of input and output values, determine whether the table represents a function

Example : Identifying Tables that Represent Functions1.1.5

1.1.6 1.1.7 1.1.8

1.1.6

1.1.7

1.1.8

1.1.6 1.1.7 1.1.8

1.1.6

f(2) = 1, f(5) = 3, and f(8) = 6

g(−3) = 5, g(0) = 1, and g(4) = 5

1.1.7

1.1.8

Exercise 1.1.5

1.1.9

1.1.9
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Input Output

1 10

2 100

3 1000

Answer

yes

Finding Input and Output Values of a Function

When we know an input value and want to determine the corresponding output value for a function, we evaluate the function.
Evaluating will always produce one result because each input value of a function corresponds to exactly one output value.

When we know an output value and want to determine the input values that would produce that output value, we set the output
equal to the function’s formula and solve for the input. Solving can produce more than one solution because different input values
can produce the same output value.

Evaluation of Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the function 
 can be evaluated by squaring the input value, multiplying by 3, and then subtracting the product from 5.

Given the formula for a function, evaluate.

1. Replace the input variable in the formula with the value provided.
2. Calculate the result.

1. Evaluate  at

a. 
b. 
c. 

d. Evaluate 

Solution

Replace the x in the function with each specified value.

a. Because the input value is a number, 2, we can use simple algebra to simplify.

b. In this case, the input value is a letter so we cannot simplify the answer any further.

c. With an input value of , we must use the distributive property.

d. In this case, we apply the input values to the function more than once, and then perform algebraic operations on the
result. We already found that

f(x) = 5 −3x2

How To: Given the formula for a function, evaluate.

Example : Evaluating Functions at Specific Values1.1.6A

f(x) = +3x−4x2

2
a

a+h
f(a+h)−f(a)

h

f(2) = +3(2) −422

= 4 +6 −4
= 6

f(a) = +3a−4a2

a+h

f(a+h) = (a+h +3(a+h) −4)2

= +2ah+ +3a+3h−4a2 h2
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and we know that

Now we combine the results and simplify.

Given the function , evaluate .

Solution

To evaluate , we substitute the value 4 for the input variable p in the given function.

Therefore, for an input of 4, we have an output of 24.

Given the function , evaluate .

Answer

Given the function , solve for .

Solution

If , either  or  (or both of them equal ). We will set each factor equal to  and
solve for  in each case.

This gives us two solutions. The output  when the input is either  or . We can also verify by graphing as
in Figure . The graph verifies that  and .

f(a+h) = +2ah+ +3a+3h−4a2 h2

f(a) = +3a−4a2

f(a+h) −f(a)

h
=

( +2ah+ +3a+3h−4) −( +3a−4)a2 h2 a2

h

=
(2ah+ +3h)h2

h

=
h(2a+h+3)

h
= 2a+h+3

Factor out h.

Simplify.

Example : Evaluating Functions1.1.6B

h(p) = +2pp2 h(4)

h(4)

h(p)

h(4)

= +2pp2

= (4 +2(4))2

= 16 +8
= 24

Exercise 1.1.6

g(m) = m−4
− −−−−

√ g(5)

g(5) = 1

Example : Solving Functions1.1.7

h(p) = +2pp2 h(p) = 3

h(p) = 3

+2p = 3p2

+2p−3 = 0p2

(p+3)(p−1) = 0

Substitute the original function

Subtract 3 from each side.

Factor.

(p+3)(p−1) = 0 (p+3) = 0 (p−1) = 0 0 0
p

(p+3) = 0, p = −3

(p−1) = 0, p = 1

h(p) = 3 p = 1 p = −3
1.1.6 h(1) = h(−3) = 3 h(4) = 24
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Figure : Graph of 

Given the function , solve .

Answer

Evaluating Functions Expressed in Formulas
Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to express the
function output with a formula involving the input quantity, then we can define a function in algebraic form. For example, the
equation  expresses a functional relationship between  and . We can rewrite it to decide if  is a function of .

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an expression that
involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity to or from both
sides, or multiplying or dividing both sides of the equation by the same quantity.

Express the relationship  as a function , if possible.

Solution

To express the relationship in this form, we need to be able to write the relationship where  is a function of , which means
writing it as .

1.1.6 h(p) = + 2pp2

Exercise 1.1.7

g(m) = m−4
− −−−−

√ g(m) = 2

m = 8

2n+6p = 12 n p p n

How to: Given a function in equation form, write its algebraic formula.

Example : Finding an Equation of a Function1.1.8A

2n+6p = 12 p = f(n)

p n

p = [expression involving n]

2n+6p

6p

p

p

p

= 12

= 12 −2n

=
12 −2n

6

= −
12

6

2n

6

= 2 − n
1

3

Subtract 2n from both sides.

Divide both sides by 6 and simplify.
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Therefore,  as a function of  is written as

Analysis

It is important to note that not every relationship expressed by an equation can also be expressed as a function with a formula.

Does the equation  represent a function with  as input and  as output? If so, express the relationship as a
function .

Solution

First we subtract  from both sides.

We now try to solve for  in this equation.

We get two outputs corresponding to the same input, so this relationship cannot be represented as a single function .

If , express  as a function of .

Answer

Are there relationships expressed by an equation that do represent a function but which still cannot be represented by an
algebraic formula?

Yes, this can happen. For example, given the equation , if we want to express y as a function of x, there is no
simple algebraic formula involving only  that equals . However, each  does determine a unique value for , and there are
mathematical procedures by which  can be found to any desired accuracy. In this case, we say that the equation gives an
implicit (implied) rule for  as a function of , even though the formula cannot be written explicitly.

Evaluating a Function Given in Tabular Form

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions, and we can
evaluate functions using the tables. For example, how well do our pets recall the fond memories we share with them? There is an
urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can remember up to 3 months, while the
beta fish has a memory of up to 5 months. And while a puppy’s memory span is no longer than 30 seconds, the adult dog can
remember for 5 minutes. This is meager compared to a cat, whose memory span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a table (Table 
).

Table 
Pet Memory span in hours

Puppy 0.008

p n

p = f(n) = 2 − n
1

3

Example : Expressing the Equation of a Circle as a Function1.1.8B

+ = 1x2 y2 x y

y = f(x)

x2

= 1 −y2 x2

y

y = ± 1 −x2− −−−−√

so, y = and y = −1 −x2− −−−−
√ 1 −x2− −−−−

√

y = f(x)

Exercise 1.1.8

x−8 = 0y3 y x

y = f(x) =
x−−√3

2

Q & A

x = y+2y

x y x y

y

y x

1.1.10

1.1.10
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Pet Memory span in hours

Adult Dog 0.083

Cat 3

Goldfish 2160

Beta Fish 3600

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function . The domain
of the function is the type of pet and the range is a real number representing the number of hours the pet’s memory span lasts. We
can evaluate the function  at the input value of “goldfish.” We would write . Notice that, to evaluate the
function in table form, we identify the input value and the corresponding output value from the pertinent row of the table. The
tabular form for function P seems ideally suited to this function, more so than writing it in paragraph or function form.

1. Find the given input in the row (or column) of input values. 
2. Identify the corresponding output value paired with that input value. 
3. Find the given output values in the row (or column) of output values, noting every time that output value appears. 
4. Identify the input value(s) corresponding to the given output value.

Using Table ,

a. Evaluate . 
b. Solve .

Table 

1 2 3 4 5

8 6 7 6 8

Solution

a. Evaluating  means determining the output value of the function  for the input value of . The table output
value corresponding to  is 7, so . 
b. Solving  means identifying the input values, n,that produce an output value of 6. Table  shows two
solutions: 2 and 4.

Table 

1 2 3 4 5

8 6 7 6 8

When we input 2 into the function , our output is 6. When we input 4 into the function , our output is also 6.

Using Table , evaluate .

Answer

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only in this case,
we find the output value by looking at the graph. Solving a function equation using a graph requires finding all instances of the

P

P P (goldfish) = 2160

How To: Given a function represented by a table, identify specific output and input values

Example : Evaluating and Solving a Tabular Function1.1.9

1.1.11

g(3)
g(n) = 6

1.1.11

n

g(n)

g(3) g n = 3
n = 3 g(3) = 7

g(n) = 6 1.1.12

1.1.12

n

g(n)

g g

Exercise 1.1.1

1.1.12 g(1)

g(1) = 8
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given output value on the graph and observing the corresponding input value(s).

Given the graph in Figure ,

a. Evaluate .
b. Solve .

Figure : Graph of a positive parabola centered at .

Solution

To evaluate , locate the point on the curve where , then read the y-coordinate of that point. The point has coordinates
, so . See Figure .

: Graph of a positive parabola centered at  with the labeled point  where .

To solve , we find the output value 4 on the vertical axis. Moving horizontally along the line , we locate two
points of the curve with output value 4:  and . These points represent the two solutions to : −1 or 3. This
means  and , or when the input is −1 or 3, the output is 4. See Figure .

Example : Reading Function Values from a Graph1.1.10

1.1.7

f(2)
f(x) = 4

1.1.7 (1, 0)

f(2) x = 2
(2, 1) f(2) = 1 1.1.8

1.1.8 (1, 0) (2, 1) f(2) = 1

f(x) = 4 y = 4
(−1, 4) (3, 4) f(x) = 4

f(−1) = 4 f(3) = 4 1.1.9
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Figure : Graph of an upward-facing parabola with a vertex at  and labeled points at  and . A line at 
 intersects the parabola at the labeled points.

Given the graph in Figure , solve .

Answer

 or 

Determining Whether a Function is One-to-One
Some functions have a given output value that corresponds to two or more input values. For example, in the stock chart shown in
the Figure at the beginning of this chapter, the stock price was $1000 on five different dates, meaning that there were five different
input values that all resulted in the same output value of $1000.

However, some functions have only one input value for each output value, as well as having only one output for each input. We call
these functions one-to-one functions. As an example, consider a school that uses only letter grades and decimal equivalents, as
listed in Table .

Table : Letter grades and decimal equivalents.
Letter Grade Grade Point Average

A 4.0

B 3.0

C 2.0

D 1.0

This grading system represents a one-to-one function, because each letter input yields one particular grade point average output and
each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in Figures  and . The function in part
(a) shows a relationship that is not a one-to-one function because inputs  and  both give output . The function in part (b) shows
a relationship that is a one-to-one function because each input is associated with a single output.

1.1.9 (0, 1) (−1, 4) (3, 4)
y = 4

Exercise 1.1.10

1.1.7 f(x) = 1

x = 0 x = 2

1.1.13

1.1.13

1.1.1a 1.1.1b
q r n
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A one-to-one function is a function in which each output value corresponds to exactly one input value.

Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution

A circle of radius  has a unique area measure given by , so for any input, , there is only one output, . The area is a
function of radius .

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius. Any area measure 

 is given by the formula . Because areas and radii are positive numbers, there is exactly one solution: . So the

area of a circle is a one-to-one function of the circle’s radius.

a. Is a balance a function of the bank account number?
b. Is a bank account number a function of the balance?
c. Is a balance a one-to-one function of the bank account number?

Answer

a. yes, because each bank account has a single balance at any given time;

b. no, because several bank account numbers may have the same balance;

c. no, because the same output may correspond to more than one input.

Evaluate the following:

a. If each percent grade earned in a course translates to one letter grade, is the letter grade a function of the percent grade?
b. If so, is the function one-to-one?

Answer

a. Yes, letter grade is a function of percent grade; 
b. No, it is not one-to-one. There are 100 different percent numbers we could get but only about five possible letter grades,
so there cannot be only one percent number that corresponds to each letter grade.

Using the Vertical Line Test
As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many input-output
pairs in a small space. The visual information they provide often makes relationships easier to understand. By convention, graphs
are typically constructed with the input values along the horizontal axis and the output values along the vertical axis.

The most common graphs name the input value  and the output , and we say  is a function of , or  when the function
is named . The graph of the function is the set of all points  in the plane that satisfies the equation . If the function
is defined for only a few input values, then the graph of the function is only a few points, where the x-coordinate of each point is an
input value and the y-coordinate of each point is the corresponding output value. For example, the black dots on the graph in Figure

 tell us that  and . However, the set of all points  satisfying  is a curve. The curve shown
includes  and  because the curve passes through those points

One-to-One Functions

Example : Determining Whether a Relationship Is a One-to-One Function1.1.11

r A = πr2 r A

r

A A = πr2 A
π

−−
√

Exercise 1.1.11A

Exercise 1.1.11B

x y y x y = f(x)
f (x, y) y = f(x)

1.1.10 f(0) = 2 f(6) = 1 (x, y) y = f(x)
(0, 2) (6, 1)
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Figure : Graph of a polynomial.

The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical line that intersects
a graph more than once, then the graph does not define a function because a function has only one output value for each input
value. See Figure .

Figure : Three graphs visually showing what is and is not a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, determine that the graph does not represent a function.

Which of the graphs in Figure  represent(s) a function ?

1.1.10

1.1.11

1.1.11

Howto: Given a graph, use the vertical line test to determine if the graph represents a function

Example : Applying the Vertical Line Test1.1.12

1.1.12 y = f(x)
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Figure : Graph of a polynomial (a), a downward-sloping line (b), and a circle (c).

Solution

If any vertical line intersects a graph more than once, the relation represented by the graph is not a function. Notice that any
vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of Figure . From this we can
conclude that these two graphs represent functions. The third graph does not represent a function because, at most x-values, a
vertical line would intersect the graph at more than one point, as shown in Figure .

Figure : Graph of a circle.

Does the graph in Figure  represent a function?

1.1.12

1.1.12

1.1.13

1.1.13

Exercise 1.1.12

1.1.14
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Figure : Graph of absolute value function.

Answer

yes

Using the Horizontal Line Test
Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use the
horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph more than once, then the
graph does not represent a one-to-one function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.

Consider the functions shown in Figure  and Figure . Are either of the functions one-to-one?

Solution

The function in Figure  is not one-to-one. The horizontal line shown in Figure  intersects the graph of the
function at two points (and we can even find horizontal lines that intersect it at three points.)

1.1.14

Howto: Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-
one function

Example : Applying the Horizontal Line Test1.1.13

1.1.12a 1.1.12b

1.1.12a 1.1.15
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Figure : Graph of a polynomial with a horizontal line crossing through 2 points

The function in Figure  is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Is the graph shown in Figure  one-to-one?

Answer

No, because it does not pass the horizontal line test.

Identifying Basic Toolkit Functions
In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic formulas, and
how to solve problems with them. When learning to read, we start with the alphabet. When learning to do arithmetic, we start with
numbers. When working with functions, it is similarly helpful to have a base set of building-block elements. We call these our
“toolkit functions,” which form a set of basic named functions for which we know the graph, formula, and special properties. Some
of these functions are programmed to individual buttons on many calculators. For these definitions we will use x as the input
variable and  as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations frequently throughout
this book. It will be very helpful if we can recognize these toolkit functions and their features quickly by name, formula, graph, and
basic table properties. The graphs and sample table values are included with each function shown in Table .

Table : Toolkit Functions
Name Function Graph

Constant  where  is a constant

1.1.15

1.1.12b

Exercise 1.1.13

1.1.13

y = f(x)

1.1.14

1.1.14

f(x) = c c

https://libretexts.org/
https://math.libretexts.org/@go/page/4434?pdf


1.1.19 https://math.libretexts.org/@go/page/4434

Name Function Graph

Identity

Absolute Value

Quadratic

Cubic

reciprocal

Reciprocal squared

f(x) = x

f(x) = |x|

f(x) = x2

f(x) = x3

f(x) =
1

x

f(x) =
1

x2
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Name Function Graph

Square root

Cube root

Key Equations
Constant function , where  is a constant
Identity function 
Absolute value function 
Quadratic function 
Cubic function 

Reciprocal function 

Reciprocal squared function 
Square root function 
Cube root function 

Key Concepts
A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or input, leads to
exactly one range value, or output.
Function notation is a shorthand method for relating the input to the output in the form .
In tabular form, a function can be represented by rows or columns that relate to input and output values.
To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a function can be
evaluated by replacing the input variable with a given value.
To solve for a specific function value, we determine the input values that yield the specific output value.
An algebraic form of a function can be written from an equation.
Input and output values of a function can be identified from a table.
Relating input values to output values on a graph is another way to evaluate a function.
A function is one-to-one if each output value corresponds to only one input value.
A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one point.
The graph of a one-to-one function passes the horizontal line test.

Footnotes
1 http://www.baseball-almanac.com/lege.../lisn100.shtml. Accessed 3/24/2014. 
2 www.kgbanswers.com/how-long-i...y-span/4221590. Accessed 3/24/2014.

f(x) = x−−√

f(x) = x−−√3

f(x) = c c

f(x) = x

f(x) = |x|
f(x) = x2

f(x) = x3

f(x) =
1

x
f(x) = 1

x2

f(x) = x−−√
f(x) = 3 x−−√

y = f(x)
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Glossary
dependent variable 
an output variable

domain 
the set of all possible input values for a relation

function 
a relation in which each input value yields a unique output value

horizontal line test 
a method of testing whether a function is one-to-one by determining whether any horizontal line intersects the graph more than
once

independent variable 
an input variable

input 
each object or value in a domain that relates to another object or value by a relationship known as a function

one-to-one function 
a function for which each value of the output is associated with a unique input value

output 
each object or value in the range that is produced when an input value is entered into a function

range 
the set of output values that result from the input values in a relation

relation 
a set of ordered pairs

vertical line test 
a method of testing whether a graph represents a function by determining whether a vertical line intersects the graph no more than
once
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1.3: New Functions from Old Functions

Combine functions using algebraic operations.
Create a new function by composition of functions.
Evaluate composite functions.
Find the domain of a composite function.
Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house will
depend on the average daily temperature, and in turn, the average daily temperature depends on the particular day of the year.
Notice how we have just defined two relationships: The cost depends on the temperature, and the temperature depends on the day.

Using descriptive variables, we can notate these two functions. The function  gives the cost  of heating a house for a given
average daily temperature in  degrees Celsius. The function  gives the average daily temperature on day d of the year. For
any given day,  means that the cost depends on the temperature, which in turns depends on the day of the year.
Thus, we can evaluate the cost function at the temperature . For example, we could evaluate  to determine the average
daily temperature on the 5th day of the year. Then, we could evaluate the cost function at that temperature. We would write 

.

Figure : Explanation of , which is the cost for the temperature and  is the temperature on day 5.

By combining these two relationships into one function, we have performed function composition, which is the focus of this
section.

Combining Functions Using Algebraic Operations

Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic operations on
functions, such as addition, subtraction, multiplication and division. We do this by performing the operations with the function
outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a period of
years, with the result being their total household income. We want to do this for every year, adding only that year’s incomes and
then collecting all the data in a new column. If  is the wife’s income and  is the husband’s income in year , and we want 

 to represent the total income, then we can define a new function.

If this holds true for every year, then we can focus on the relation between the functions without reference to a year and write

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions that have the
same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to be numbers so that the usual
operations of algebra can apply to them, and which also must have the same units or no units when we add and subtract). In this
way, we can think of adding, subtracting, multiplying, and dividing functions.

For two functions  and  with real number outputs, we define new functions , , , and  by the relations.

Learning Objectives

C(T ) C

T T (d)
Cost = C(T (d))

T (d) T (5)

C(T (5))

1.3.1 C(T (5)) T (5)

w(y) h(y) y

T

T (y) = h(y) +w(y)

T = h+w

f(x) g(x) f +g f −g fg
f

g
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Find and simplify the functions  and , given  and . Are they the same

function?

Solution

Begin by writing the general form, and then substitute the given functions.

No, the functions are not the same.

Note: For , the condition  is necessary because when , the denominator is equal to 0, which makes the

function undefined.

Find and simplify the functions  and .

and

Are they the same function?

Answer

No, the functions are not the same.

(f +g)(x)

(f −g)(x)

(fg)(x)

( ) (x)
f

g

= f(x) +g(x)

= f(x) −g(x)

= f(x)g(x)

=
f(x)

g(x)

Example : Performing Algebraic Operations on Functions1.3.1

(g−f)(x) ( ) (x)
g

f
f(x) = x−1 g(x) = −1x2

(g−f)(x)

(g−f)(x)

= g(x) −f(x)

= −1 −(x−1)x2

= −xx2

= x(x−1)

( ) (x)
g

f

( ) (x)
g

f

= g(x)f(x)

=
−1x2

x−1

=
(x+1)(x−1)

x−1

= x+1

( ) (x)
g

f
x ≠ 1 x = 1

Exercise 1.3.1

(fg)(x) (f −g)(x)

f(x) = x−1

g(x) = −1x2

(fg)(x) = f(x)g(x) = (x−1)(x2 −1) = − −x+1x3 x2

(f −g)(x) = f(x) −g(x) = (x−1) −( −1) = x−x2 x2
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Create a Function by Composition of Functions
Performing algebraic operations on functions combines them into a new function, but we can also create functions by composing
functions. When we wanted to compute a heating cost from a day of the year, we created a new function that takes a day as input
and yields a cost as output. The process of combining functions so that the output of one function becomes the input of another is
known as a composition of functions. The resulting function is known as a composite function. We represent this combination by
the following notation:

We read the left-hand side as“  composed with  at ,” and the right-hand side as“  of  of .”The two sides of the equation have
the same mathematical meaning and are equal. The open circle symbol  is called the composition operator. We use this operator
mainly when we wish to emphasize the relationship between the functions themselves without referring to any particular input
value. Composition is a binary operation that takes two functions and forms a new function, much as addition or multiplication
takes two numbers and gives a new number. However, it is important not to confuse function composition with multiplication
because, as we learned above, in most cases .

It is also important to understand the order of operations in evaluating a composite function. We follow the usual convention with
parentheses by starting with the innermost parentheses first, and then working to the outside. In the equation above, the function 
takes the input  first and yields an output . Then the function  takes  as an input and yields an output .

Figure : Explanation of the composite function.

In general,  and  are different functions. In other words, in many cases  for all . We will also see that
sometimes two functions can be composed only in one specific order.

For example, if  and , then

but

These expressions are not equal for all values of x, so the two functions are not equal. It is irrelevant that the expressions happen to
be equal for the single input value .

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the outside function.
Less formally, the composition has to make sense in terms of inputs and outputs.

When the output of one function is used as the input of another, we call the entire operation a composition of functions. For
any input  and functions  and , this action defines a composite function, which we write as  such that

The domain of the composite function  is all  such that  is in the domain of  and  is in the domain of .

It is important to realize that the product of functions  is not the same as the function composition , because, in
general, .

f∘g(x) = f(g(x)) (1.3.1)

f g x f g x

∘

f(g(x))≠f(x)g(x)

g

x g(x) f g(x) f(g(x))

1.3.2

f∘g g∘f f(g(x))≠g(f(x)) x

f(x) = x2 g(x) = x+2

f(g(x)) = f(x+2)

= (x+2)2

= +4x+4x2

g(f(x)) = g( )x2

= +2x2

x = − 1
2

Composition of Functions

x f g f∘g

(f∘g)(x) = f(g(x)) (1.3.2)

f∘g x x g g(x) f

fg f(g(x))
f(x)g(x)≠f(g(x))
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Using the functions provided, find  and . Determine whether the composition of the functions is commutative.

Solution

Let’s begin by substituting  into .

Now we can substitute  into .

We find that , so the operation of function composition is not commutative.

The function  gives the number of calories burned completing  sit-ups, and  gives the number of sit-ups a person can
complete in  minutes. Interpret .

Solution

The inside expression in the composition is . Because the input to the -function is time,  represents 3 minutes, and 
 is the number of sit-ups completed in 3 minutes.

Using  as the input to the function  gives us the number of calories burned during the number of sit-ups that can be
completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing sit-ups).

Suppose  gives miles that can be driven in  hours and  gives the gallons of gas used in driving  miles. Which of
these expressions is meaningful:  or ?

Solution

The function  is a function whose output is the number of miles driven corresponding to the number of hours driven.

The function  is a function whose output is the number of gallons used corresponding to the number of miles driven. This
means:

The expression  takes miles as the input and a number of gallons as the output. The function  requires a number of
hours as the input. Trying to input a number of gallons does not make sense. The expression  is meaningless.

The expression  takes hours as input and a number of miles driven as the output. The function  requires a number of
miles as the input. Using  (miles driven) as an input value for , where gallons of gas depends on miles driven, does
make sense. The expression  makes sense, and will yield the number of gallons of gas used, , driving a certain
number of miles, , in  hours.

Example : Determining whether Composition of Functions is Commutative1.3.2

f(g(x)) g(f(x))

f(x) = 2x+1 g(x) = 3 −x

g(x) f(x)

f(g(x)) = 2(3 −x) +1

= 6 −2x+1

= 7 −2x

f(x) g(x)

g(f(x)) = 3 −(2x+1)

= 3 −2x−1

= 2 −2x

g(f(x))≠f(g(x))

Example : Interpreting Composite Functions1.3.3

c(s) s s(t)
t c(s(3))

s(3) s t = 3
s(3)

s(3) c(s)

Example : Investigating the Order of Function Composition1.3.4

f(x) x g(y) y

f(g(y)) g(f(x))

y = f(x)

number of miles  = f(number of hours)

g(y)

number of gallons  = g(number of miles)

g(y) f(x)
f(g(y))

f(x) g(y)
f(x) g(y)

g(f(x)) g

f(x) x
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Are there any situations where  and  would both be meaningful or useful expressions?

Yes. For many pure mathematical functions, both compositions make sense, even though they usually produce different new
functions. In real-world problems, functions whose inputs and outputs have the same units also may give compositions that are
meaningful in either order

The gravitational force on a planet a distance  from the sun is given by the function . The acceleration of a planet
subjected to any force  is given by the function . Form a meaningful composition of these two functions, and explain
what it means.

Answer

A gravitational force is still a force, so  makes sense as the acceleration of a planet at a distance  from the Sun
(due to gravity), but  does not make sense.

Evaluating Composite Functions
Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its domain. We will
do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and with variables as inputs to
functions expressed as formulas. In each case, we evaluate the inner function using the starting input and then use the inner
function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output values from the table entries and always work from the
inside to the outside. We evaluate the inside function first and then use the output of the inside function as the input to the outside
function.

Using Table , evaluate  and .

Table 

1 6 3

2 8 5

3 3 2

4 1 7

Solution

To evaluate , we start from the inside with the input value 3. We then evaluate the inside expression  using the
table that defines the function . We can then use that result as the input to the function , so  is replaced by 2
and we get . Then, using the table that defines the function , we find that .

To evaluate , we first evaluate the inside expression  using the first table: . Then, using the table for , we
can evaluate

Table  shows the composite functions  and  as tables.

Question/Answer

f(g(y)) g(f(x))

Exercise 1.3.2

r G(r)
F a(F )

a(G(r)) r

G(a(F ))

Example : Using a Table to Evaluate a Composite Function1.3.5

1.3.1 f(g(3)) g(f(3))

1.3.1

x f(x) g(x)

f(g(3)) g(3)
g : g(3) = 2 f g(3)

f(2) f f(2) = 8

g(3) = 2

f(g(3)) = f(2) = 8

g(f(3)) f(3) f(3) = 3 g

g(f(3)) = g(3) = 2

1.3.2 f∘g g∘f
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Table 

3 2 8 3 2

Using Table , evaluate  and .

Answer

 and 

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the process we
use for evaluating tables. We read the input and output values, but this time, from the x- and y-axes of the graphs.

Given a composite function and graphs of its individual functions, evaluate it using the information provided by the graphs.

1. Locate the given input to the inner function on the x-axis of its graph.
2. Read off the output of the inner function from the y-axis of its graph.
3. Locate the inner function output on the x-axis of the graph of the outer function.
4. Read the output of the outer function from the y-axis of its graph. This is the output of the composite function.

Using Figure , evaluate .

Figure : Two graphs of a positive and negative parabola.

Solution

To evaluate , we start with the inside evaluation. See Figure .

1.3.2

x g(x) f(g(x)) f(x) g(f(x))

Exercise 1.3.3

1.3.1 f(g(1)) g(f(4))

f(g(1)) = f(3) = 3 g(f(4)) = g(1) = 3

How To ...

Example : Using a Graph to Evaluate a Composite Function1.3.6

1.3.3 f(g(1))

1.3.3

f(g(1)) 1.3.4
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Figure : Two graphs of a positive parabola  and a negative parabola . The following points are plotted: 
and .

We evaluate  using the graph of , finding the input of 1 on the x-axis and finding the output value of the graph at that
input. Here, . We use this value as the input to the function .

We can then evaluate the composite function by looking to the graph of , finding the input of 3 on the x-axis and reading
the output value of the graph at this input. Here, , so .

Analysis

Figure  shows how we can mark the graphs with arrows to trace the path from the input value to the output value.

Figure : Two graphs of a positive and negative parabola.

1.3.4 g(x) f(x) g(1) = 3
f(3) = 6

g(1) g(x)
g(1) = 3 f

f(g(1)) = f(3)

f(x)
f(3) = 6 f(g(1)) = 6

1.3.5

1.3.5
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Using Figure , evaluate .

Answer

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or been given formulas, the rule of working from the inside
out remains the same. The input value to the outer function will be the output of the inner function, which may be a numerical
value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula that will
calculate the result of a composition . To do this, we will extend our idea of function evaluation. Recall that, when we
evaluate a function like , we substitute the value inside the parentheses into the formula wherever we see the input
variable.

Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable provided.
2. Use the resulting output as the input to the outside function.

Given  and , evaluate .

Solution

Because the inside expression is , we start by evaluating  at 1.

Then , so we evaluate  at an input of 5.

Analysis

It makes no difference what the input variables  and  were called in this problem because we evaluated for specific
numerical values.

Given  and , evaluate

a.  
b. 

Answer a

8

Answer b

20

Exercise 1.3.4

1.3.3 g(f(2))

g(f(2)) = g(5) = 3

f(g(x))
f(t) = − tt2

How To...

Example : Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input1.3.7

f(t) = − tt2 h(x) = 3x+2 f(h(1))

h(1) h(x)

h(1) = 3(1) +2

h(1) = 5

f(h(1)) = f(5) f(t)

f(h(1))

f(h(1))

f(h(1))

= f(5)

= −552

= 20

t x

Exercise 1.3.5

f(t) = − tt2 h(x) = 3x+2

h(f(2))
h(f(−2))
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Finding the Domain of a Composite Function

As we discussed previously, the domain of a composite function such as  is dependent on the domain of  and the domain of 
. It is important to know when we can apply a composite function and when we cannot, that is, to know the domain of a function

such as . Let us assume we know the domains of the functions  and  separately. If we write the composite function for an
input  as , we can see right away that  must be a member of the domain of g in order for the expression to be
meaningful, because otherwise we cannot complete the inner function evaluation. However, we also see that  must be a
member of the domain of , otherwise the second function evaluation in  cannot be completed, and the expression is still
undefined. Thus the domain of  consists of only those inputs in the domain of  that produce outputs from  belonging to the
domain of . Note that the domain of  composed with  is the set of all  such that  is in the domain of  and g(x)\) is in the
domain of .

The domain of a composite function  is the set of those inputs  in the domain of  for which  is in the domain
of .

Given a function composition , determine its domain.

1. Find the domain of .
2. Find the domain of .
3. Find those inputs  in the domain of  for which  is in the domain of . That is, exclude those inputs  from the

domain of  for which  is not in the domain of . The resulting set is the domain of .

Find the domain of

Solution

The domain of  consists of all real numbers except , since that input value would cause us to divide by 0. Likewise,
the domain of  consists of all real numbers except 1. So we need to exclude from the domain of  that value of  for
which .

So the domain of  is the set of all real numbers except  and . This means that

We can write this in interval notation as

f∘g g

f

f∘g f g

x f(g(x)) x

g(x)
f f(g(x))

f∘g g g

f f g x x g

f

Definition: Domain of a Composite Function

f(g(x)) x g g(x)
f

How To...

f(g(x))

g

f

x g g(x) f x

g g(x) f f∘g

Example : Finding the Domain of a Composite Function1.3.8A

(f ∘ g)(x) where f(x) =  and g(x) =
5

x−1

4

3x−2

g(x) x = 2
3

f g(x) x

g(x) = 1

4

3x−2

4

6

x

= 1

= 3x−2

= 3x

= 2

f∘g 2
3

2

x≠  or x ≠ 2
2

3

(−∞, )∪( , 2)∪ (2, ∞)
2

3

2

3
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Find the domain of

Solution

Because we cannot take the square root of a negative number, the domain of  is . Now we check the domain of the
composite function

For  since the radicand of a square root must be positive. Since square roots
are positive, ,or,  which gives a domain of .

Analysis

This example shows that knowledge of the range of functions (specifically the inner function) can also be helpful in finding the
domain of a composite function. It also shows that the domain of  can contain values that are not in the domain of ,
though they must be in the domain of .

Find the domain of

Answer

Decomposing a Composite Function into its Component Functions

In some cases, it is necessary to decompose a complicated function. In other words, we can write it as a composition of two simpler
functions. There may be more than one way to decompose a composite function, so we may choose the decomposition that
appears to be most expedient.

Write  as the composition of two functions.

Solution

We are looking for two functions,  and , so . To do this, we look for a function inside a function in the
formula for . As one possibility, we might notice that the expression  is the inside of the square root. We could then
decompose the function as

We can check our answer by recomposing the functions.

Write  as the composition of two functions.

Answer

Example : Finding the Domain of a Composite Function Involving Radicals1.3.8B

(f∘g)(x) where f(x) =  and g(x) =x+2− −−−−
√ 3 −x− −−−−

√

g (−∞, 3]

(f∘g)(x) = +23 −x
− −−−−

√
− −−−−−−−−

√

(f ∘ g)(x) = , +2 ≥ 0,+23 −x
− −−−−

√
− −−−−−−−−√ 3 −x

− −−−−
√

≥ 03 −x
− −−−−

√ 3 −x ≥ 0, (−∞, 3]

f∘g f

g

Exercise 1.3.6

(f∘g)(x) where f(x) =  and g(x) =
1

x−2
x+4
− −−−−

√

[−4, 0) ∪ (0, ∞)

Example : Decomposing a Function1.3.9

f(x) = 5 −x2
− −−−−

√

g h f(x) = g(h(x))
f(x) 5 −x2

h(x) = 5 −  and g(x) =x2 x−−√

g(h(x)) = g(5 − ) =x2 5 −x2− −−−−
√

Exercise 1.3.7

f(x) =
4

3 − 4 +x2
− −−−−

√
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Possible answers:

Access these online resources for additional instruction and practice with composite functions.

Composite Functions (http://openstaxcollege.org/l/compfunction)
Composite Function Notation Application (http://openstaxcollege.org/l/compfuncnot)
Composite Functions Using Graphs (http://openstaxcollege.org/l/compfuncgraph)
Decompose Functions (http://openstaxcollege.org/l/decompfunction)
Composite Function Values (http://openstaxcollege.org/l/compfuncvalue)

Key Equation
Composite function 

Key Concepts
We can perform algebraic operations on functions. See Example.
When functions are combined, the output of the first (inner) function becomes the input of the second (outer) function.
The function produced by combining two functions is a composite function. See Example and Example.
The order of function composition must be considered when interpreting the meaning of composite functions. See Example.
A composite function can be evaluated by evaluating the inner function using the given input value and then evaluating the
outer function taking as its input the output of the inner function.
A composite function can be evaluated from a table. See Example.
A composite function can be evaluated from a graph. See Example.
A composite function can be evaluated from a formula. See Example.
The domain of a composite function consists of those inputs in the domain of the inner function that correspond to outputs of
the inner function that are in the domain of the outer function. See Example and Example.
Just as functions can be combined to form a composite function, composite functions can be decomposed into simpler
functions.
Functions can often be decomposed in more than one way. See Example.

Glossary

composite function

the new function formed by function composition, when the output of one function is used as the input of another

1.3: New Functions from Old Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

1.4: Composition of Functions by OpenStax is licensed CC BY 4.0. Original source: https://openstax.org/details/books/precalculus.

g(x) = 4 +x2
− −−−−

√

h(x) =
4

3 −x

f = h∘g

(f∘g)(x) = f(g(x))
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1.4: Exponential Functions

1.4: Exponential Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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1.5: Inverse Functions and Logarithms

1.5: Inverse Functions and Logarithms is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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2.2: The Limit of a Function

Using correct notation, describe the limit of a function.
Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
Use a graph to estimate the limit of a function or to identify when the limit does not exist.
Define one-sided limits and provide examples.
Explain the relationship between one-sided and two-sided limits.
Using correct notation, describe an infinite limit.
Define a vertical asymptote.

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years. In
fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the formal
definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore begin our quest
to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this chapter, armed with a
conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions

,

, and

,

which are shown in Figure . In particular, let’s focus our attention on the behavior of each graph at and around .

Figure : These graphs show the behavior of three different functions around .

Each of the three functions is undefined at , but if we make this statement and no other, we give a very incomplete picture of
how each function behaves in the vicinity of . To express the behavior of each graph in the vicinity of  more completely, we
need to introduce the concept of a limit.

Intuitive Definition of a Limit

Let’s first take a closer look at how the function  behaves around  in Figure . As the values of 
 approach  from either side of , the values of  approach . Mathematically, we say that the limit of  as 

approaches  is . Symbolically, we express this limit as

.

 Learning Objectives

f(x) =
−4x2

x −2

g(x) =
|x −2|

x −2

h(x) =
1

(x −2)2

2.2.1 x = 2

2.2.1 x = 2

x = 2
x = 2 2

f(x) = ( −4)/(x −2)x2 x = 2 2.2.1
x 2 2 y = f(x) 4 f(x) x

2 4

f(x) = 4lim
x→2
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From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the limit of a
function at a number  as being the one real number  that the functional values approach as the -values approach , provided
such a real number  exists. Stated more carefully, we have the following definition:

Let  be a function defined at all values in an open interval containing , with the possible exception of  itself, and let 
be a real number. If all values of the function  approach the real number  as the values of  approach the number 

, then we say that the limit of  as  approaches  is . (More succinct, as  gets closer to ,  gets closer and stays
close to .) Symbolically, we express this idea as

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described in the
following Problem-Solving Strategy.

1. To evaluate , we begin by completing a table of functional values. We should choose two sets of -values—one set

of values approaching  and less than , and another set of values approaching  and greater than . Table  demonstrates
what your tables might look like.

Table 

Use additional values as necessary. Use additional values as necessary.

2. Next, let’s look at the values in each of the  columns and determine whether the values seem to be approaching a single
value as we move down each column. In our columns, we look at the sequence , , , 

, and so on, and , and so on. (Note: Although we have
chosen the -values , and so forth, and these values will probably work nearly
every time, on very rare occasions we may need to modify our choices.)

3. If both columns approach a common -value , we state . We can use the following strategy to confirm the

result obtained from the table or as an alternative method for estimating a limit.

4. Using a graphing calculator or computer software that allows us graph functions, we can plot the function , making sure
the functional values of  for -values near  are in our window. We can use the trace feature to move along the graph of
the function and watch the -value readout as the -values approach . If the -values approach  as our -values approach 
from both directions, then . We may need to zoom in on our graph and repeat this process several times.

We apply this Problem-Solving Strategy to compute a limit in Examples  and .

Evaluate  using a table of functional values.

Solution

We have calculated the values of  for the values of  listed in Table .

a L x a

L

 Definition (Intuitive): Limit

f(x) a a L

f(x) L x(≠ a)
a f(x) x a L x a f(x)

L

f(x) = L.lim
x→a

(2.2.1)

 Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional Values

f(x)lim
x→a

x

a a a a 2.2.1

2.2.1

x f(x) x f(x)

a − 0.1 f(a − 0.1) a + 0.1 f(a + 0.1)

a − 0.01 f(a − 0.01) a + 0.01 f(a + 0.01)

a − 0.001 f(a − 0.001) a + 0.001 f(a + 0.001)

a − 0.0001 f(a − 0.0001) a + 0.0001 f(a + 0.0001)

f(x)
f(a −0.1) f(a −0.01) f(a −0.001)

f(a −0.0001) f(a +0.1), f(a +0.01), f(a +0.001), f(a +0.0001)
x a ±0.1, a ±0.01, a ±0.001, a ±0.0001

y L f(x) = Llim
x→a

f(x)
f(x) x a

y x a y L x a

f(x) = Llim
x→a

2.2.1A 2.2.1B

 Example : Evaluating a Limit Using a Table of Functional Values2.2.1A

lim
x→0

sinx

x

f(x) =
sinx

x
x 2.2.2

https://libretexts.org/
https://math.libretexts.org/@go/page/4441?pdf


2.2.3 https://math.libretexts.org/@go/page/4441

Table 

-0.1 0.998334166468 0.1 0.998334166468

-0.01 0.999983333417 0.01 0.999983333417

-0.001 0.999999833333 0.001 0.999999833333

-0.0001 0.999999998333 0.0001 0.999999998333

Note: The values in this table were obtained using a calculator and using all the places given in the calculator output.

As we read down each  column, we see that the values in each column appear to be approaching one. Thus, it is fairly

reasonable to conclude that . A calculator-or computer-generated graph of  would be similar to

that shown in Figure , and it confirms our estimate.

Figure : The graph of  confirms the estimate from Table .

Evaluate  using a table of functional values.

Solution

As before, we use a table—in this case, Table —to list the values of the function for the given values of .

Table 

3.9 0.251582341869 4.1 0.248456731317

3.99 0.25015644562 4.01 0.24984394501

3.999 0.250015627 4.001 0.249984377

3.9999 0.250001563 4.0001 0.249998438

3.99999 0.25000016 4.00001 0.24999984

After inspecting this table, we see that the functional values less than 4 appear to be decreasing toward 0.25 whereas the

functional values greater than 4 appear to be increasing toward 0.25. We conclude that . We confirm this

estimate using the graph of  shown in Figure .

2.2.2

x sinx
x

x sinx
x

sinx

x

= 1lim
x→0

sinx

x
f(x) =

sinx

x
2.2.2

2.2.2 f(x) = (sin x)/x 2.2.2

 Example : Evaluating a Limit Using a Table of Functional Values2.2.1B

lim
x→4

−2x−−√

x −4

2.2.3 x

2.2.3

x
−2x√

x−4
x

−2x√

x−4

= 0.25lim
x→4

−2x−−√

x −4

f(x) =
−2x−−√

x −4
2.2.3
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Figure : The graph of  confirms the estimate from Table .

Estimate  using a table of functional values. Use a graph to confirm your estimate.

Hint

Use 0.9, 0.99, 0.999, 0.9999, 0.99999 and 1.1, 1.01, 1.001, 1.0001, 1.00001 as your table values.

Answer

At this point, we see from Examples  and  that it may be just as easy, if not easier, to estimate a limit of a function by
inspecting its graph as it is to estimate the limit by using a table of functional values. In Example , we evaluate a limit
exclusively by looking at a graph rather than by using a table of functional values.

For  shown in Figure , evaluate .

Figure : The graph of  includes one value not on a smooth curve.

Solution:

Despite the fact that , as the -values approach  from either side, the  values approach . Therefore, 
. Note that we can determine this limit without even knowing the algebraic expression of the function.

2.2.3
−2x√

x−4
2.2.3

 Exercise 2.2.1

lim
x→1

−11
x

x −1

= −1lim
x→1

−11
x

x −1

2.2.1A 2.2.1b

2.2.2

 Example : Evaluating a Limit Using a Graph2.2.2

g(x) 2.2.4 g(x)lim
x→−1

2.2.4 g(x)

g(−1) = 4 x −1 g(x) 3
g(x) = 3lim

x→−1
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Based on Example , we make the following observation: It is possible for the limit of a function to exist at a point, and for the
function to be defined at this point, but the limit of the function and the value of the function at the point may be different.

Use the graph of  in Figure  to evaluate , if possible.

Figure :

Hint

What -value does the function approach as the -values approach ?

Solution

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value of the
limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to develop
alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in the next section;
however, at this point we introduce two special limits that are foundational to the techniques to come.

Let  be a real number and  be a constant.

i. 

ii. 

We can make the following observations about these two limits.

i. For the first limit, observe that as  approaches , so does , because . Consequently, .

ii. For the second limit, consider Table .

Table 

2.2.2

 Exercise 2.2.2

h(x) 2.2.5 h(x)lim
x→2

2.2.5

y x 2

h(x) = −1.lim
x→2

 Two Important Limits

a c

x = alim
x→a

c = clim
x→a

x a f(x) f(x) = x x = alim
x→a

2.2.4

2.2.4

x f(x) = c x f(x) = c

a − 0.1 c a + 0.1 c

a − 0.01 c a + 0.01 c

a − 0.001 c a + 0.001 c

a − 0.0001 c a + 0.0001 c
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Observe that for all values of  (regardless of whether they are approaching ), the values  remain constant at . We have
no choice but to conclude .

The Existence of a Limit
As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional values
must approach a single real-number value at that point. If the functional values do not approach a single value, then the limit does
not exist.

Evaluate  using a table of values.

Solution

Table  lists values for the function  for the given values of .

Table 

-0.1 0.544021110889 0.1 −0.544021110889

-0.01 0.50636564111 0.01 −0.50636564111

-0.001 −0.8268795405312 0.001 0.8268795405312

-0.0001 0.305614388888 0.0001 −0.305614388888

-0.00001 −0.035748797987 0.00001 0.035748797987

-0.000001 0.349993504187 0.000001 −0.349993504187

After examining the table of functional values, we can see that the -values do not seem to approach any one single value. It
appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic approach. Take the following
sequence of -values approaching :

The corresponding -values are

At this point we can indeed conclude that  does not exist. (Mathematicians frequently abbreviate “does not exist”

as DNE. Thus, we would write  DNE.) The graph of  is shown in Figure  and it gives a

clearer picture of the behavior of  as  approaches . You can see that  oscillates ever more wildly between 
 and  as  approaches .

x a f(x) c

c = clim
x→a

 Example : Evaluating a Limit That Fails to Exist2.2.3

sin(1/x)lim
x→0

2.2.5 sin(1/x) x

2.2.5

x sin(1/x) x sin(1/x)

y

x 0

, , , , , , … .
2

π

2

3π

2

5π

2

7π

2

9π

2

11π

y

1, −1, 1, −1, 1, −1, . . . .

sin(1/x)lim
x→0

sin(1/x)lim
x→0

f(x) = sin(1/x) 2.2.6

sin(1/x) x 0 sin(1/x)
−1 1 x 0
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Figure : The graph of  oscillates rapidly between  and  as  approaches .

Use a table of functional values to evaluate , if possible.

Hint

Use -values 1.9, 1.99, 1.999, 1.9999, 1.99999 and 2.1, 2.01, 2.001, 2.0001, 2.00001 in your table.

Answer

 does not exist.

One-Sided Limits
Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information about the
behavior of the function at that particular point. To see this, we now revisit the function  introduced at the
beginning of the section (see Figure (b)). As we pick values of  close to ,  does not approach a single value, so the
limit as  approaches  does not exist—that is,  DNE. However, this statement alone does not give us a complete picture

of the behavior of the function around the -value . To provide a more accurate description, we introduce the idea of a one-sided
limit. For all values to the left of  (or the negative side of ), . Thus, as  approaches  from the left,  approaches 

. Mathematically, we say that the limit as  approaches  from the left is . Symbolically, we express this idea as

Similarly, as  approaches  from the right (or from the positive side),  approaches . Symbolically, we express this idea as

We can now present an informal definition of one-sided limits.

We define two types of one-sided limits.

Limit from the left:

Let  be a function defined at all values in an open interval of the form , and let  be a real number. If the values of
the function  approach the real number  as the values of  (where ) approach the number , then we say that  is
the limit of  as  approaches  from the left. Symbolically, we express this idea as

2.2.6 f(x) = sin(1/x) −1 1 x 0

 Exercise 2.2.3

lim
x→2

−4∣∣x2 ∣∣

x −2

x

lim
x→2

−4∣∣x2 ∣∣

x −2

g(x) = |x −2|/(x −2)
2.2.1 x 2 g(x)

x 2 g(x)lim
x→2

x 2
2 2 g(x) = −1 x 2 g(x)

−1 x 2 −1

g(x) = −1.lim
x→2−

x 2 g(x) 1

g(x) = 1.lim
x→2+

 Definition: One-sided Limits

f(x) (z, a) L

f(x) L x x < a a L

f(x) x a

f(x) = L.lim
x→a−
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Limit from the right:

Let  be a function defined at all values in an open interval of the form , and let  be a real number. If the values of
the function  approach the real number  as the values of  (where ) approach the number , then we say that  is
the limit of  as  approaches  from the right. Symbolically, we express this idea as

For the function , evaluate each of the following limits.

a. 

b. 

Solution

We can use tables of functional values again. Observe in Table  that for values of  less than , we use  and
for values of  greater than , we use 

Table 

1.9 2.9 2.1 0.41

1.99 2.99 2.01 0.0401

1.999 2.999 2.001 0.004001

1.9999 2.9999 2.0001 0.00040001

1.99999 2.99999 2.00001 0.0000400001

Based on this table, we can conclude that a.  and b. . Therefore, the (two-sided) limit of 

does not exist at . Figure  shows a graph of  and reinforces our conclusion about these limits.

Figure : The graph of  has a break at .

f(x) (a, c) L

f(x) L x x > a a L

f(x) x a

f(x) = L.lim
x→a+

 Example : Evaluating One-Sided Limits2.2.4

f(x) = {
x +1,

−4,x2
if x < 2
if x ≥ 2

f(x)lim
x→2−

f(x)lim
x→2+

2.2.6 x 2 f(x) = x +1
x 2 f(x) = −4.x2

2.2.6

x f(x) = x + 1 x f(x) = − 4x2

f(x) = 3lim
x→2−

f(x) = 0lim
x→2+

f(x)

x = 2 2.2.7 f(x)

2.2.7 f(x) = {
x + 1,

− 4,x2
if x < 2
if x ≥ 2

x = 2
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Use a table of functional values to estimate the following limits, if possible.

a. 

b. 

Hint

Use -values 1.9, 1.99, 1.999, 1.9999, 1.99999 to estimate .

Use -values 2.1, 2.01, 2.001, 2.0001, 2.00001 to estimate 

(These tables are available from a previous Checkpoint problem.)

Solution a

a. 

Solution b

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that point. It
seems clear that if the limit from the right and the limit from the left have a common value, then that common value is the limit of
the function at that point. Similarly, if the limit from the left and the limit from the right take on different values, the limit of the
function does not exist. These conclusions are summarized in Note.

Let  be a function defined at all values in an open interval containing , with the possible exception of  itself, and let 
be a real number. Then,

if and only if  and .

Infinite Limits
Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to
characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions that do
not have finite limits.

We now turn our attention to , the third and final function introduced at the beginning of this section (see Figure
(c)). From its graph we see that as the values of  approach , the values of  become larger and larger and,

in fact, become infinite. Mathematically, we say that the limit of  as  approaches  is positive infinity. Symbolically, we
express this idea as

More generally, we define infinite limits as follows:

 Exercise 2.2.4

lim
x→2−

−4∣∣x2 ∣∣

x −2

lim
x→2+

−4∣∣x2 ∣∣

x −2

x lim
x→2−

−4∣∣x2 ∣∣

x −2

x .lim
x→2+

−4∣∣x2 ∣∣

x −2

= −4lim
x→2−

−4∣∣x2 ∣∣

x −2

= 4lim
x→2+

−4∣∣x2 ∣∣

x −2

 Relating One-Sided and Two-Sided Limits

f(x) a a L

f(x) = Llim
x→a

f(x) = Llim
x→a−

f(x) = Llim
x→a+

h(x) = 1/(x −2)2

2.2.1 x 2 h(x) = 1/(x −2)2

h(x) x 2

h(x) = +∞.lim
x→2
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We define three types of infinite limits.

Infinite limits from the left: Let  be a function defined at all values in an open interval of the form .

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  from the left is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  from the left is negative infinity and we write

Infinite limits from the right: Let  be a function defined at all values in an open interval of the form .

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  from the right is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  from the right is negative infinity and we write

Two-sided infinite limit: Let  be defined for all  in an open interval containing 

i. If the values of  increase without bound as the values of  (where ) approach the number , then we say that
the limit as  approaches  is positive infinity and we write

ii. If the values of  decrease without bound as the values of  (where ) approach the number , then we say
that the limit as  approaches  is negative infinity and we write

It is important to understand that when we write statements such as  or  we are describing the

behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the limit of a function  to exist
at , it must approach a real number  as  approaches . That said, if, for example, , we always write 

 rather than  DNE.

Evaluate each of the following limits, if possible. Use a table of functional values and graph  to confirm your
conclusion.

a. 

b. 

c. 

Solution

Begin by constructing a table of functional values.

 Definitions: Infinite Limits

f(x) (b, a)

f(x) x x < a a

x a

f(x) = +∞.lim
x→a−

f(x) x x < a a

x a

f(x) = −∞.lim
x→a−

f(x) (a, c)

f(x) x x > a a

x a

f(x) = +∞.lim
x→a+

f(x) x x > a a

x a

f(x) = −∞.lim
x→a+

f(x) x ≠ a a

f(x) x x ≠ a a

x a

f(x) = +∞.lim
x→a

f(x) x x ≠ a a

x a

f(x) = −∞.lim
x→a

f(x) = +∞lim
x→a

f(x) = −∞lim
x→a

f(x)
a L x a f(x) = +∞lim

x→a

f(x) = +∞lim
x→a

f(x)lim
x→a

 Example : Recognizing an Infinite Limit2.2.5

f(x) = 1/x

lim
x→0−

1

x

lim
x→0+

1

x

lim
x→0

1

x

https://libretexts.org/
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Table 

-0.1 -10 0.1 10

-0.01 -100 0.01 100

-0.001 -1000 0.001 1000

-0.0001 -10,000 0.0001 10,000

-0.00001 -100,000 0.00001 100,000

-0.000001 -1,000,000 0.000001 1,000,000

a. The values of  decrease without bound as  approaches  from the left. We conclude that

b. The values of  increase without bound as  approaches  from the right. We conclude that

c. Since  and  have different values, we conclude that

The graph of  in Figure  confirms these conclusions.

Figure : The graph of  confirms that the limit as  approaches  does not exist.

Evaluate each of the following limits, if possible. Use a table of functional values and graph  to confirm your
conclusion.

a. 

b. 

c. 

2.2.7

x
1

x
x

1

x

1/x x 0

= −∞.lim
x→0−

1

x

1/x x 0

= +∞.lim
x→0+

1

x

= −∞lim
x→0−

1

x
= +∞lim

x→0+

1

x

DNE.lim
x→0

1

x

f(x) = 1/x 2.2.8

2.2.8 f(x) = 1/x x 0

 Exercise 2.2.5

f(x) = 1/x2

lim
x→0−

1

x2

lim
x→0+

1

x2

lim
x→0

1

x2

https://libretexts.org/
https://math.libretexts.org/@go/page/4441?pdf


2.2.12 https://math.libretexts.org/@go/page/4441

Hint

Follow the procedures from Example .

Answer

a. ;

b. ;

c. 

It is useful to point out that functions of the form , where n is a positive integer, have infinite limits as 
 approaches  from either the left or right (Figure ). These limits are summarized in the above definitions.

Figure : The function  has infinite limits at .

Infinite Limits from Positive Integers
If  is a positive even integer, then

If  is a positive odd integer, then

and

We should also point out that in the graphs of , points on the graph having -coordinates very near to  are
very close to the vertical line . That is, as  approaches , the points on the graph of  are closer to the line . The
line  is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

Let  be a function. If any of the following conditions hold, then the line  is a vertical asymptote of .

2.2.5

= +∞lim
x→0−

1

x2

= +∞lim
x→0+

1

x2

= +∞lim
x→0

1

x2

f(x) = 1/(x −a)n

x a 2.2.9

2.2.9 f(x) = 1/(x − a)n a

n

= +∞.lim
x→a

1

(x −a)n
(2.2.2)

n

= +∞lim
x→a+

1

(x −a)n
(2.2.3)

= −∞.lim
x→a−

1

(x −a)n
(2.2.4)

f(x) = 1/(x −a)n x a

x = a x a f(x) x = a

x = a

 Definition: Vertical Asymptotes

f(x) x = a f(x)

f(x) = +∞lim
x→a−

https://libretexts.org/
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Evaluate each of the following limits using Equations , , and  above. Identify any vertical asymptotes of the
function 

a. 

b. 

c. 

Solution

We can use the above equations directly.

a. 

b. 

c. 

The function  has a vertical asymptote of .

Evaluate each of the following limits. Identify any vertical asymptotes of the function .

a. 

b. 

c. 

Answer a

Answer b

Answer c

 DNE. The line  is the vertical asymptote of 

f(x) = −∞lim
x→a−

f(x) = +∞lim
x→a+

f(x) = −∞lim
x→a+

f(x) = +∞lim
x→a

f(x) = −∞lim
x→a

 Example : Finding a Vertical Asymptote2.2.6

2.2.2 2.2.3 2.2.4
f(x) = 1/(x +3 .)4

lim
x→−3−

1

(x +3)4

lim
x→−3+

1

(x +3)4

lim
x→−3

1

(x +3)4

= +∞lim
x→−3−

1

(x +3)4

= +∞lim
x→−3+

1

(x +3)4

= +∞lim
x→−3

1

(x +3)4

f(x) = 1/(x +3)4 x = −3

 Exercise 2.2.6

f(x) =
1

(x −2)3

lim
x→2−

1

(x −2)3

lim
x→2+

1

(x −2)3

lim
x→2

1

(x −2)3

= −∞lim
x→2−

1

(x −2)3

= +∞lim
x→2+

1

(x −2)3

lim
x→2

1

(x −2)3
x = 2 f(x) = 1/(x −2 .)3
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In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several different
points.

Use the graph of  in Figure  to determine each of the following values:

a. ; ; 

b. ); ; 

c. ; ; 

d. ; ; 

Figure : The graph shows .

Solution

Using the definitions above and the graph for reference, we arrive at the following values:

a. ; ; 

b. ; ;  is undefined

c. ; ;  DNE; 

d. ; ; ;  is undefined

Evaluate  for  shown here:

 Example : Behavior of a Function at Different Points2.2.7

f(x) 2.2.10

f(x)lim
x→−4−

f(x)lim
x→−4+

f(x); f(−4)lim
x→−4

f(xlim
x→−2−

f(x)lim
x→−2+

f(x); f(−2)lim
x→−2

f(x)lim
x→1−

f(x)lim
x→1+

f(x); f(1)lim
x→1

f(x)lim
x→3−

f(x)lim
x→3+

f(x); f(3)lim
x→3

2.2.10 f(x)

f(x) = 0lim
x→−4−

f(x) = 0lim
x→−4+

f(x) = 0; f(−4) = 0lim
x→−4

f(x) = 3lim
x→−2−

f(x) = 3lim
x→−2+

f(x) = 3; f(−2)lim
x→−2

f(x) = 6lim
x→1−

f(x) = 3lim
x→1+

f(x)lim
x→1

f(1) = 6

f(x) = −∞lim
x→3−

f(x) = −∞lim
x→3+

f(x) = −∞lim
x→3

f(3)

 Exercise 2.2.7

f(x)lim
x→1

f(x)
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Figure . The graph of a piecewise function .

Hint

Compare the limit from the right with the limit from the left.

Answer

 does not exist

In the Chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object can travel.
Given Einstein’s equation for the mass of a moving object

what is the value of this bound?

Figure . (Credit:NASA)

Solution

Our starting point is Einstein’s equation for the mass of a moving object,

where  is the object’s mass at rest,  is its speed, and  is the speed of light. To see how the mass changes at high speeds, we
can graph the ratio of masses  as a function of the ratio of speeds,  (Figure ).

2.2.11 f

f(x)lim
x→1

 Example : Einstein’s Equation2.2.8

m = ,
m0

1 − v2

c2

− −−−−
√

2.2.12

m = ,
m0

1 − v2

c2

− −−−−
√

m0 v c

m/m0 v/c 2.2.13

https://libretexts.org/
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Figure : This graph shows the ratio of masses as a function of the ratio of speeds in Einstein’s equation for the mass of a
moving object.

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed of light—the ratio
of masses increases without bound. In other words, the function has a vertical asymptote at . We can try a few values
of this ratio to test this idea.

Table 

0.99 0.1411 7.089

0.999 0.0447 22.37

0.9999 0.0141 70.7

Thus, according to Table :, if an object with mass 100 kg is traveling at 0.9999c, its mass becomes 7071 kg. Since no
object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.

Key Concepts
A table of values or graph may be used to estimate a limit.
If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point may exist.
If the limits of a function from the left and right exist and are equal, then the limit of the function is that common value.
We may use limits to describe infinite behavior of a function at a point.

Key Equations
Intuitive Definition of the Limit

Two Important Limits

One-Sided Limits

Infinite Limits from the Left

Infinite Limits from the Right

Two-Sided Infinite Limits

:  and 

:  and 

2.2.13

v/c = 1

2.2.8

v/c 1 − v2

c2

− −−−−−
√ m/mo

2.2.8

f(x) = Llim
x→a

x = a c = clim
x→a

lim
x→a

f(x) = L f(x) = Llim
x→a−

lim
x→a+

f(x) = +∞ f(x) = −∞lim
x→a−

lim
x→a−

f(x) = +∞ f(x) = −∞lim
x→a+

lim
x→a+

f(x) = +∞lim
x→a

f(x) = +∞lim
x→a−

f(x) = +∞lim
x→a+

f(x) = −∞lim
x→a

f(x) = −∞lim
x→a−

f(x) = −∞lim
x→a+
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Glossary

infinite limit
A function has an infinite limit at a point  if it either increases or decreases without bound as it approaches 

intuitive definition of the limit
If all values of the function  approach the real number  as the values of  approach a,  approaches L

one-sided limit
A one-sided limit of a function is a limit taken from either the left or the right

vertical asymptote
A function has a vertical asymptote at  if the limit as  approaches  from the right or left is infinite

2.2: The Limit of a Function is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.2: The Limit of a Function by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

a a

f(x) L x(≠ a) f(x)

x = a x a
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2.3: Calculating Limits Using the Limit Laws

Recognize the basic limit laws.
Use the limit laws to evaluate the limit of a function.
Evaluate the limit of a function by factoring.
Use the limit laws to evaluate the limit of a polynomial or rational function.
Evaluate the limit of a function by factoring or by using conjugates.
Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we establish
laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you have the
opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by the Greek
mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two results, together
with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws
The first two limit laws were stated previously and we repeat them here. These basic results, together with the other limit laws,
allow us to evaluate limits of many algebraic functions.

For any real number  and any constant ,

I. 

II. 

Evaluate each of the following limits using "Basic Limit Results."

a. 

b. 

Solution

a. The limit of  as  approaches  is : .

b. The limit of a constant is that constant: .

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.

Let  and  be defined for all  over some open interval containing . Assume that  and  are real numbers such
that  and . Let  be a constant. Then, each of the following statements holds:

Sum law for limits:

Difference law for limits:

 Learning Objectives

 Basic Limit Results

a c

x = alim
x→a

c = clim
x→a

 Example : Evaluating a Basic Limit2.3.1

xlim
x→2

5lim
x→2

x x a a x = 2lim
x→2

5 = 5lim
x→2

 Limit Laws

f(x) g(x) x ≠ a a L M

f(x) = Llim
x→a

g(x) = Mlim
x→a

c

(f(x) +g(x)) = f(x) + g(x) = L +Mlim
x→a

lim
x→a

lim
x→a

(f(x) −g(x)) = f(x) − g(x) = L −Mlim
x→a

lim
x→a

lim
x→a
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Constant multiple law for limits:

Product law for limits:

Quotient law for limits:

for .

Power law for limits:

for every positive integer .

Root law for limits:

for all  if  is odd and for  if  is even.

We now practice applying these limit laws to evaluate a limit.

Use the limit laws to evaluate

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind the requirement
that, at each application of a limit law, the new limits must exist for the limit law to be applied.

Use the limit laws to evaluate

Solution

To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite the limit in
terms of other limits, each new limit must exist for the limit law to be applied.

cf(x) = c ⋅ f(x) = cLlim
x→a

lim
x→a

(f(x) ⋅ g(x)) = f(x) ⋅ g(x) = L ⋅ Mlim
x→a

lim
x→a

lim
x→a

= =lim
x→a

f(x)

g(x)

f(x)lim
x→a

g(x)lim
x→a

L

M

M ≠ 0

(f(x) = ( f(x) =lim
x→a

)n
lim
x→a

)n
Ln

n

= =lim
x→a

f(x)
− −−−

√n f(x)lim
x→a

− −−−−−−
√n L

−−
√n

L n L ≥ 0 n

 Example : Evaluating a Limit Using Limit Laws2.3.2A

(4x +2).lim
x→−3

(4x +2)lim
x→−3

= 4x + 2lim
x→−3

lim
x→−3

= 4 ⋅ x + 2lim
x→−3

lim
x→−3

= 4 ⋅ (−3) +2 = −10.

Apply the sum law.

Apply the constant multiple law.

Apply the basic limit results and simplify.

 Example : Using Limit Laws Repeatedly2.3.2B

.lim
x→2

2 −3x +1x2

+4x3
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Use the limit laws to evaluate . In each step, indicate the limit law applied.

Hint

Begin by applying the product law.

Answer

Limits of Polynomial and Rational Functions

By now you have probably noticed that, in each of the previous examples, it has been the case that . This is not

always true, but it does hold for all polynomials for any choice of  and for all rational functions at all values of  for which the
rational function is defined.

Let  and  be polynomial functions. Let  be a real number. Then,

when .

To see that this theorem holds, consider the polynomial

By applying the sum, constant multiple, and power laws, we end up with

It now follows from the quotient law that if  and  are polynomials for which ,

lim
x→2

2 −3x +1x2

+4x3
=

(2 −3x +1)lim
x→2

x2

( +4)lim
x→2

x3

=
2 ⋅ −3 ⋅ x + 1lim

x→2
x2 lim

x→2
lim
x→2

+ 4lim
x→2

x3 lim
x→2

=
2 ⋅ −3 ⋅ x + 1( x)lim

x→2

2
lim
x→2

lim
x→2

+ 4( x)lim
x→2

3
lim
x→2

= = .
2(4) −3(2) +1

(2 +4)3

1

4

Apply the quotient law, make sure that (2 +4 ≠ 0.)3

Apply the sum law and constant multiple law.

Apply the power law.

Apply the basic limit laws and simplify.

 Exercise 2.3.2

(2x −1)lim
x→6

x +4− −−−−
√

11 10
−−

√

f(x) = f(a)lim
x→a

a a

 Limits of Polynomial and Rational Functions

p(x) q(x) a

p(x) = p(a)lim
x→a

=lim
x→a

p(x)

q(x)

p(a)

q(a)

q(a) ≠ 0

p(x) = + +⋯ + x + .cnxn cn−1xn−1 c1 c0

p(x)lim
x→a

= ( + +⋯ + x + )lim
x→a

cnxn cn−1xn−1 c1 c0

= + +⋯ + ( x)+cn( x)lim
x→a

n

cn−1( x)lim
x→a

n−1
c1 lim

x→a
lim
x→a

c0

= + +⋯ + a +cnan cn−1an−1 c1 c0

= p(a)

p(x) q(x) q(a) ≠ 0
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then

Evaluate the .

Solution

Since 3 is in the domain of the rational function , we can calculate the limit by substituting 3 for  into

the function. Thus,

Evaluate .

Hint

Use LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS as reference

Answer

−13

Additional Limit Evaluation Techniques

As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by direct
substitution. However, as we saw in the introductory section on limits, it is certainly possible for  to exist when  is

undefined. The following observation allows us to evaluate many limits of this type:

If for all  over some open interval containing , then

To understand this idea better, consider the limit .

The function

and the function  are identical for all values of . The graphs of these two functions are shown in Figure .

= .lim
x→a

p(x)

q(x)

p(a)

q(a)

 Example : Evaluating a Limit of a Rational Function2.3.3

lim
x→3

2 −3x +1x2

5x +4

f(x) =
2 −3x +1x2

5x +4
x

= .lim
x→3

2 −3x +1x2

5x +4

10

19

 Exercise 2.3.3

(3 −2x +7)lim
x→−2

x3

f(x)lim
x→a

f(a)

x ≠ a, f(x) = g(x) a

f(x) = g(x).lim
x→a

lim
x→a

lim
x→1

−1x2

x −1

f(x) = =
−1x2

x −1

(x −1)(x +1)

x −1

g(x) = x +1 x ≠ 1 2.3.1
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Figure : The graphs of  and  are identical for all . Their limits at 1 are equal.

We see that

The limit has the form , where  and . (In this case, we say that  has the

indeterminate form .) The following Problem-Solving Strategy provides a general outline for evaluating limits of this type.

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately using the limit
laws.

2. We then need to find a function that is equal to  for all  over some interval containing a. To do
this, we may need to try one or more of the following steps:
a. If  and  are polynomials, we should factor each function and cancel out any common factors.
b. If the numerator or denominator contains a difference involving a square root, we should try multiplying the numerator

and denominator by the conjugate of the expression involving the square root.
c. If  is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example  illustrates the factor-and-cancel
technique; Example  shows multiplying by a conjugate. In Example , we look at simplifying a complex fraction.

Evaluate .

Solution

Step 1. The function  is undefined for . In fact, if we substitute 3 into the function we get ,

which is undefined. Factoring and canceling is a good strategy:

Step 2. For all . Therefore,

2.3.1 f(x) g(x) x ≠ 1

= = (x +1) = 2.lim
x→1

−1x2

x −1
lim
x→1

(x −1)(x +1)

x −1
lim
x→1

f(x)/g(x)lim
x→a

f(x) = 0lim
x→a

g(x) = 0lim
x→a

f(x)/g(x)

0/0

 Problem-Solving Strategy: Calculating a Limit When  has the Indeterminate Form f(x)/g(x) 0/0

h(x) = f(x)/g(x) x ≠ a

f(x) g(x)

f(x)/g(x)

2.3.4
2.3.5 2.3.6

 Example : Evaluating a Limit by Factoring and Canceling2.3.4

lim
x→3

−3xx2

2 −5x −3x2

f(x) =
−3xx2

2 −5x −3x2
x = 3 0/0

=lim
x→3

−3xx2

2 −5x −3x2
lim
x→3

x(x −3)

(x −3)(2x +1)

x ≠ 3, =
−3xx2

2 −5x −3x2

x

2x +1

= .lim
x→3

x(x −3)

(x −3)(2x +1)
lim
x→3

x

2x +1
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Step 3. Evaluate using the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy

Answer

Evaluate .

Solution

Step 1.  has the form  at −1. Let’s begin by multiplying by , the conjugate of , on the

numerator and denominator:

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that the  in
the denominator cancels out in the end:

Step 3. Then we cancel:

Step 4. Last, we apply the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy

Answer

= .lim
x→3

x

2x +1

3

7

 Exercise 2.3.4

lim
x→−3

+4x +3x2

−9x2

1

3

 Example : Evaluating a Limit by Multiplying by a Conjugate2.3.5

lim
x→−1

−1x +2
− −−−−

√

x +1

−1x +2
− −−−−

√

x +1
0/0 +1x +2

− −−−−
√ −1x +2

− −−−−
√

= ⋅ .lim
x→−1

−1x +2
− −−−−

√

x +1
lim

x→−1

−1x +2
− −−−−

√

x +1

+1x +2
− −−−−

√

+1x +2
− −−−−

√

(x +1)

= .lim
x→−1

x +1

(x +1)( +1)x +2
− −−−−

√

= .lim
x→−1

1

+1x +2
− −−−−

√

= .lim
x→−1

1

+1x +2
− −−−−

√

1

2

 Exercise 2.3.5

lim
x→5

−2x −1
− −−−−

√

x −5

1

4
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Evaluate .

Solution

Step 1.  has the form  at 1. We simplify the algebraic fraction by multiplying by :

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able to cancel the
factor :

Step 3. Then, we simplify the numerator:

Step 4. Now we factor out −1 from the numerator:

Step 5. Then, we cancel the common factors of :

Step 6. Last, we evaluate using the limit laws:

Evaluate .

Hint

Follow the steps in the Problem-Solving Strategy

Answer

−1

Example  does not fall neatly into any of the patterns established in the previous examples. However, with a little creativity,
we can still use these same techniques.

 Example : Evaluating a Limit by Simplifying a Complex Fraction2.3.6

lim
x→1

−
1

x +1

1

2
x −1

−
1

x +1

1

2
x −1

0/0 2(x +1)/2(x +1)

= ⋅ .lim
x→1

−
1

x +1

1

2
x −1

lim
x→1

−
1

x +1

1

2
x −1

2(x +1)

2(x +1)

(x −1)

= .lim
x→1

2 −(x +1)

2(x −1)(x +1)

= .lim
x→1

−x +1

2(x −1)(x +1)

= .lim
x→1

−(x −1)

2(x −1)(x +1)

(x −1)

= .lim
x→1

−1

2(x +1)

= − .lim
x→1

−1

2(x +1)

1

4

 Exercise 2.3.6

lim
x→−3

+1
1

x +2
x +3

2.3.7
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Evaluate .

Solution:

Both  and  fail to have a limit at zero. Since neither of the two functions has a limit at zero, we cannot apply the
sum law for limits; we must use a different strategy. In this case, we find the limit by performing addition and then applying
one of our previous strategies. Observe that

Thus,

Evaluate .

Hint

Use the same technique as Example . Don’t forget to factor  before getting a common denominator.

Answer

Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For example,
to apply the limit laws to a limit of the form , we require the function  to be defined over an open interval of the

form ; for a limit of the form , we require the function  to be defined over an open interval of the form .

Example  illustrates this point.

Evaluate each of the following limits, if possible.

a. 

b. 

Solution

Figure  illustrates the function  and aids in our understanding of these limits.

Figure : The graph shows the function .

a. The function  is defined over the interval . Since this function is not defined to the left of 3, we
cannot apply the limit laws to compute . In fact, since  is undefined to the left of 3, 

 Example : Evaluating a Limit When the Limit Laws Do Not Apply2.3.7

( + )lim
x→0

1

x

5

x(x −5)

1/x 5/x(x −5)

+ = = .
1

x

5

x(x −5)

x −5 +5

x(x −5)

x

x(x −5)

( + ) = = = − .lim
x→0

1

x

5

x(x −5)
lim
x→0

x

x(x −5)
lim
x→0

1

x −5

1

5

 Exercise 2.3.7

( − )lim
x→3

1

x −3

4

−2x −3x2

2.3.7 −2x −3x2

1

4

h(x)lim
x→a−

h(x)

(b, a) h(x)lim
x→a+

h(x) (a, c)

2.3.8A

 Example : Evaluating a One-Sided Limit Using the Limit Laws2.3.8A

lim
x→3−

x −3− −−−−
√

lim
x→3+

x −3− −−−−
√

2.3.2 f(x) = x −3
− −−−−

√

2.3.2 f(x) = x − 3
− −−−−

√

f(x) = x −3
− −−−−

√ [3, +∞)
lim

x→3−
x −3
− −−−−

√ f(x) = x −3
− −−−−

√ lim
x→3−

x −3
− −−−−

√
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does not exist.

b. Since  is defined to the right of 3, the limit laws do apply to . By applying these limit laws we

obtain .

In Example  we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion about a
two-sided limit of the same function.

For , evaluate each of the following limits:

a. 

b. 

c. 

Solution

Figure  illustrates the function  and aids in our understanding of these limits.

Figure : This graph shows a function .

a. Since  for all  in , replace  in the limit with  and apply the limit laws:

b. Since for all  in , replace  in the limit with  and apply the limit laws:

c. Since  and , we conclude that  does not exist.

Graph  and evaluate .

Hint

Use the method in Example  to evaluate the limit.

Answer

f(x) = x −3
− −−−−

√ lim
x→3+

x −3− −−−−
√

= 0lim
x→3+

x −3− −−−−
√

2.3.8B

 Example : Evaluating a Two-Sided Limit Using the Limit Laws2.3.8B

f(x) ={
4x −3,
(x −3 ,)2

if x < 2
if x ≥ 2

f(x)lim
x→2−

f(x)lim
x→2+

f(x)lim
x→2

2.3.3 f(x)

2.3.3 f(x)

f(x) = 4x −3 x (−∞, 2) f(x) 4x −3

f(x) = (4x −3) = 5lim
x→2−

lim
x→2−

f(x) = (x −3)2 x (2, +∞) f(x) (x −3)2

f(x) = (x −3 = 1.lim
x→2+

lim
x→2−

)2

f(x) = 5lim
x→2−

f(x) = 1lim
x→2+

f(x)lim
x→2

 Exercise 2.3.8

f(x) =
⎧

⎩⎨
−x −2,
2,

,x3

if x < −1
if x = −1
if x > −1

f(x)lim
x→−1−

2.3.8B
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We now turn our attention to evaluating a limit of the form , where , where  and .

That is,  has the form  at .

Evaluate .

Solution

Step 1. After substituting in , we see that this limit has the form . That is, as  approaches  from the left, the

numerator approaches ; and the denominator approaches . Consequently, the magnitude of  becomes infinite. To

get a better idea of what the limit is, we need to factor the denominator:

Step 2. Since  is the only part of the denominator that is zero when 2 is substituted, we then separate  from the
rest of the function:

Step 3. Using the Limit Laws, we can write:

Step 4.  and . Therefore, the product of  and  has a limit of :

Evaluate .

Solution

f(x) = −1lim
x→−1−

lim
x→a

f(x)

g(x)
f(x) = Klim

x→a
K ≠ 0 g(x) = 0lim

x→a

f(x)/g(x) K/0, K ≠ 0 a

 Example : Evaluating a Limit of the Form  Using the Limit Laws2.3.9 K/0, K ≠ 0

lim
x→2−

x −3

−2xx2

x = 2 −1/0 x 2

−1 0
x −3

x(x −2)

=lim
x→2−

x −3

−2xx2
lim

x→2−

x −3

x(x −2)

x −2 1/(x −2)

= ⋅lim
x→2−

x −3

x

1

x −2

=( ) ⋅( ) .lim
x→2−

x −3

x
lim

x→2−

1

x −2

= −lim
x→2−

x −3

x

1

2
= −∞lim

x→2−

1

x −2
(x −3)/x 1/(x −2) +∞

= +∞.lim
x→2−

x −3

−2xx2

 Exercise 2.3.9

lim
x→1

x +2

(x −1)2
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Use the methods from Example .

Answer

The Squeeze Theorem
The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits of very
basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing basic
trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point  that is unknown,
between two functions having a common known limit at . Figure  illustrates this idea.

Figure : The Squeeze Theorem applies when  and .

Let , and  be defined for all  over an open interval containing . If

for all  in an open interval containing  and

where  is a real number, then 

Apply the squeeze theorem to evaluate .

Solution

Because  for all , we have  for  and  for  (if  is negative
the direction of the inequalities changes when we multiply). Since , from the squeeze theorem, we

obtain . The graphs of , and  are shown in Figure .

2.3.9

+∞

a

a 2.3.4

2.3.4 f(x) ≤ g(x) ≤ h(x) f(x) = h(x)lim
x→a

lim
x→a

 The Squeeze Theorem

f(x), g(x) h(x) x ≠ a a

f(x) ≤ g(x) ≤ h(x)

x ≠ a a

f(x) = L = h(x)lim
x→a

lim
x→a

L g(x) = L.lim
x→a

 Example : Applying the Squeeze Theorem2.3.10

x cos xlim
x→0

−1 ≤ cos x ≤ 1 x −x ≤ x cos x ≤ x x ≥ 0 −x ≥ x cos x ≥ x x ≤ 0 x

(−x) = 0 = xlim
x→0

lim
x→0

x cos x = 0lim
x→0

f(x) = −x, g(x) = x cos x h(x) = x 2.3.5
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Figure : The graphs of , and  are shown around the point .

Use the squeeze theorem to evaluate .

Hint

Use the fact that  to help you find two functions such that  is squeezed between them.

Answer

0

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy, these limits
prove invaluable for the development of the material in both the next section and the next chapter. The first of these limits is 

. Consider the unit circle shown in Figure . In the figure, we see that  is the -coordinate on the unit circle and it

corresponds to the line segment shown in blue. The radian measure of angle  is the length of the arc it subtends on the unit circle.
Therefore, we see that for  we have 

Figure : The sine function is shown as a line on the unit circle.

Because  and , by using the squeeze theorem we conclude that

To see that  as well, observe that for  and hence, . Consequently, 

. It follows that . An application of the squeeze theorem produces the desired limit. Thus, since 

2.3.5 f(x), g(x) h(x) x = 0

 Exercise 2.3.10

sinlim
x→0

x2 1

x

− ≤ sin(1/x) ≤x2 x2 x2 sin(1/x)x2

sinθlim
θ→0

2.3.6 sinθ y

θ

0 < θ < ,
π

2
0 < sinθ < θ.

2.3.6

0 = 0lim
θ→0+

θ = 0lim
x→0+

sinθ = 0.lim
θ→0+

sinθ = 0lim
θ→0−

− < θ < 0, 0 < −θ <
π

2

π

2
0 < sin(−θ) < −θ

0 < −sinθ < −θ 0 > sinθ > θ
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 and ,

Next, using the identity  for , we see that

We now take a look at a limit that plays an important role in later chapters—namely, . To evaluate this limit, we use the

unit circle in Figure . Notice that this figure adds one additional triangle to Figure . We see that the length of the side
opposite angle  in this new triangle is . Thus, we see that for , we have .

Figure : The sine and tangent functions are shown as lines on the unit circle.

By dividing by  in all parts of the inequality, we obtain

Equivalently, we have

Since , we conclude that , by the squeeze theorem. By applying a manipulation similar to

that used in demonstrating that , we can show that . Thus,

In Example , we use this limit to establish . This limit also proves useful in later chapters.

Evaluate .

Solution

sinθ = 0lim
θ→0+

sinθ = 0lim
θ→0−

sinθ = 0lim
θ→0

cos θ = 1 − θsin2− −−−−−−−
√ − < θ <

π

2

π

2

cos θ = = 1.lim
θ→0

lim
θ→0

1 − θsin2− −−−−−−−
√

lim
θ→0

sinθ

θ
2.3.7 2.3.6

θ tanθ 0 < θ <
π

2
sinθ < θ < tanθ

2.3.7

sinθ

1 < < .
θ

sinθ

1

cos θ

1 > > cos θ.
sinθ

θ

1 = 1 = cos θlim
θ→0+

lim
θ→0+

= 1lim
θ→0+

sinθ

θ

sinθ = 0lim
θ→0−

= 1lim
θ→0−

sinθ

θ

= 1.lim
θ→0

sinθ

θ

2.3.11 = 0lim
θ→0

1 −cos θ

θ

 Example : Evaluating an Important Trigonometric Limit2.3.11

lim
θ→0

1 −cos θ

θ
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In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in the numerator
to a sine:

Therefore,

Evaluate .

Hint

Multiply numerator and denominator by .

Answer

0

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods
of calculus. The Greek mathematician Archimedes (ca. 287−212; BCE) was particularly inventive, using polygons inscribed
within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the
idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as
being made up of  triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can obtain the area of
the circle. To see this, carry out the following steps:

1.Express the height  and the base  of the isosceles triangle in Figure  in terms of  and .

lim
θ→0

1 −cos θ

θ
= ⋅lim

θ→0

1 −cos θ

θ

1 +cos θ

1 +cos θ

= lim
θ→0

1 − θcos2

θ(1 +cos θ)

= lim
θ→0

θsin2

θ(1 +cos θ)

= ⋅lim
θ→0

sinθ

θ

sinθ

1 +cos θ

=( ) ⋅( )lim
θ→0

sinθ

θ
lim
θ→0

sinθ

1 +cos θ

= 1 ⋅ = 0.
0

2

= 0.lim
θ→0

1 −cos θ

θ

 Exercise 2.3.11

lim
θ→0

1 −cos θ

sinθ

1 +cos θ

 Deriving the Formula for the Area of a Circle

n

h b 2.3.8 θ r
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Figure 

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of  and .

(Substitute  for  in your expression.)

3. If an -sided regular polygon is inscribed in a circle of radius , find a relationship between  and . Solve this for .
Keep in mind there are  radians in a circle. (Use radians, not degrees.)

4. Find an expression for the area of the -sided polygon in terms of  and .

5. To find a formula for the area of the circle, find the limit of the expression in step 4 as  goes to zero. (Hint: 

.

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.

Key Concepts
The limit laws allow us to evaluate limits of functions without having to go through step-by-step processes each time.
For polynomials and rational functions,

You can evaluate the limit of a function by factoring and canceling, by multiplying by a conjugate, or by simplifying a complex
fraction.
The squeeze theorem allows you to find the limit of a function if the function is always greater than one function and less than
another function with limits that are known.

Key Equations
Basic Limit Results

Important Limits

2.3.8

θ r

sinθ1
2

sin( ) cos( )θ
2

θ
2

n r θ n n

2π

n r θ

θ

= 1)lim
θ→0

sinθ

θ

f(x) = f(a).lim
x→a

x = a c = clim
x→a

lim
x→a

sinθ = 0lim
θ→0

cos θ = 1lim
θ→0

= 1lim
θ→0

sinθ

θ

= 0lim
θ→0

1 −cos θ

θ
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Glossary

constant multiple law for limits
the limit law

difference law for limits
the limit law

limit laws
the individual properties of limits; for each of the individual laws, let  and  be defined for all  over some open
interval containing a; assume that L and M are real numbers so that  and ; let c be a
constant

power law for limits
the limit law

for every positive integer n

product law for limits
the limit law

quotient law for limits

the limit law  for M≠0

root law for limits
the limit law  for all L if n is odd and for  if n is even

squeeze theorem
states that if  for all  over an open interval containing a and 
where L is a real number, then 

sum law for limits
The limit law 

2.3: Calculating Limits Using the Limit Laws is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.3: The Limit Laws by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

cf(x) = c ⋅ f(x) = cLlim
x→a

lim
x→a

(f(x) −g(x)) = f(x) − g(x) = L −Mlim
x→a

lim
x→a

lim
x→a

f(x) g(x) x ≠ a

f(x) = Llimx→a g(x) = Mlimx→a

(f(x) = ( f(x) =lim
x→a

)n lim
x→a

)n Ln

(f(x) ⋅ g(x)) = f(x) ⋅ g(x) = L ⋅ Mlim
x→a

lim
x→a

lim
x→a

= =limx→a

f(x)

g(x)

f(x)limx→a

g(x)limx→a

L

M

= =limx→a f(x)
− −−−√n f(x)limx→a

− −−−−−−−−√n L
−−

√n L ≥ 0

f(x) ≤ g(x) ≤ h(x) x ≠ a f(x) = L = h(x)limx→a limx→a

g(x) = Llimx→a

(f(x) +g(x)) = f(x) + g(x) = L +Mlimx→a limx→a limx→a
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2.5: Continuity

Explain the three conditions for continuity at a point.
Describe three kinds of discontinuities.
Define continuity on an interval.
State the theorem for limits of composite functions.
Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are
called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property over intervals contained in
their domains. They are continuous on these intervals and are said to have a discontinuity at a point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively, a function is
continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various functions that fail
to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in Figure . We see that the graph of  has a hole at . In fact,  is undefined. At the
very least, for  to be continuous at , we need the following condition:

i.  is defined

Figure : The function  is not continuous at  because  is undefined.

However, as we see in Figure , this condition alone is insufficient to guarantee continuity at the point . Although  is defined,
the function has a gap at . In this example, the gap exists because  does not exist. We must add another condition for continuity

at —namely,

ii.  exists

Figure : The function  is not continuous at  because  does not exist.

However, as we see in Figure , these two conditions by themselves do not guarantee continuity at a point. The function in this figure
satisfies both of our first two conditions, but is still not continuous at . We must add a third condition to our list:

 Learning Objectives

2.5.1 f(x) a f(a)
f(x) a

f(a)

2.5.1 f(x) a f(a)

2.5.2 a f(a)
a f(x)lim

x→a

a

f(x)lim
x→a

2.5.2 f(x) a f(x)lim
x→a

2.5.3
a
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iii. 

Figure : The function  is not continuous at  because .

Now we put our list of conditions together and form a definition of continuity at a point.

A function  is continuous at a point  if and only if the following three conditions are satisfied:

i.  is defined
ii.  exists

iii. 

A function is discontinuous at a point  if it fails to be continuous at .

The following procedure can be used to analyze the continuity of a function at a point using this definition.

1. Check to see if  is defined. If  is undefined, we need go no further. The function is not continuous at  If  is
defined, continue to step 2.

2. Compute . In some cases, we may need to do this by first computing  and . If  does not

exist (that is, it is not a real number), then the function is not continuous at  and the problem is solved. If  exists, then

continue to step 3.
3. Compare  and . If , then the function is not continuous at  If , then the function

is continuous at 

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given point. These
examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate . We can see that , which is undefined. Therefore,  is discontinuous

at  because  is undefined. The graph of  is shown in Figure .

f(x) = f(a)lim
x→a

2.5.3 f(x) a f(x) ≠ f(a)lim
x→a

 Definition: Continuous at a Point

f(x) a

f(a)
f(x)lim

x→a

f(x) = f(a)lim
x→a

a a

 Problem-Solving Strategy: Determining Continuity at a Point

f(a) f(a) a. f(a)

f(x)lim
x→a

f(x)lim
x→a−

f(x)lim
x→a+

f(x)lim
x→a

a f(x)lim
x→a

f(a) f(x)lim
x→a

f(x) ≠ f(a)lim
x→a

a. f(x) = f(a)lim
x→a

a.

 Example : Determining Continuity at a Point, Condition 12.5.1A

f(x) =
−4x2

x −2
x = 2

f(2) f(2) = 0/0 f(x) =
−4x2

x −2
2 f(2) f(x) 2.5.4
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Figure : The function  is discontinuous at  because  is undefined.

Using the definition, determine whether the function  is continuous at . Justify the conclusion.

Solution

Let’s begin by trying to calculate .

.

Thus,  is defined. Next, we calculate . To do this, we must compute  and :

and

.

Therefore,  does not exist. Thus,  is not continuous at 3. The graph of  is shown in Figure .

2.5.4 f(x) 2 f(2)

 Example : Determining Continuity at a Point, Condition 22.5.1B

f(x) ={− +4,x2

4x −8,
if x ≤ 3
if x > 3

x = 3

f(3)

f(3) = −( ) +4 = −532

f(3) f(x)lim
x→3

f(x)lim
x→3−

f(x)lim
x→3+

f(x) = −( ) +4 = −5lim
x→3−

32

f(x) = 4(3) −8 = 4lim
x→3+

f(x)lim
x→3

f(x) f(x) 2.5.5
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Figure : The function  is not continuous at 3 because  does not exist.

Using the definition, determine whether the function  is continuous at .

Solution

First, observe that

Next,

.

Last, compare  and . We see that

.

Since all three of the conditions in the definition of continuity are satisfied,  is continuous at .

Using the definition, determine whether the function  is continuous at . If the function is not

continuous at 1, indicate the condition for continuity at a point that fails to hold.

Hint

Check each condition of the definition.

Answer

 is not continuous at  because .

By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can state the
following theorem.

2.5.5 f(x) f(x)lim
x→3

 Example : Determining Continuity at a Point, Condition 32.5.1C

f(x) ={
,sin x

x

1,

if x ≠ 0

if x = 0
x = 0

f(0) = 1

f(x) = = 1lim
x→0

lim
x→0

sinx

x

f(0) f(x)lim
x→0

f(0) = 1 = f(x)lim
x→0

f(x) x = 0

 Exercise 2.5.1

f(x) =
⎧

⎩
⎨

2x +1,
2,
−x +4,

if x < 1
if x = 1
if x > 1

x = 1

f 1 f(1) = 2 ≠ 3 = f(x)lim
x→1
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Polynomials and rational functions are continuous at every point in their domains.

Previously, we showed that if  and  are polynomials,  for every polynomial  and  as

long as . Therefore, polynomials and rational functions are continuous on their domains.

□

We now apply Theorem  to determine the points at which a given rational function is continuous.

For what values of x is  continuous?

Solution

The rational function  is continuous for every value of  except .

For what values of  is  continuous?

Hint

Use the Continuity of Polynomials and Rational Functions stated above.

Answer

 is continuous at every real number.

Types of Discontinuities

As we have seen in Example  and Example , discontinuities take on several different appearances. We classify the types of
discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump discontinuities. Intuitively, a
removable discontinuity is a discontinuity for which there is a hole in the graph, a jump discontinuity is a noninfinite discontinuity for
which the sections of the function do not meet up, and an infinite discontinuity is a discontinuity located at a vertical asymptote. Figure 

 illustrates the differences in these types of discontinuities. Although these terms provide a handy way of describing three common
types of discontinuities, keep in mind that not all discontinuities fit neatly into these categories.

Figure : Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

 Theorem : Continuity of Polynomials and Rational Functions2.5.1

 Proof

p(x) q(x) p(x) = p(a)lim
x→a

p(x) =lim
x→a

p(x)

q(x)

p(a)

q(a)
q(a) ≠ 0

2.5.1

 Example :Continuity of a Rational Function2.5.2

f(x) =
x +1

x −5

f(x) =
x +1

x −5
x x = 5

 Exercise 2.5.2

x f(x) = 3 −4x4 x2

f(x)

2.5.1A 2.5.1B

2.5.6

2.5.6
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If  is discontinuous at  then

1.  has a removable discontinuity at  if  exists. (Note: When we state that  exists, we mean that 

, where  is a real number.)

2.  has a jump discontinuity at  if  and  both exist, but . (Note: When we

state that  and  both exist, we mean that both are real-valued and that neither take on the values .)

3.  has an infinite discontinuity at  if  or .

In Example  we showed that  is discontinuous at . Classify this discontinuity as removable, jump, or

infinite.

Solution

To classify the discontinuity at  we must evaluate :

Since  is discontinuous at  and  exists,  has a removable discontinuity at .

In Example , we showed that  is discontinuous at . Classify this discontinuity as

removable, jump, or infinite.

Solution

Earlier, we showed that  is discontinuous at  because  does not exist. However, since  and 

both exist, we conclude that the function has a jump discontinuity at .

Determine whether  is continuous at . If the function is discontinuous at , classify the discontinuity as

removable, jump, or infinite.

Solution

The function value  is undefined. Therefore, the function is not continuous at . To determine the type of discontinuity, we

must determine the limit at . We see that  and . Therefore, the function has an infinite

discontinuity at .

 Definition

f(x) a,

f a f(x)lim
x→a

f(x)lim
x→a

f(x) = Llim
x→a

L

f a f(x)lim
x→a−

f(x)lim
x→a+

f(x) ≠ li f(x)lim
x→a−

mx→a+

f(x)lim
x→a−

f(x)lim
x→a+

±∞

f a f(x) = ±∞lim
x→a−

f(x) = ±∞lim
x→a+

 Example : Classifying a Discontinuity2.5.3

2.5.1A, f(x) =
−4x2

x −2
x = 2

2 f(x)lim
x→2

f(x)lim
x→2

= lim
x→2

−4x2

x −2

= lim
x→2

(x −2)(x +2)

x −2

= (x +2)lim
x→2

= 4.

f 2 f(x)lim
x→2

f x = 2

 Example : Classifying a Discontinuity2.5.4

2.5.1B f(x) ={− +4,x2

4x −8,
if x ≤ 3
if x > 3

x = 3

f 3 f(x)lim
x→3

f(x) = −5lim
x→3−

f(x) = 4lim
x→3+

3

 Example : Classifying a Discontinuity2.5.5

f(x) =
x +2

x +1
−1 −1

f(−1) −1

−1 = −∞lim
x→−1−

x +2

x +1
= +∞lim

x→−1+

x +2

x +1
−1
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For , decide whether  is continuous at . If  is not continuous at , classify the discontinuity as

removable, jump, or infinite.

Hint

Consider the definitions of the various kinds of discontinuity stated above. If the function is discontinuous at , look at 

Answer

Discontinuous at ; removable

Continuity over an Interval
Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As we develop this
idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is continuous over an interval if we
can use a pencil to trace the function between any two points in the interval without lifting the pencil from the paper. In preparation for
defining continuity on an interval, we begin by looking at the definition of what it means for a function to be continuous from the right at
a point and continuous from the left at a point.

A function  is said to be continuous from the right at  if .

A function  is said to be continuous from the left at  if 

A function is continuous over an open interval if it is continuous at every point in the interval. A function  is continuous over a
closed interval of the form  if it is continuous at every point in  and is continuous from the right at  and is continuous from the
left at  Analogously, a function  is continuous over an interval of the form  if it is continuous over  and is continuous
from the left at  Continuity over other types of intervals are defined in a similar fashion.

Requiring that  and  ensures that we can trace the graph of the function from the point  to

the point  without lifting the pencil. If, for example, , we would need to lift our pencil to jump from  to

the graph of the rest of the function over .

State the interval(s) over which the function  is continuous.

Solution

Since  is a rational function, it is continuous at every point in its domain. The domain of  is the set 

. Thus,  is continuous over each of the intervals , and .

State the interval(s) over which the function  is continuous.

Solution

From the limit laws, we know that  for all values of a in . We also know that 

exists and  exists. Therefore,  is continuous over the interval .

 Exercise 2.5.3

f(x) ={ ,x2

3,
if x ≠ 1
if x = 1

f 1 f 1

1 f(x)lim
x→1

1

 Definition: Continuity from the Right and from the Left

f(x) a f(x) = f(a)lim
x→a+

f(x) a f(x) = f(a)lim
x→a−

f(x)
[a, b] (a, b) a

b. f(x) (a, b] (a, b)
b.

f(x) = f(a)lim
x→a+

f(x) = f(b)lim
x→b−

(a, f(a))

(b, f(b)) f(x) ≠ f(a)lim
x→a+

f(a)

(a, b]

 Example : Continuity on an Interval2.5.6

f(x) =
x −1

+2xx2

f(x) =
x −1

+2xx2
f(x)

(−∞, −2) ∪ (−2, 0) ∪ (0, +∞) f(x) (−∞, −2), (−2, 0) (0, +∞)

 Example : Continuity over an Interval2.5.7

f(x) = 4 −x2
− −−−−

√

=lim
x→a

4 −x2− −−−−√ 4 −a2− −−−−√ (−2, 2) = 0lim
x→−2+

4 −x2− −−−−√

= 0lim
x→2−

4 −x2− −−−−
√ f(x) [−2, 2]
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State the interval(s) over which the function  is continuous.

Hint

Use Example  as a guide.

Answer

Theorem  allows us to expand our ability to compute limits. In particular, this theorem ultimately allows us to demonstrate that
trigonometric functions are continuous over their domains.

If  is continuous at  and , then

Before we move on to Example  recall that earlier, in the section on limit laws, we showed . Consequently,

we know that  is continuous at . In Example  we see how to combine this result with the composite function theorem.

Evaluate .

Solution

The given function is a composite of  and . Since  and  is continuous at , we may apply the

composite function theorem. Thus,

Evaluate .

Hint

 is continuous at . Use Example  as a guide.

Answer

The proof of the next theorem uses the composite function theorem as well as the continuity of  and  at the
point  to show that trigonometric functions are continuous over their entire domains.

Trigonometric functions are continuous over their entire domains.

We begin by demonstrating that  is continuous at every real number. To do this, we must show that  for all

values of .

 Exercise 2.5.4

f(x) = x +3
− −−−−

√

2.5.7

[−3, +∞)

2.5.2

 Theorem : Composite Function Theorem2.5.2

f(x) L g(x) = Llim
x→a

f(g(x)) = f( g(x)) = f(L).lim
x→a

lim
x→a

2.5.8, cos x = 1 = cos(0)lim
x→0

f(x) = cos x 0 2.5.8,

 Example : Limit of a Composite Cosine Function2.5.8

cos(x − )lim
x→π/2

π

2

cos x x − π

2
(x − ) = 0lim

x→π/2

π

2
cos x 0

cos(x − ) = cos( (x − )) = cos(0) = 1.lim
x→π/2

π

2
lim

x→π/2

π

2

 Exercise :2.5.4

sin(x −π)lim
x→π

f(x) = sinx 0 2.5.8

0

f(x) = sinx g(x) = cos x

0

 Theorem : Continuity of Trigonometric Functions2.5.3

 Proof

cos x cos x = cos alim
x→a

a
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The proof that  is continuous at every real number is analogous. Because the remaining trigonometric functions may be
expressed in terms of  and , their continuity follows from the quotient limit law.

□

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions. As we continue
our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem
Functions that are continuous over intervals of the form , where  and  are real numbers, exhibit many useful properties.
Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The first of these theorems is
the Intermediate Value Theorem.

Let  be continuous over a closed, bounded interval . If  is any real number between  and , then there is a number  in
 satisfying  in Figure .

Figure : There is a number  that satisfies .

Show that  has at least one zero.

Solution

Since  is continuous over , it is continuous over any closed interval of the form . If you can find an
interval  such that  and  have opposite signs, you can use the Intermediate Value Theorem to conclude there must be a
real number  in  that satisfies . Note that

and

.

Using the Intermediate Value Theorem, we can see that there must be a real number  in  that satisfies . Therefore, 
 has at least one zero.

cos xlim
x→a

= cos((x −a) +a)lim
x→a

= (cos(x −a) cos a −sin(x −a) sina)lim
x→a

= cos( (x −a)) cos a −sin( (x −a)) sinalim
x→a

lim
x→a

= cos(0) cos a −sin(0) sina

= 1 ⋅ cos a −0 ⋅ sina = cos a.

Rewrite x = x −a +a.

Apply the identity for the cosine of the sum of two angles.

Since  (x −a) = 0,  and  sinx and  cos x are continuous at 0.lim
x→a

Evaluate  cos(0) and  sin(0) and simplify.

sinx

sinx cos x

[a, b] a b

 The Intermediate Value Theorem

f [a, b] z f(a) f(b) c

[a, b] f(c) = z 2.5.7

2.5.7 c ∈ [a, b] f(c) = z

 Example : Application of the Intermediate Value Theorem2.5.9

f(x) = x −cos x

f(x) = x −cos x (−∞, +∞) [a, b]
[a, b] f(a) f(b)

c (a, b) f(c) = 0

f(0) = 0 −cos(0) = −1 < 0

f( ) = −cos = > 0π

2
π

2
π

2
π

2

c [0, π/2] f(c) = 0
f(x) = x −cos x
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If  is continuous over  and , can we use the Intermediate Value Theorem to conclude that  has no
zeros in the interval ? Explain.

Solution

No. The Intermediate Value Theorem only allows us to conclude that we can find a value between  and ; it doesn’t allow us
to conclude that we can’t find other values. To see this more clearly, consider the function . It satisfies 

, and .

For  and . Can we conclude that  has a zero in the interval ?

Solution

No. The function is not continuous over . The Intermediate Value Theorem does not apply here.

Show that  has a zero over the interval .

Hint

Find  and . Apply the Intermediate Value Theorem.

Answer

 is continuous over . It must have a zero on this interval.

Key Concepts
For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the value of the function
at that point must equal the value of the limit at that point.
Discontinuities may be classified as removable, jump, or infinite.
A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over a closed interval if
it is continuous at every point in its interior and is continuous at its endpoints.
The composite function theorem states: If  is continuous at L and , then .

The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function takes on every
value between the values at its endpoints.

Glossary

continuity at a point
A function  is continuous at a point  if and only if the following three conditions are satisfied: (1)  is defined, (2) 

exists, and (3) 

continuity from the left
A function is continuous from the left at  if 

continuity from the right
A function is continuous from the right at  if 

continuity over an interval
a function that can be traced with a pencil without lifting the pencil; a function is continuous over an open interval if it is continuous at
every point in the interval; a function  is continuous over a closed interval of the form [ ] if it is continuous at every point in (

), and it is continuous from the right at  and from the left at 

 Example : When Can You Apply the Intermediate Value Theorem?2.5.10

f(x) [0, 2], f(0) > 0 f(2) > 0 f(x)
[0, 2]

f(0) f(2)
f(x) = (x −1)2

f(0) = 1 > 0, f(2) = 1 > 0 f(1) = 0

 Example : When Can You Apply the Intermediate Value Theorem?2.5.11

f(x) = 1/x, f(−1) = −1 < 0 f(1) = 1 > 0 f(x) [−1, 1]

[−1, 1]

 Exercise 2.5.5

f(x) = − −3x +1x3 x2 [0, 1]

f(0) f(1)

f(0) = 1 > 0, f(1) = −2 < 0; f(x) [0, 1]

f(x) g(x) = Llim
x→a

f(g(x)) = f( g(x)) = f(L)lim
x→a

lim
x→a

f(x) a f(a) f(x)lim
x→a

lim x → af(x) = f(a)

b f(x) = f(b)lim
x→b−

a f(x) = f(a)lim
x→a+

f(x) a, b

a, b a b
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discontinuity at a point
A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at the point

infinite discontinuity
An infinite discontinuity occurs at a point  if  or 

Intermediate Value Theorem
Let  be continuous over a closed bounded interval [ ] if  is any real number between  and , then there is a number  in [

] satisfying 

jump discontinuity
A jump discontinuity occurs at a point  if  and  both exist, but 

removable discontinuity
A removable discontinuity occurs at a point  if  is discontinuous at , but  exists

2.5: Continuity is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.4: Continuity by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-
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2.6: Limits at Infinity; Horizontal Asymptotes
In Definition 1 we stated that in the equation , both  and  were numbers. In this section we relax that definition a

bit by considering situations when it makes sense to let  and/or  be "infinity.''

As a motivating example, consider , as shown in Figure 1.30. Note how, as  approaches 0,  grows very, very
large. It seems appropriate, and descriptive, to state that

Also note that as  gets very large,  gets very, very small. We could represent this concept with notation such as

 
: Graphing  for values of .

We explore both types of use of  in turn.

We say  if for every  there exists  such that for all , if , then .

This is just like the --  definition from Section 1.2. In that definition, given any (small) value , if we let  get close enough to 
(within  units of ) then  is guaranteed to be within  of . Here, given any (large) value , if we let  get close enough
to  (within  units of ), then  will be at least as large as . In other words, if we get close enough to , then we can make 

 as large as we want. We can define limits equal to  in a similar way.

It is important to note that by saying  we are implicitly stating that \textit{the} limit of , as  approaches , does

not exist. A limit only exists when  approaches an actual numeric value. We use the concept of limits that approach infinity
because it is helpful and descriptive.

Find  as shown in Figure 1.31.

 
: Observing infinite limit as  in Example 26.

f(x) = Llim
x→c

c L

c L

f(x) = 1/x2 x f(x)

= ∞.lim
x→0

1

x2
(2.6.1)

x f(x)

= 0.lim
x→∞

1

x2
(2.6.2)

FIGURE 1.30 f(x) = 1/x2 x near 0

∞

Definition 5: Limit of infinity

f(x) = ∞lim
x→c

M > 0 δ > 0 x ≠ c |x −c| < δ f(x) ≥ M

ϵ δ ϵ x c

δ c f(x) ϵ f(c) M x

c δ c f(x) M c

f(x) −∞

f(x) = ∞lim
x→c

f(x) x c

f(x)

Example 26: Evaluating limits involving infinity

lim
x→1

1

(x−1)2

FIGURE 1.31 x → 1
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Solution

In Example 4 of Section 1.1, by inspecting values of  close to 1 we concluded that this limit does not exist. That is, it cannot
equal any real number. But the limit could be infinite. And in fact, we see that the function does appear to be growing larger
and larger, as , , . A similar thing happens on the other side of 1. In general, let a
"large'' value  be given. Let . If  is within  of 1, i.e., if , then:

which is what we wanted to show. So we may say .

Find , as shown in Figure 1.32.

 
: Evaluating .

Solution

It is easy to see that the function grows without bound near 0, but it does so in different ways on different sides of 0. Since its
behavior is not consistent, we cannot say that . However, we can make a statement about one--sided limits. We can

state that  and .

Vertical Asymptotes

If the limit of  as  approaches  from either the left or right (or both) is  or , we say the function has a vertical
asymptote at .

Find the vertical asymptotes of .

x

f(.99) = 104 f(.999) = 106 f(.9999) = 108

M δ = 1/ M
−−

√ x δ |x −1| < 1/ M
−−

√

|x −1|

(x −1)2

1

(x −1)2

<
1

M
−−

√

<
1

M

> M ,

1/(x −1 = ∞lim
x→1

)2

Example 27: Evaluating limits involving infinity

lim
x→0

1
x

FIGURE 1.32 lim
x→0

1
x

= ∞lim
x→0

1
x

= ∞lim
x→0+

1
x = −∞lim

x→0−

1
x

f(x) x c ∞ −∞
c

Example 28: Finding vertical asymptotes

f(x) =
3x

−4x2
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: Graphing .

Solution

Vertical asymptotes occur where the function grows without bound; this can occur at values of  where the denominator is 0.
When  is near , the denominator is small, which in turn can make the function take on large values. In the case of the given
function, the denominator is 0 at . Substituting in values of  close to  and  seems to indicate that the function
tends toward  or  at those points. We can graphically confirm this by looking at Figure 1.33. Thus the vertical
asymptotes are at .

When a rational function has a vertical asymptote at , we can conclude that the denominator is 0 at . However, just
because the denominator is 0 at a certain point does not mean there is a vertical asymptote there. For instance, 

 does not have a vertical asymptote at , as shown in Figure 1.34. While the denominator does get
small near , the numerator gets small too, matching the denominator step for step. In fact, factoring the numerator, we get

Canceling the common term, we get that  for . So there is clearly no asymptote, rather a hole exists in the graph
at .

 
: Graphically showing that  does not have an asymptote at .

The above example may seem a little contrived. Another example demonstrating this important concept is . We
have considered this function several times in the previous sections. We found that ; i.e., there is no vertical

asymptote. No simple algebraic cancellation makes this fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then there will usually be a vertical asymptote at that point. On
the other hand, if the numerator and denominator are both zero at that point, then there may or may not be a vertical asymptote at
that point. This case where the numerator and denominator are both zero returns us to an important topic.

Indeterminate Forms
We have seen how the limits

FIGURE 1.33 f(x) = 3x

−4x2

c

x c

x = ±2 x 2 −2
∞ −∞

x = ±2

x = c x = c

f(x) = ( −1)/(x −1)x2 x = 1
x = 1

f(x) = .
(x −1)(x +1)

x −1
(2.6.3)

f(x) = x +1 x ≠ 1
x = 1

FIGURE 1.34 f(x) = −1x2

x−1
x = 1

f(x) = (sinx)/x

= 1lim
x→0

sin x
x

andlim
x→0

sinx

x
lim
x→1

−1x2

x −1
(2.6.4)
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each return the indeterminate form " '' when we blindly plug in  and , respectively. However,  is not a valid
arithmetical expression. It gives no indication that the respective limits are 1 and 2.

With a little cleverness, one can come up  expressions which have a limit of , 0, or any other real number. That is why this
expression is called indeterminate.

A key concept to understand is that such limits do not really return . Rather, keep in mind that we are taking limits. What is
really happening is that the numerator is shrinking to 0 while the denominator is also shrinking to 0. The respective rates at which
they do this are very important and determine the actual value of the limit.

An indeterminate form indicates that one needs to do more work in order to compute the limit. That work may be algebraic (such as
factoring and canceling) or it may require a tool such as the Squeeze Theorem. In a later section we will learn a technique called
l'Hospital's Rule that provides another way to handle indeterminate forms.

Some other common indeterminate forms are , , , ,  and . Again, keep in mind that these are the
"blind'' results of evaluating a limit, and each, in and of itself, has no meaning. The expression  does not really mean
"subtract infinity from infinity.'' Rather, it means "One quantity is subtracted from the other, but both are growing without bound.''
What is the result? It is possible to get every value between  and 

Note that  and  are not indeterminate forms, though they are not exactly valid mathematical expressions, either. In each,
the function is growing without bound, indicating that the limit will be , , or simply not exist if the left- and right-hand limits
do not match. 

Limits at Infinity and Horizontal Asymptotes

At the beginning of this section we briefly considered what happens to  as  grew very large. Graphically, it concerns
the behavior of the function to the "far right'' of the graph. We make this notion more explicit in the following definition.

1. We say  if for every  there exists  such that if , then .

2. We say  if for every  there exists  such that if , then .

3. If  or , we say that  is a horizontal asymptote of .

We can also define limits such as  by combining this definition with Definition 5.

Approximate the horizontal asymptote(s) of .

Solution

We will approximate the horizontal asymptotes by approximating the limits

Figure 1.35(a) shows a sketch of , and part (b) gives values of  for large magnitude values of . It seems reasonable to
conclude from both of these sources that  has a horizontal asymptote at .

0/0 x = 0 x = 1 0/0

0/0 ∞

0/0

∞ −∞ ∞ ⋅ 0 ∞/∞ 00 ∞0 1∞

∞ −∞

−∞ ∞

1/0 ∞/0
∞ −∞

f(x) = 1/x2 x

Definition 6: Limits at Infinity and Horizontal Asymptote

f(x) = Llim
x→∞

ϵ > 0 M > 0 x ≥ M |f(x) −L| < ϵ

f(x) = Llim
x→−∞

ϵ > 0 M < 0 x ≤ M |f(x) −L| < ϵ

f(x) = Llim
x→∞

f(x) = Llim
x→−∞

y = L f

f(x) = ∞lim
x→∞

Example 29: Approximating horizontal asymptotes

f(x) = x2

+4x2

and .lim
x→−∞

x2

+4x2
lim

x→∞

x2

+4x2
(2.6.5)

f f(x) x

f y = 1
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: Using a graph and a table to approximate a horizontal asymptote in Example 29.

Later, we will show how to determine this analytically.

Horizontal asymptotes can take on a variety of forms. Figure 1.36(a) shows that  has a horizontal asymptote of 
, where 0 is approached from both above and below.

Figure 1.36(b) shows that  has two horizontal asymptotes; one at  and the other at .

Figure 1.36(c) shows that  has even more interesting behavior than at just ; as  approaches , 
approaches 0, but oscillates as it does this.

 
: Considering different types of horizontal asymptotes.

We can analytically evaluate limits at infinity for rational functions once we understand . As  gets larger and larger, the 

 gets smaller and smaller, approaching 0. We can, in fact, make  as small as we want by choosing a large enough value of .
Given , we can make  by choosing . Thus we have .

It is now not much of a jump to conclude the following:

Now suppose we need to compute the following limit:

A good way of approaching this is to divide through the numerator and denominator by  (hence dividing by 1), which is the
largest power of  to appear in the function. Doing this, we get

Then using the rules for limits (which also hold for limits at infinity), as well as the fact about limits of , we see that the limit
becomes

FIGURE 1.35

f(x) = x/( +1)x2

y = 0

f(x) = x/ +1x2
− −−−−

√ y = 1 y = −1

f(x) = (sinx)/x x = 0 x ±∞ f(x)

FIGURE 1.36

1/xlim
x→∞

x

1/x 1/x x

ϵ 1/x < ϵ x > 1/ϵ 1/x = 0lim
x→∞

= 0 and = 0lim
x→∞

1

xn
lim

x→−∞

1

xn
(2.6.6)

.lim
x→∞

+2x +1x3

4 −2 +9x3 x2
(2.6.7)

x3

x

lim
x→∞

+2x +1x3

4 −2 +9x3 x2
= ⋅lim

x→∞

1/x3

1/x3

+2x +1x3

4 −2 +9x3 x2

= lim
x→∞

/ +2x/ +1/x3 x3 x3 x3

4 / −2 / +9/x3 x3 x2 x3 x3

= .lim
x→∞

1 +2/ +1/x2 x3

4 −2/x +9/x3

1/xn
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This procedure works for any rational function. In fact, it gives us the following theorem.

Let  be a rational function of the following form:

where any of the coefficients may be 0 except for  and .

1. If , then .

2. If , then .

3. If , then  and  are both infinite.

We can see why this is true. If the highest power of  is the same in both the numerator and denominator (i.e. ), we will be
in a situation like the example above, where we will divide by  and in the limit all the terms will approach 0 except for 
and . Since , this will leave us with the limit . If , then after dividing through by , all the terms in
the numerator will approach 0 in the limit, leaving us with  or 0. If , and we try dividing through by , we end up
with all the terms in the denominator tending toward 0, while the  term in the numerator does not approach 0. This is indicative
of some sort of infinite limit.

Intuitively, as  gets very large, all the terms in the numerator are small in comparison to , and likewise all the terms in the
denominator are small compared to . If , looking only at these two important terms, we have . This
reduces to . If , the function behaves like , which tends toward 0. If , the function behaves like 

, which will tend to either  or  depending on the values of , , ,  and whether you are looking for 
 or .

With care, we can quickly evaluate limits at infinity for a large number of functions by considering the largest powers of . For
instance, consider again  graphed in Figure (b). When  is very large, . Thus

This expression is 1 when  is positive and  when  is negative. Hence we get asymptotes of  and , respectively.

Confirm analytically that  is the horizontal asymptote of , as approximated in Example 29.

Solution

Before using Theorem 11, let's use the technique of evaluating limits at infinity of rational functions that led to that theorem.
The largest power of  in  is 2, so divide the numerator and denominator of  by , then take limits.

We can also use Theorem 11 directly; in this case  so the limit is the ratio of the leading coefficients of the numerator
and denominator, i.e., 1/1 = 1.

= .
1 +0 +0

4 −0 +0

1

4
(2.6.8)

Theorem 11: Limits of Rational Functions at Infinity

f(x)

f(x) = ,
+ +⋯ + x +anxn an−1xn−1 a1 a0

+ +⋯ + x +bmxm bm−1 xm−1 b1 b0
(2.6.9)

an bm

n = m f(x) = f(x) =lim
x→∞

lim
x→−∞

an

bm

n < m f(x) = f(x) = 0lim
x→∞

lim
x→−∞

n > m f(x)lim
x→∞

f(x)lim
x→−∞

x n = m

xn /anxn xn

/bmxm xn n = m /an bm n < m xm

0/bm n > m xn

xn

x anxn

bnxm n = m ( )/( )anxn bnxm

/an bm n < m /( )an bmxm−n n > m

/anxn−m bm ∞ −∞ n m an bm

f(x)lim
x→∞

f(x)lim
x→−∞

x

,lim
x→±∞

x

+1x2√
??? x +1 ≈x2 x2

≈ = |x|, and ≈ .+1x2− −−−−
√ x2

−−
√ x

+1x2
− −−−−

√

x

|x|
(2.6.10)

x −1 x y = 1 y = −1

Example 30: Finding a limit of a rational function

y = 1 f(x) = x2

+4x2

x f f x2

lim
x→∞

x2

+4x2
= lim

x→∞

/x2 x2

/ +4/x2 x2 x2

= lim
x→∞

1

1 +4/x2

=
1

1 +0
= 1.

n = m
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Use Theorem 11 to evaluate each of the following limits.

 
: Visualizing the functions in Example 31.

Solution

1. The highest power of  is in the denominator. Therefore, the limit is 0; see Figure 1.37(a).
2. The highest power of  is , which occurs in both the numerator and denominator. The limit is therefore the ratio of the

coefficients of , which is . See Figure 1.37(b).
3. The highest power of  is in the numerator so the limit will be  or . To see which, consider only the dominant terms

from the numerator and denominator, which are  and . The expression in the limit will behave like 
for large values of . Therefore, the limit is . See Figure 1.37(c).

Chapter Summary
In this chapter we:

defined the limit,
found accessible ways to approximate their values numerically and graphically,
developed a not--so--easy method of proving the value of a limit (  proofs),
explored when limits do not exist,
defined continuity and explored properties of continuous functions, and
considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to be no exception. In the next chapter we will be interested
in "dividing by 0.'' That is, we will want to divide a quantity by a smaller and smaller number and see what value the quotient
approaches. In other words, we will want to find a limit. These limits will enable us to, among other things, determine exactly how
fast something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by first adding up a finite list of numbers, then take a limit
as the number of things we are adding approaches infinity. Surprisingly, this sum often is finite; that is, we can add up an infinite
list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many students dislike this topic when they are first
introduced to it, but over time an appreciation is often formed based on the scope of its applicability.

Contributors and Attributions
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Noncommercial (BY-NC) License. http://www.apexcalculus.com/

2.6: Limits at Infinity; Horizontal Asymptotes is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

1.6: Limits Involving Infinity by Gregory Hartman et al. is licensed CC BY-NC 4.0.

Example 31: Finding limits of rational functions

1. lim
x→−∞

+2x −1x2

+1x3

2. lim
x→∞

+2x −1x2

1 −x −3x2

3. lim
x→∞

−1x2

3 −x
(2.6.11)

(2.6.12)

FIGURE 1.37

x

x x2

x2 −1/3
x ∞ −∞

x2 −x /(−x) = −xx2

x −∞

ϵ−δ
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3.4: The Chain Rule
We have covered almost all of the derivative rules that deal with combinations of two (or more) functions. The operations of addition,
subtraction, multiplication (including by a constant) and division led to the Sum and Difference rules, the Constant Multiple Rule, the
Power Rule, the Product Rule and the Quotient Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function "inside'' another).

One example of a composition of functions is . We currently do not know how to compute this derivative. If forced to
guess, one would likely guess ,where we recognize  as the derivative of  and  as the derivative of 

. However, this is not the case; . In Example 62 we'll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of functions. We write  or ,read as "  of  of ,''
to denote composing  with . In shorthand, we simply write  or  and read it as "  of .'' Before giving the corresponding
differentiation rule, we note that the rule extends to multiple compositions like  or ,etc.

To motivate the rule, let's look at three derivatives we can already compute.

Find the derivatives of

a. ,
b.  and
c. 

We'll see later why we are using subscripts for different functions and an uppercase .

Solution

In order to use the rules we already have, we must first expand each function as

a. ,
b.  and
c. .

It is not hard to see that:

An interesting fact is that these can be rewritten as

A pattern might jump out at you. Recognize that each of these functions is a composition, letting :

We'll come back to this example after giving the formal statements of the Chain Rule; for now, we are just illustrating a pattern.

Let  be a differentiable function of  and let  be a differentiable function of . Then  is a
differentiable function of ,and

To help understand the Chain Rule, we return to Example 59.

f(x) = cos( )x2

(x) = −sin(2x)f ′ −sinx cosx 2x

x2 (x) ≠ −sin(2x)f ′

(f ∘ g)(x) f(g(x)) f g x

f g f ∘ g f(g) f g

f(g(h(x))) f(g(h(j(x))))

Example 59: Exploring similar derivatives

(x) = (1 −xF1 )2

(x) = (1 −x ,F2 )3

(x) = (1 −x .F3 )4

F

(x) = 1 −2x+F1 x2

(x) = 1 −3x+3 −F2 x2 x3

(x) = 1 −4x+6 −4 +F3 x2 x3 x4

(x)F ′
1

(x)F ′
2

(x)F ′
3

= −2 +2x

= −3 +6x−3x2

= −4 +12x−12 +4 .x2 x3

(x) = −2(1 −x), (x) = −3(1 −x  and  (x) = −4(1 −x .F ′
1 F ′

2 )2 F ′
3 )3 (3.4.1)

g(x) = 1 −x

(x) = (g(x)),F1 f1

(x) = (g(x)),F2 f2

(x) = (g(x)),F3 f3

 where  (x) = ,f1 x2

 where  (x) = ,f2 x3

 where  (x) = .f3 x4

Theorem 18: The Chain Rule

y = f(u) u u = g(x) x y = f(g(x))

x

= (g(x)) ⋅ (x).y′ f ′ g′ (3.4.2)
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Use the Chain Rule to find the derivatives of the following functions, as given in Example 59.

Solution

Example 59 ended with the recognition that each of the given functions was actually a composition of functions. To avoid
confusion, we ignore most of the subscripts here.

:

We found that

To find , we apply the Chain Rule. We need  and 

Part of the Chain Rule uses . This means substitute  for  in the equation for . That is, .
Finishing out the Chain Rule we have

:

Let ,where  and . We have ,so . The
Chain Rule then states

:

Finally, when ,we have  and . Thus  and . Thus

Example 60 demonstrated a particular pattern: when ,then . This is called the Generalized
Power Rule.

Let  be a differentiable function and let  be an integer. Then

This allows us to quickly find the derivative of functions like . While it may look intimidating, the
Generalized Power Rule states that

Treat the derivative--taking process step--by--step. In the example just given, first multiply by 20, then rewrite the inside of the
parentheses, raising it all to the 19  power. Then think about the derivative of the expression inside the parentheses, and multiply by
that.

We now consider more examples that employ the Chain Rule.

Find the derivatives of the following functions:

a. 
b. 
c. 

Solution

a. Consider . Recognize that this is a composition of functions, where  and . Thus

Example 60: Using the Chain Rule

(x) = (1 −xF1 )2

y = (1 −x = f(g(x)),  where f(x) =   and  g(x) = 1 −x.)2 x2 (3.4.3)

y′ (x) = 2xf ′ (x) = −1.g′

(g(x))f ′ g(x) x (x)f ′ (x) = 2(1 −x)f ′

= (g(x)) ⋅ (x) = 2(1 −x) ⋅ (−1) = −2(1 −x) = 2x−2.y′ f ′ g′ (3.4.4)

(x) = (1 −xF2 )3

y = (1 −x = f(g(x)))3 f(x) = x3 g(x) = (1 −x) (x) = 3f ′ x2 (g(x)) = 3(1 −xf ′ )2

= (g(x)) ⋅ (x) = 3(1 −x ⋅ (−1) = −3(1 −x .y′ f ′ g′ )2 )2 (3.4.5)

(x) = (1 −xF3 )4

y = (1 −x)4 f(x) = x4 g(x) = (1 −x) (x) = 4f ′ x3 (g(x)) = 4(1 −xf ′ )3

= (g(x)) ⋅ (x) = 4(1 −x ⋅ (−1) = −4(1 −x .y′ f ′ g′ )3 )3 (3.4.6)

f(x) = xn = n ⋅ (g(x) ⋅ (x)y′ )n−1 g′

Theorem 19: Generalized Power Rule

g(x) n ≠ 0

(g(x ) = n ⋅ (g(x) ⋅ (x).
d

dx
)n )

n−1
g′ (3.4.7)

y = (3 −5x+7 +sinxx2 )20

= 20(3 −5x+7 +sinx ⋅ (6x−5 +cosx).y′ x2 )19 (3.4.8)

th

Example 61: Using the Chain Rule

y = sin2x

y = ln(4 −2 )x3 x2

y = e−x2

y = sin2x f(x) = sinx g(x) = 2x

https://libretexts.org/
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b. Recognize that  is the composition of  and . Also, recall that

This leads us to:

c. Recognize that  is the composition of  and . Remembering that ,we have

Let . Find the equation of the line tangent to the graph of  at .

Solution

The tangent line goes through the point  with slope . To find ,we need the Chain Rule.

. Evaluated at ,we have . Thus the equation of the
tangent line is

The tangent line is sketched along with  in Figure 2.17.

Figure 2.17:  sketched along with its tangent line at .

The Chain Rule is used often in taking derivatives. Because of this, one can become familiar with the basic process and learn patterns
that facilitate finding derivatives quickly. For instance,

A concrete example of this is

While the derivative may look intimidating at first, look for the pattern. The denominator is the same as what was inside the natural
log function; the numerator is simply its derivative.

This pattern recognition process can be applied to lots of functions. In general, instead of writing "anything'', we use  as a generic
function of . We then say

The following is a short list of how the Chain Rule can be quickly applied to familiar functions.

= (g(x)) ⋅ (x) = cos(2x) ⋅ 2 = 2 cos 2x.y′ f ′ g′ (3.4.9)

y = ln(4 −2 )x3 x2 f(x) = lnx g(x) = 4 −2x3 x2

( lnx) = .
d

dx

1

x
(3.4.10)

= ⋅ (12 −4x) = = = .y′ 1

4 −2x3 x2
x2 12 −4xx2

4 −2x3 x2

4x(3x−1)

2x(2 −x)x2

2(3x−1)

2 −xx2
(3.4.11)

y = e−x2
f(x) = ex g(x) = −x2 (x) =f ′ ex

= ⋅ (−2x) = (−2x) .y′ e−x2

e−x2

(3.4.12)

Example 62: Using the Chain Rule to find a tangent line

f(x) = cosx2 f x = 1

(1, f(1)) ≈ (1, 0.54) (1)f ′ f ′

(x) = −sin( ) ⋅ (2x) = −2x sinf ′ x2 x2 x = 1 (1) = −2 sin1 ≈ −1.68f ′

y = −1.68(x−1) +0.54. (3.4.13)

f

f(x) = cos x2 x = 1

( ln(anything)) = ⋅ (anything = .
d

dx

1

anything
)′ (anything)′

anything
(3.4.14)

( ln(3 −cosx+ )) = .
d

dx
x15 ex

45 +sinx+x14 ex

3 −cosx+x15 ex
(3.4.15)

u

x

( lnu) = .
d

dx

u′

u
(3.4.16)
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Of course, the Chain Rule can be applied in conjunction with any of the other rules we have already learned. We practice this next.

Find the derivatives of the following functions.

a. 

b. .

Solution

a. We must use the Product and Chain Rules. Do not think that you must be able to "see'' the whole answer immediately; rather,
just proceed step--by--step.

b. We must employ the Quotient Rule along with the Chain Rule. Again, proceed step--by--step.

A key to correctly working these problems is to break the problem down into smaller, more manageable pieces. For instance, when
using the Product and Chain Rules together, just consider the first part of the Product Rule at first: . Just rewrite ,then
find . Then move on to the  part. Don't attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and handle the denominator after completing that. Only
simplify afterward.

We can also employ the Chain Rule itself several times, as shown in the next example.

Find the derivative of .

Solution

Recognize that we have the  function "inside'' the  function; that is, we have 
. We begin using the Generalized Power Rule; in this first step, we do not fully compute the derivative.

Rather, we are approaching this step--by--step.

We now find . We again need the Chain Rule;

Combine this with what we found above to give

This function is frankly a ridiculous function, possessing no real practical value. It is very difficult to graph, as the tangent
function has many vertical asymptotes and  grows so very fast. The important thing to learn from this is that the

Example 63: Using the Product, Quotient and Chain Rules

f(x) = sin2x5 x3

f(x) =
5x3

e−x2

(x) = (6 cos 2 )+5 ( sin2 ) = 6 cos 2 +5 sin2 .f ′ x5 x2 x3 x4 x3 x7 x3 x4 x3 (3.4.17)

(x) =f ′
(15 )−5 ((−2x) )e−x2

x2 x3 e−x2

(e−x2 )
2

=
(10 +15 )e−x2

x4 x2

e−2x2

= (10 +15 ).ex
2

x4 x2

f(x) (x)g′ f(x)

(x)g′ (x)g(x)f ′

Example 64: Using the Chain Rule multiple times

y = (6 −7x)tan5 x3

g(x) = tan(6 −7x)x3 f(x) = x5

y = ( tan(6 −7x)x3 )5

= 5( tan(6 −7x) ⋅ (x).y′ x3 )
4
g′ (3.4.18)

(x)g′

(x) = (6 −7x) ⋅ (18 −7).g′ sec2 x3 x2 (3.4.19)

y′ = 5( tan(6 −7x) ⋅ (6 −7x) ⋅ (18 −7)x3 )4
sec2 x3 x2

= (90 −35) (6 −7x) (6 −7x).x2 sec2 x3 tan4 x3

6 −7xx3
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derivative can be found. In fact, it is not "hard;'' one must take several simple steps and be careful to keep track of how to apply
each of these steps.

It is a traditional mathematical exercise to find the derivatives of arbitrarily complicated functions just to demonstrate that it can be
done. Just break everything down into smaller pieces.

Find the derivative of 

Solution

This function likely has no practical use outside of demonstrating derivative skills. The answer is given below without
simplification. It employs the Quotient Rule, the Product Rule, and the Chain Rule three times.

The reader is highly encouraged to look at each term and recognize why it is there. (I.e., the Quotient Rule is used; in the
numerator, identify the "LOdHI'' term, etc.) This example demonstrates that derivatives can be computed systematically, no
matter how arbitrarily complicated the function is.

The Chain Rule also has theoretic value. That is, it can be used to find the derivatives of functions that we have not yet learned as we
do in the following example.

Use the Chain Rule to find the derivative of  where ,  is constant.

Solution

We only know how to find the derivative of one exponential function: ; this problem is asking us to find the derivative of
functions such as .

This can be accomplished by rewriting  in terms of . Recalling that  and  are inverse functions, we can write

By the exponent property of logarithms, we can "bring down'' the power to get

The function is now the composition ,with  and . Since  and , the
Chain Rule gives

Recall that the  term on the right hand side is just ,our original function. Thus, the derivative contains the original
function itself. We have

The Chain Rule, coupled with the derivative rule of ,allows us to find the derivatives of all exponential functions.

The previous example produced a result worthy of its own "box.''

Example 65: Using the Product, Quotient and Chain Rules

f(x) = .
x cos( ) − ( )x−2 sin2 e4x

ln( +5 )x2 x4

(x) = .f ′

( ln( +5 )) ⋅ [(x ⋅ (−sin( )) ⋅ (−2 ) +1 ⋅ cos( ))−2 sin( ) ⋅ cos( ) ⋅ (4 )]x2 x4 x−2 x−3 x−2 e4x e4x e4x

−(x cos( ) − ( )) ⋅x−2 sin2 e4x
2x+20x3

+5x2 x4

( ln( +5 )x2 x4 )2
(3.4.20)

Example 66: The Chain Rule and exponential functions

y = ax a > 0 a ≠ 1

y = ex

y = 2x

ax e ex lnx

a = and so  y = = .eln a ax eln( )ax

y = = .ax ex(ln a)

y = f(g(x)) f(x) = ex g(x) = x(lna) (x) =f ′ ex (x) = lnag′

= ⋅ lna.y′ ex(ln a)

ex(ln a) ax

= y ⋅ lna = ⋅ lna.y′ ax

ex
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Let ,for . Then  is differentiable for all real numbers and

Alternate Chain Rule Notation

It is instructive to understand what the Chain Rule "looks like'' using " '' notation instead of  notation. Suppose that  is

a function of ,where  is a function of ,as stated in Theorem 18. Then, through the composition ,we can think of  as

a function of ,as . Thus the derivative of  with respect to  makes sense; we can talk about  This leads to an

interesting progression of notation:

Here the "fractional'' aspect of the derivative notation stands out. On the right hand side, it seems as though the " '' terms cancel out,
leaving

It is important to realize that we are not canceling these terms; the derivative notation of  is one symbol. It is equally important to

realize that this notation was chosen precisely because of this behavior. It makes applying the Chain Rule easy with multiple
variables. For instance,

where  and  are any variables you'd like to use.

One of the most common ways of "visualizing" the Chain Rule is to consider a set of gears, as shown in Figure 2.18. The gears have
36, 18, and 6 teeth, respectively. That means for every revolution of the  gear, the  gear revolves twice. That is, the rate at which
the  gear makes a revolution is twice as fast as the rate at which the  gear makes a revolution. Using the terminology of calculus,

the rate of -change, with respect to ,is .

Figure 2.18: A series of gears to demonstrate the Chain Rule. Note how .

Likewise, every revolution of  causes 3 revolutions of : . How does  change with respect to ? For each revolution of ,

revolves 6 times; that is,

Theorem 20: Derivatives of Exponential Functions

f(x) = ax a > 0, a ≠ 1 f

(x) = lna ⋅ .f ′ ax

dy

dx
y′ y = f(u)

u u = g(x) x f ∘ g y

x y = f(g(x)) y x .
dy

dx

y′

dy

dx
dy

dx

= (g(x)) ⋅ (x)f ′ g′

= (u) ⋅ (x) (since y = f(u) and u = g(x))y′ u′

= ⋅ (using "fractional'' notation for the derivative)
dy

du

du

dx

du

= .
dy

dx

dy

dx
(3.4.21)

dy

dx

= ⋅ ⋅ .
dy

dt

dy

d◯

d◯

d△

d△

dt
(3.4.22)

◯ △

x u

u x

u x = 2
du

dx

= ⋅
dy

dx

dy

du

du

dx

u y = 3
dy

du
y x x y
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We can then extend the Chain Rule with more variables by adding more gears to the picture.

It is difficult to overstate the importance of the Chain Rule. So often the functions that we deal with are compositions of two or more
functions, requiring us to use this rule to compute derivatives. It is often used in practice when actual functions are unknown. Rather,

through measurement, we can calculate  and . With our knowledge of the Chain Rule, finding  is straightforward.

In the next section, we use the Chain Rule to justify another differentiation technique. There are many curves that we can draw in the
plane that fail the "vertical line test.'' For instance, consider ,which describes the unit circle. We may still be interested in

finding slopes of tangent lines to the circle at various points. The next section shows how we can find  without first "solving for 

.'' While we can in this instance, in many other instances solving for  is impossible. In these situations, implicit differentiation is
indispensable.

3.4: The Chain Rule is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.5: The Chain Rule by Gregory Hartman et al. is licensed CC BY-NC 4.0.

= ⋅ = 2 ⋅ 3 = 6.
dy

dx

dy

du

du

dx
(3.4.23)

dy

du

du

dx

dy

dx

+ = 1x2 y2

dy

dx
y y
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3.5: Implicit Differentiation
In the previous sections we learned to find the derivative, , or , when  is given explicitly as a function of . That is, if we
know  for some function , we can find . For example, given , we can easily find . (Here we
explicitly state how  and  are related. Knowing , we can directly find .)

Sometimes the relationship between  and  is not explicit; rather, it is implicit. For instance, we might know that .
This equality defines a relationship between  and ; if we know , we could figure out . Can we still find ? In this case, sure;
we solve for  to get  (hence we now know  explicitly) and then differentiate to get .

Sometimes the implicit relationship between  and  is complicated. Suppose we are given . A graph of this
implicit function is given in Figure 2.19. In this case there is absolutely no way to solve for  in terms of elementary functions. The
surprising thing is, however, that we can still find  via a process known as implicit differentiation.

Figure 2.19: A graph of the implicit function .

Implicit differentiation is a technique based on the Chain Rule that is used to find a derivative when the relationship between the
variables is given implicitly rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let  and  be functions of . Then

Suppose now that . We can rewrite the above as

These equations look strange; the key concept to learn here is that we can find  even if we don't exactly know how  and  relate.

We demonstrate this process in the following example.

Find  given that .

Solution

We start by taking the derivative of both sides (thus maintaining the equality.) We have :

The right hand side is easy; it returns .

The left hand side requires more consideration. We take the derivative term--by--term. Using the technique derived from
Equation 2.1 above, we can see that

We apply the same process to the  term.

dy

dx
y′ y x

y = f(x) f y′ y = 3 −7x2 = 6xy′

x y x y

y x −y = 4x2

x y x y y′

y y = −4x2 y = 2xy′

x y sin(y) + = 6 −y3 x3

y

y′

sin(y) + = 6 −y3 x2

f g x

(f(g(x))) = (g(x)) ⋅ (x).
d

dx
f ′ g′ (3.5.1)

y = g(x)

(f(y))) = (y)) ⋅ , or (f(y))) = (y) ⋅ .
d

dx
f ′ y′ d

dx
f ′ dy

dx
(2.1)

y′ y x

Example 67: Using Implicit Differentiation

y′ sin(y) + = 6 −y3 x3

( sin(y) + ) = (6 − ).
d

dx
y3 d

dx
x3 (3.5.2)

−3x2

( siny) = cosy ⋅ .
d

dx
y′ (3.5.3)

y3
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Putting this together with the right hand side, we have

Now solve for .

This equation for  probably seems unusual for it contains both  and  terms. How is it to be used? We'll address that next.

Implicit functions are generally harder to deal with than explicit functions. With an explicit function, given an  value, we have an
explicit formula for computing the corresponding  value. With an implicit function, one often has to find  and  values at the
same time that satisfy the equation. It is much easier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point  lies on the graph of the implicit function . Plugging in
 for , we see the left hand side is . Setting , we see the right hand side is also ; the equation is satisfied. The following

example finds the equation of the tangent line to this function at this point.

Find the equation of the line tangent to the curve of the implicitly defined function  at the point .

Solution

In Example 67 we found that

We find the slope of the tangent line at the point  by substituting  for  and  for . Thus at the point , we
have the slope as

Therefore the equation of the tangent line to the implicitly defined function  at the point  is

The curve and this tangent line are shown in Figure 2.20.

Figure 2.20: The function  and its tangent line at the point .

This suggests a general method for implicit differentiation. For the steps below assume  is a function of .

( ) = ((y ) = 3(y ⋅ .
d

dx
y3 d

dx
)3 )2 y′ (3.5.4)

cos(y) +3 = −3 .y′ y2y′ x2 (3.5.5)

y′

cos(y) +3y′ y2y′

( cosy+3 )y2 y′

y′

= −3 .x2

= −3x2

=
−3x2

cosy+3y2

y′ x y

x

y x y

( , 0)6
–

√3 siny+ = 6 −y3 x3

0 y 0 x = 6
–

√3 0

Example 68: Using Implicit Differentiation to find a tangent line

siny+ = 6 −y3 x3 ( , 0)6
–

√3

= .y′ −3x2

cosy+3y2
(3.5.6)

( , 0)6
–

√3
6
–

√3
x 0 y ( , 0)6

–
√3

= = ≈ −9.91.y′
−3( 6

–
√3 )2

cos 0 +3 ⋅ 02

−3 36
−−

√3

1
(3.5.7)

siny+ = 6 −y3 x3 ( , 0)6
–

√3

y = −3 (x− ) +0 ≈ −9.91x+18.36
−−

√3 6
–

√3 (3.5.8)

sin y+ = 6 −y3 x2 ( , 0)6
–√3

y x
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1. Take the derivative of each term in the equation. Treat the  terms like normal. When taking the derivatives of  terms, the
usual rules apply except that, because of the Chain Rule, we need to multiply each term by .

2. Get all the  terms on one side of the equal sign and put the remaining terms on the other side.
3. Factor out ; solve for  by dividing.

Practical Note: When working by hand, it may be beneficial to use the symbol  instead of , as the latter can be easily
confused for  or .

Given the implicitly defined function , find .

Solution

We will take the implicit derivatives term by term. The derivative of  is .

The second term, , is a little tricky. It requires the Product Rule as it is the product of two functions of :  and . Its
derivative is . The first part of this expression requires a  because we are taking the derivative of a  term.
The second part does not require it because we are taking the derivative of .

The derivative of the right hand side is easily found to be . In all, we get:

Move terms around so that the left side consists only of the  terms and the right side consists of all the other terms:

Factor out  from the left side and solve to get

To confirm the validity of our work, let's find the equation of a tangent line to this function at a point. It is easy to confirm that
the point  lies on the graph of this function. At this point, . So the equation of the tangent line is 

. The function and its tangent line are graphed in Figure 2.21.

Figure 2.21: A graph of the implicitly defined function  along with its tangent line at the point .

Notice how our function looks much different than other functions we have seen. For one, it fails the vertical line test. Such
functions are important in many areas of mathematics, so developing tools to deal with them is also important.

Given the implicitly defined function , find .

Solution

Differentiating term by term, we find the most difficulty in the first term. It requires both the Chain and Product Rules.

x y

y′

y′

y′ y′

dy

dx
y′

y y1

Example 69: Using Implicit Differentiation

+ = 1 +2xy3 x2y4 y′

y3 3y2y′

x2y4 x x2 y4

(4 ) +2xx2 y3y′ y4 y′ y

x2

2

3 +4 +2x = 2.y2y′ x2y3y′ y4 (3.5.9)

y′

3 +4 = 2 −2x .y2y′ x2y3y′ y4 (3.5.10)

y′

= .y′ 2 −2xy4

3 +4y2 x2y3
(3.5.11)

(0, 1) = 2/3y′

y = 2/3(x−0) +1

+ = 1 + 2xy3 x2y4 (0, 1)

Example 70: Using Implicit Differentiation

sin( ) + = x+yx2y2 y3 y′

( sin( ))
d

dx
x2y2 = cos( ) ⋅ ( )x2y2 d

dx
x2y2

= cos( ) ⋅ ( (2y ) +2x )x2y2 x2 y′ y2

= 2( y +x ) cos( ).x2 y′ y2 x2y2
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We leave the derivatives of the other terms to the reader. After taking the derivatives of both sides, we have

We now have to be careful to properly solve for , particularly because of the product on the left. It is best to multiply out the
product. Doing this, we get

From here we can safely move around terms to get the following:

Then we can solve for  to get

A graph of this implicit function is given in Figure 2.22. It is easy to verify that the points ,  and  all lie on
the graph. We can find the slopes of the tangent lines at each of these points using our formula for .

Figure 2.22: A graph of the implicitly defined function .

At , the slope is .

At , the slope is .

At , the slope is also .

The tangent lines have been added to the graph of the function in Figure 2.23.

Figure 2.23: A graph of the implicitly defined function  and certain tangent lines.

Quite a few "famous'' curves have equations that are given implicitly. We can use implicit differentiation to find the slope at various
points on those curves. We investigate two such curves in the next examples. 

Find the slope of the tangent line to the circle  at the point .

Solution

Taking derivatives, we get . Solving for  gives:

2( y +x ) cos( ) +3 = 1 + .x2 y′ y2 x2y2 y2y′ y′ (3.5.12)

y′

2 y cos( ) +2x cos( ) +3 = 1 + .x2 x2y2 y′ y2 x2y2 y2y′ y′ (3.5.13)

2 y cos( ) +3 − = 1 −2x cos( ).x2 x2y2 y′ y2y′ y′ y2 x2y2 (3.5.14)

y′

= .y′
1 −2x cos( )y2 x2y2

2 y cos( ) +3 −1x2 x2y2 y2
(3.5.15)

(0, 0) (0, 1) (0, −1)
y′

sin( ) + = x+yx2y2 y3

(0, 0) −1

(0, 1) 1/2

(0, −1) 1/2

sin( ) + = x+yx2y2 y3

Example 71: Finding slopes of tangent lines to a circle

+ = 1x2 y2 (1/2, /2)3
–

√

2x+2y = 0y′ y′
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This is a clever formula. Recall that the slope of the line through the origin and the point  on the circle will be . We
have found that the slope of the tangent line to the circle at that point is the opposite reciprocal of , namely, . Hence
these two lines are always perpendicular.

At the point , we have the tangent line's slope as

A graph of the circle and its tangent line at  is given in Figure 2.24, along with a thin dashed line from the origin
that is perpendicular to the tangent line. (It turns out that all normal lines to a circle pass through the center of the circle.)

Figure 2.24: The unit circle with its tangent line at .

This section has shown how to find the derivatives of implicitly defined functions, whose graphs include a wide variety of
interesting and unusual shapes. Implicit differentiation can also be used to further our understanding of "regular'' differentiation.

One hole in our current understanding of derivatives is this: what is the derivative of the square root function? That is,

We allude to a possible solution, as we can write the square root function as a power function with a rational (or, fractional) power.
We are then tempted to apply the Power Rule and obtain

The trouble with this is that the Power Rule was initially defined only for positive integer powers, . While we did not justify
this at the time, generally the Power Rule is proved using something called the Binomial Theorem, which deals only with positive
integers. The Quotient Rule allowed us to extend the Power Rule to negative integer powers. Implicit Differentiation allows us to
extend the Power Rule to rational powers, as shown below.

Let , where  and  are integers with no common factors (so  and  is fine, but  and  is not).
We can rewrite this explicit function implicitly as . Now apply implicit differentiation.

= .y′ −x

y
(3.5.16)

(x, y) y/x
y/x −x/y

(1/2, /2)3
–

√

= = ≈ −0.577.y′ −1/2

/23
–

√

−1

3
–

√
(3.5.17)

(1/2, /2)3
–

√

(1/2, /2)3
–√

( ) = ( ) = ?
d

dx
x−−√

d

dx
x1/2 (3.5.18)

( ) = = .
d

dx
x1/2 1

2
x−1/2 1

2 x−−√
(3.5.19)

n > 0

y = xm/n m n m = 2 n = 5 m = 2 n = 4
=yn xm
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The above derivation is the key to the proof extending the Power Rule to rational powers. Using limits, we can extend this once
more to include all powers, including irrational (even transcendental!) powers, giving the following theorem.

Let , where  is a real number. Then  is a differentiable function, and .

This theorem allows us to say the derivative of  is .

We now apply this final version of the Power Rule in the next example, the second investigation of a "famous'' curve. 

Find the slope of  at the point .

Solution

This is a particularly interesting curve called an astroid. It is the shape traced out by a point on the edge of a circle that is
rolling around inside of a larger circle, as shown in Figure 2.25.

Figure 2.25: An astroid, traced out by a point on the smaller circle as it rolls inside the larger circle.

To find the slope of the astroid at the point , we take the derivative implicitly.

Plugging in  and , we get a slope of . The astroid, with its tangent line at , is shown in Figure 2.26.

y

yn

( )
d

dx
yn

n ⋅ ⋅yn−1 y′

y′

= xm/n

= xm

= ( )
d

dx
xm

= m ⋅ xm−1

= (now substitute   for y)
m

n

xm−1

yn−1
xm/n

= (apply lots of algebra)
m

n

xm−1

(xm/n)n−1

=
m

n
x(m−n)/n

= .
m

n
xm/n−1

Theorem 21: Power Rule for Differentiation

f(x) = xn n ≠ 0 f (x) = n ⋅f ′ xn−1

xπ πxπ−1

Example 72: Using the Power Rule

+ = 8x2/3 y2/3 (8, 8)

(8, 8)

+
2

3
x−1/3 2

3
y−1/3y′

2

3
y−1/3y′

y′

y′

= 0

= −
2

3
x−1/3

= −
x−1/3

y−1/3

= − = − .
y1/3

x1/3

y

x

−−
√3

x = 8 y = 8 −1 (8, 8)
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Figure 2.26: An astroid with a tangent line.

Implicit Differentiation and the Second Derivative

We can use implicit differentiation to find higher order derivatives. In theory, this is simple: first find , then take its derivative
with respect to . In practice, it is not hard, but it often requires a bit of algebra. We demonstrate this in an example.

Given , find .

Solution

We found that  in Example 71. To find , we apply implicit differentiation to .

replace  with :

While this is not a particularly simple expression, it is usable. We can see that  when  and  when . In
Section 3.4, we will see how this relates to the shape of the graph.

Logarithmic Differentiation

Consider the function ; it is graphed in Figure 2.27. It is well--defined for  and we might be interested in finding
equations of lines tangent and normal to its graph. How do we take its derivative?

dy

dx

x

Example 73: Finding the second derivative

+ = 1x2 y2 =
yd2

dx2
y′′

= = −x/yy′ dy

dx
y′′ y′

y′′ = ( )
d

dx
y′

= (− ) (Now use the Quotient Rule.)
d

dx

x

y

= −
y(1) −x( )y′

y2

y′ −x/y

= −
y−x(−x/y)

y2

= − .
y+ /yx2

y2

> 0y′′ y < 0 < 0y′′ y > 0

y = xx x > 0
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Figure 2.27: A plot of .

The function is not a power function: it has a "power'' of , not a constant. It is not an exponential function: it has a "base'' of , not
a constant.

A differentiation technique known as logarithmic differentiation becomes useful here. The basic principle is this: take the natural
log of both sides of an equation , then use implicit differentiation to find . We demonstrate this in the following
example.

Given , use logarithmic differentiation to find .

Solution

As suggested above, we start by taking the natural log of both sides then applying implicit differentiation.

To "test'' our answer, let's use it to find the equation of the tangent line at . The point on the graph our tangent line must
pass through is . Using the equation for , we find the slope as

Thus the equation of the tangent line is . Figure 2.28 graphs  along with this tangent line.

Figure 2.22: A graph of  and its tangent line at .

y = xx

x x

y = f(x) y′

Example 74: Using Logarithmic Differentiation

y = xx y′

y

ln(y)

ln(y)

( ln(y))
d

dx
y′

y

y′

y

y′

y′

= xx

= ln( )(apply logarithm rule)xx

= x lnx(now use implicit differentiation)

= (x lnx)
d

dx

= lnx+x ⋅
1

x

= lnx+1

= y( lnx+1)(substitute y = )xx

= ( lnx+1).xx

x = 1.5

(1.5, ) ≈ (1.5, 1.837)1.51.5 y′

= ( ln1.5 +1) ≈ 1.837(1.405) ≈ 2.582.y′ 1.51.5 (3.5.20)

y = 1.6833(x−1.5) +1.837 y = xx

y = xx x = 1.5
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Implicit differentiation proves to be useful as it allows us to find the instantaneous rates of change of a variety of functions. In
particular, it extended the Power Rule to rational exponents, which we then extended to all real numbers. In the next section,
implicit differentiation will be used to find the derivatives of inverse functions, such as .

3.5: Implicit Differentiation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.6: Implicit Differentiation by Gregory Hartman et al. is licensed CC BY-NC 4.0.

y = xsin−1
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3.6: Derivatives of Logarithmic Functions
As with the sine, we do not know anything about derivatives that allows us to compute the derivatives of the exponential and
logarithmic functions without going back to basics. Let's do a little work with the definition again:

There are two interesting things to note here: As in the case of the sine function we are left with a limit that involves  but not ,
which means that whatever  is, we know that it is a number, that is, a constant. This means that  has a
remarkable property: its derivative is a constant times itself.

We earlier remarked that the hardest limit we would compute is ; we now have a limit that is just a bit too hard
to include here. In fact the hard part is to see that  even exists---does this fraction really get closer and
closer to some fixed value? Yes it does, but we will not prove this fact.

We can look at some examples. Consider  for some small values of : 1, , , , 
,  when  is 1, , , , , , respectively. It looks like this is settling in around , which

turns out to be true (but the limit is not exactly ). Consider next : , , , , 
, , at the same values of . It turns out to be true that in the limit this is about .

Two examples don't establish a pattern, but if you do more examples you will find that the limit varies directly with the value of :
bigger , bigger limit; smaller , smaller limit. As we can already see, some of these limits will be less than 1 and some larger than
1. Somewhere between  and  the limit will be exactly 1; the value at which this happens is called , so that

As you might guess from our two examples,  is closer to 3 than to 2, and in fact .

Now we see that the function  has a truly remarkable property:

That is,  is its own derivative, or in other words the slope of  is the same as its height, or the same as its second coordinate:
The function  goes through the point  and has slope  there, no matter what  is. It is sometimes convenient to
express the function  without an exponent, since complicated exponents can be hard to read. In such cases we use , e.g., 

 instead of .

What about the logarithm function? This too is hard, but as the cosine function was easier to do once the sine was done, so the
logarithm is easier to do now that we know the derivative of the exponential function. Let's start with , which as you
probably know is often abbreviated  and called the "natural logarithm'' function.

d

dx
ax = lim

Δx→0

−ax+Δx ax

Δx

= lim
Δx→0

−axaΔx ax

Δx

= lim
Δx→0

ax
−1aΔx

Δx

= .ax lim
Δx→0

−1aΔx

Δx

(3.6.1)

Δx x

( −1)/ΔxlimΔx→0 aΔx ax

sinx/x = 1limx→0

( −1)/ΔxlimΔx→0 aΔx

( −1)/x2x x 0.828427124 0.756828460 0.724061864

0.70838051 0.70070877 x 1/2 1/4 1/8 1/16 1/32 0.7

0.7 ( −1)/x3x 2 1.464101616 1.264296052 1.177621520

1.13720773 1.11768854 x 1.1

a

a a

a = 2 a = 3 e

= 1.lim
Δx→0

−1eΔx

Δx
(3.6.2)

e e ≈ 2.718

ex

d

dx
ex = lim

Δx→0

−ex+Δx ex

Δx

= lim
Δx→0

−exeΔx ex

Δx

= lim
Δx→0

ex
−1eΔx

Δx

= ex lim
Δx→0

−1eΔx

Δx

= .ex

(3.6.3)

ex ex

f(x) = ex (z, )ez ez z

ex exp(x)

exp(1 + )x2 e1+x2

xloge
lnx
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Consider the relationship between the two functions, namely, that they are inverses, that one "undoes'' the other. Graphically this
means that they have the same graph except that one is "flipped'' or "reflected'' through the line , as shown in Figure .

Figure : The exponential (green) and logarithmic (blue) functions. As inverses of each other, their graphs are reflections of
each other across the line  (dashed).

This means that the slopes of these two functions are closely related as well: For example, the slope of  is  at ; at the
corresponding point on the  curve, the slope must be , because the "rise'' and the "run'' have been interchanged. Since the
slope of  is  at the point , the slope of  is  at the point .

Figure : The exponential (green) and logarithmic (blue) functions. The dashed lines indicate the slope of the respective
functions at the points  and . It is interesting to note that these lines intersect at the origin.

More generally, we know that the slope of  is  at the point , so the slope of  is  at , as indicated in
Figure . In other words, the slope of  is the reciprocal of the first coordinate at any point; this means that the slope of 
at  is . The upshot is:  We have discussed this from the point of view of the graphs, which is easy to
understand but is not normally considered a rigorous proof---it is too easy to be led astray by pictures that seem reasonable but that
miss some hard point. It is possible to do this derivation without resorting to pictures, and indeed we will see an alternate approach
soon.

Note that  is defined only for . It is sometimes useful to consider the function , a function defined for . When 
,  and

Thus whether  is positive or negative, the derivative is the same.

What about the functions  and ? We know that the derivative of  is some constant times  itself, but what constant?
Remember that "the logarithm is the exponent'' and you will see that . Then  and we can compute
the derivative using the chain rule:

The constant is simply . Likewise we can compute the derivative of the logarithm function . Since  we can take
the logarithm base  of both sides to get . Then

y = x 3.6.1

3.6.1

y = x

ex e x = 1

ln(x) 1/e

ex e (1, e) ln(x) 1/e (e, 1)

3.6.2

(1, e) (e, 1)

ex ez (z, )ez ln(x) 1/ez ( , z)ez

3.6.2 lnx lnx

(x, lnx) 1/x lnx = .d

dx

1
x

lnx x > 0 ln |x| x ≠ 0

x < 0 ln |x| = ln(−x)

ln |x| = ln(−x) = (−1) = .
d

dx

d

dx

1

−x

1

x
(3.6.4)

x

ax xloga ax ax

a = eln a = ( = ,ax eln a)x ex ln a

= ( = = (lna) = (lna) .
d

dx
ax

d

dx
eln a)x

d

dx
ex ln a ex ln a ax (3.6.5)

lna xloga x = eln x

a (x) = ( ) = lnx eloga loga eln x loga

x = e.
d

dx
loga

1

x
loga (3.6.6)
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This is a perfectly good answer, but we can improve it slightly. Since

we can replace  to get .

You may if you wish memorize the formulas

Because the "trick''  is often useful, and sometimes essential, it may be better to remember the trick, not the formula.

Compute the derivative of .

Solution

Compute the derivative of .

Compute the derivative of . At first this appears to be a new kind of function: it is not a constant power of , and it
does not seem to be an exponential function, since the base is not constant. But in fact it is no harder than the previous
example.

a

(a)loga

1

1

lna

= eln a

= ( ) = lna eloga eln a loga

= lna eloga

= e,loga

(3.6.7)

eloga x =d

dx
loga

1
x ln a

= (lna) and x = .
d

dx
ax ax

d

dx
loga

1

x lna
(3.6.8)

a = eln a

Example 3.6.1

f(x) = 2x

d

dx
2x = (

d

dx
eln 2)x

=
d

dx
ex ln 2

=( x ln2)
d

dx
ex ln 2

= (ln2) = ln2ex ln 2 2x

(3.6.9)

Example 3.6.2

f(x) = =2x
2

2( )x2

d

dx
2x

2

=
d

dx
e ln 2x2

=( ln2)
d

dx
x2 e ln 2x2

= (2 ln2)xe ln 2x2

= (2 ln2)x2x
2

(3.6.10)

Example 3.6.3

f(x) = xx x

d

dx
xx =

d

dx
ex ln x

=( x lnx)
d

dx
ex ln x

= (x +lnx)
1

x
xx

= (1 +lnx)xx

(3.6.11)
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Recall that we have not justified the power rule except when the exponent is a positive or negative integer. We can use the
exponential function to take care of other exponents.

Contributors

David Guichard (Whitman College)

Integrated by Justin Marshall.
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4.7: Derivatives of the Exponential and Logarithmic Functions by David Guichard is licensed CC BY-NC-SA 4.0.

Example 3.6.4

d

dx
xr =

d

dx
er ln x

=( r lnx)
d

dx
er ln x

= (r )
1

x
xr

= rxr−1

(3.6.12)
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3.7: Rates of Change in the Natural and Social Sciences

Determine a new value of a quantity from the old value and the amount of change.
Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
Predict the future population from the present value and the population growth rate.
Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of
change of a function. These applications include acceleration and velocity in physics, population growth rates in biology, and
marginal functions in economics.

Amount of Change Formula
One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at
some given point together with its rate of change at the given point. If  is a function defined on an interval , then the
amount of change of  over the interval is the change in the  values of the function over that interval and is given by

The average rate of change of the function  over that same interval is the ratio of the amount of change over that interval to the
corresponding change in the  values. It is given by

As we already know, the instantaneous rate of change of  at  is its derivative

For small enough values of , . We can then solve for  to get the amount of change formula:

We can use this formula if we know only and  and wish to estimate the value of . For example, we may use the
current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in Figure 

, we are approximating  by the  coordinate at a+h on the line tangent to  at . Observe that the accuracy of
this estimate depends on the value of  as well as the value of .

Figure : The new value of a changed quantity equals the original value plus the rate of change times the interval of change: 

 Learning Objectives

f(x) [a, a +h]

f(x) y

f(a +h) −f(a).

f

x

.
f(a +h) −f(a)

h

f(x) a

f '(a) = .lim
h→0

f(a +h) −f(a)

h

h f '(a) ≈
f(a+h)−f(a)

h
f(a +h)

f(a +h) ≈ f(a) +f '(a)h. (3.7.1)

f(a) f '(a) f(a +h)

3.7.1 f(a +h) y f(x) x = a

h f '(a)

3.7.1
f(a + h) ≈ f(a) + f'(a)h.
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If  and , estimate .

Solution

Begin by finding . We have  Thus,

Given  and , estimate .

Hint

Use the same process as in the preceding example.

Answer

Motion along a Line
Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we
take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce
the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Let  be a function giving the position of an object at time t.

The velocity of the object at time  is given by .
The speed of the object at time  is given by .
The acceleration of the object at  is given by .

A ball is dropped from a height of 64 feet. Its height above ground (in feet)  seconds later is given by .

a. What is the instantaneous velocity of the ball when it hits the ground?
b. What is the average velocity during its fall?

Solution

The first thing to do is determine how long it takes the ball to reach the ground. To do this, set . Solving 
, we get , so it takes 2 seconds for the ball to reach the ground.

 Example : Estimating the Value of a Function3.7.1

f(3) = 2 f '(3) = 5 f(3.2)

h h = 3.2 −3 = 0.2.

f(3.2) = f(3 +0.2) ≈ f(3) +(0.2)f '(3) = 2 +0.2(5) = 3.

 Exercise 3.7.1

f(10) = −5 f '(10) = 6 f(10.1)

−4.4

 Definition

s(t)

t v(t) = s'(t)

t |v(t)|

t a(t) = v'(t) = (t)s′′

 Example : Comparing Instantaneous Velocity and Average Velocity3.7.2

t s(t) = −16 +64t2

s(t) = 0

−16 +64 = 0t2 t = 2
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a. The instantaneous velocity of the ball as it strikes the ground is . Since , we obtain 
ft/s.

b. The average velocity of the ball during its fall is

 ft/s.

A particle moves along a coordinate axis in the positive direction to the right. Its position at time  is given by 
. Find  and  and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time ?
b. Is the particle speeding up or slowing down at time ?

Solution

Begin by finding  and .

 and .

Evaluating these functions at , we obtain  and .

a. Because , the particle is moving from right to left.
b. Because  and , velocity and acceleration are acting in opposite directions. In other words, the particle is

being accelerated in the direction opposite the direction in which it is traveling, causing  to decrease. The particle is
slowing down.

The position of a particle moving along a coordinate axis is given by 

a. Find .
b. At what time(s) is the particle at rest?
c. On what time intervals is the particle moving from left to right? From right to left?
d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution

a. The velocity is the derivative of the position function:

b. The particle is at rest when , so set . Factoring the left-hand side of the equation produces 
. Solving, we find that the particle is at rest at  and .

c. The particle is moving from left to right when  and from right to left when . Figure  gives the analysis
of the sign of  for , but it does not represent the axis along which the particle is moving.

Figure :The sign of  determines the direction of the particle.

Since  on , the particle is moving from left to right on these intervals.
Since  on , the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts moving  and at the
times that it changes direction . We have , , and . This means that the particle begins on
the coordinate axis at  and changes direction at  and  on the coordinate axis. The path of the particle is shown on a
coordinate axis in Figure .

v(2) v(t) = s'(t) = −32t v(t) = −64

= = = −32vave
s(2)−s(0)

2−0
0−64

2

 Example : Interpreting the Relationship between  and 3.7.3 v(t) a(t)

t

s(t) = −4t +2t3 v(1) a(1)

t = 1

t = 1

v(t) a(t)

v(t) = (t) = 3 −4s′ t2 a(t) = v'(t) = (t) = 6ts′′

t = 1 v(1) = −1 a(1) = 6

v(1) < 0

v(1) < 0 a(1) > 0

|v(t)|

 Example : Position and Velocity3.7.4

s(t) = −9 +24t +4, t ≥ 0.t3 t2

v(t)

v(t) = s'(t) = 3 −18t +24.t2

v(t) = 0 3 −18t +24 = 0t2

3(t −2)(t −4) = 0 t = 2 t = 4

v(t) > 0 v(t) < 0 3.7.2

v(t) t ≥ 0

3.7.2 v(t)

3 −18t +24 > 0t2 [0, 2) ∪ (4, +∞)

3 −18t +24 < 0t2 (2, 4)

(t = 0)

(t = 2, 4) s(0) = 4 s(2) = 24 s(4) = 20

4 24 20

3.7.3
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Figure : The path of the particle can be determined by analyzing .

A particle moves along a coordinate axis. Its position at time  is given by . Is the particle moving from
right to left or from left to right at time ?

Hint

Find  and look at the sign.

Answer

left to right

Population Change

In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of populations,
including those as diverse as bacteria colonies and cities. We can use a current population, together with a growth rate, to estimate
the size of a population in the future. The population growth rate is the rate of change of a population and consequently can be
represented by the derivative of the size of the population.

If  is the number of entities present in a population, then the population growth rate of  is defined to be .

The population of a city is tripling every 5 years. If its current population is 10,000, what will be its approximate population 2
years from now?

Solution

Let  be the population (in thousands)  years from now. Thus, we know that  and based on the information, we
anticipate . Now estimate , the current growth rate, using

.

By applying Equation  to , we can estimate the population 2 years from now by writing

;

thus, in 2 years the population will be 18,000.

The current population of a mosquito colony is known to be 3,000; that is, . If , estimate the size of
the population in 3 days, where  is measured in days.

Hint

Use 

Answer

3,300

3.7.3 v(t)

 Exercise 3.7.2

t s(t) = −5t +1t2

t = 3

v(3)

 Definition

P (t) P (t) P '(t)

 Example : Estimating a Population3.7.5

P (t) t P (0) = 10

P (5) = 30 P '(0)

P '(0) ≈ = = 4
P(5)−P(0)

5−0
30−10

5

3.7.1 P (t)

P (2) ≈ P (0) +(2)P '(0) ≈ 10 +2(4) = 18

 Exercise 3.7.3

P (0) = 3, 000 P '(0) = 100

t

P (3) ≈ P (0) +3P '(0)
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Changes in Cost and Revenue
In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost, revenue,
and profit. The concept of a marginal function is common in the fields of business and economics and implies the use of
derivatives. The marginal cost is the derivative of the cost function. The marginal revenue is the derivative of the revenue function.
The marginal profit is the derivative of the profit function, which is based on the cost function and the revenue function.

If  is the cost of producing  items, then the marginal cost  is .
If  is the revenue obtained from selling  items, then the marginal revenue  is .
If  is the profit obtained from selling  items, then the marginal profit  is defined to be 

.

We can roughly approximate

by choosing an appropriate value for . Since  represents objects, a reasonable and small value for  is 1. Thus, by substituting 
, we get the approximation . Consequently,  for a given value of  can be

thought of as the change in cost associated with producing one additional item. In a similar way,  approximates
the revenue obtained by selling one additional item, and  approximates the profit obtained by producing and
selling one additional item.

Assume that the number of barbeque dinners that can be sold, , can be related to the price charged, , by the equation 
.

In this case, the revenue in dollars obtained by selling  barbeque dinners is given by

.

Use the marginal revenue function to estimate the revenue obtained from selling the  barbeque dinner. Compare this to
the actual revenue obtained from the sale of this dinner.

Solution

First, find the marginal revenue function: 

Next, use  to approximate , the revenue obtained from the sale of the  dinner. Since 
, the revenue obtained from the sale of the  dinner is approximately $3.

The actual revenue obtained from the sale of the  dinner is

 or 

The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.

Suppose that the profit obtained from the sale of  fish-fry dinners is given by . Use the marginal
profit function to estimate the profit from the sale of the  fish-fry dinner.

Hint

Use  to approximate .

Answer

$2

 Definition

C(x) x MC(x) MC(x) = C'(x)

R(x) x MR(x) MR(x) = R'(x)

P (x) = R(x) −C(x) x MP (x)

MP (x) = P '(x) = MR(x) −MC(x) = R'(x) −C'(x)

MC(x) = C'(x) = lim
h→0

C(x +h) −C(x)

h

h x h

h = 1 MC(x) = C'(x) ≈ C(x +1) −C(x) C'(x) x

MR(x) = R'(x)

MP (x) = P '(x)

 Example : Applying Marginal Revenue3.7.6

x p

p(x) = 9 −0.03x, 0 ≤ x ≤ 300

x

R(x) = xp(x) = x(9 −0.03x) = −0.03 +9x  for 0 ≤ x ≤ 300x2

101st

MR(x) = R'(x) = −0.06x +9.

R'(100) R(101) −R(100) 101st

R'(100) = 3 101st

101st

R(101) −R(100) = 602.97 −600 = 2.97, $2.97.

 Exercise 3.7.4

x P (x) = −0.03 +8x −50x2

101st

P '(100) P (101) −P (100)
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Key Concepts
Using , it is possible to estimate  given  and .
The rate of change of position is velocity, and the rate of change of velocity is acceleration. Speed is the absolute value, or
magnitude, of velocity.
The population growth rate and the present population can be used to predict the size of a future population.
Marginal cost, marginal revenue, and marginal profit functions can be used to predict, respectively, the cost of producing one
more item, the revenue obtained by selling one more item, and the profit obtained by producing and selling one more item.

Glossary

acceleration
is the rate of change of the velocity, that is, the derivative of velocity

amount of change
the amount of a function  over an interval 

average rate of change

is a function  over an interval  is 

marginal cost
is the derivative of the cost function, or the approximate cost of producing one more item

marginal revenue
is the derivative of the revenue function, or the approximate revenue obtained by selling one more item

marginal profit
is the derivative of the profit function, or the approximate profit obtained by producing and selling one more item

population growth rate
is the derivative of the population with respect to time

speed
is the absolute value of velocity, that is,  is the speed of an object at time  whose velocity is given by 

3.7: Rates of Change in the Natural and Social Sciences is shared under a not declared license and was authored, remixed, and/or curated by
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3.9: Related Rates
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3.10: Linear Approximations and Differentials

Describe the linear approximation to a function at a point.
Write the linearization of a given function.
Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine
another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest
functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in
this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials
Introduction to Power Series and Functions.

Linear Approximation of a Function at a Point
Consider a function  that is differentiable at a point . Recall that the tangent line to the graph of  at  is given by the
equation

For example, consider the function  at . Since  is differentiable at  and , we see that 
. Therefore, the tangent line to the graph of  at  is given by the equation

Figure  shows a graph of  along with the tangent line to  at . Note that for  near , the graph of the
tangent line is close to the graph of . As a result, we can use the equation of the tangent line to approximate  for  near . For
example, if , the  value of the corresponding point on the tangent line is

The actual value of  is given by

Therefore, the tangent line gives us a fairly good approximation of  (Figure ). However, note that for values of  far
from , the equation of the tangent line does not give us a good approximation. For example, if , the -value of the
corresponding point on the tangent line is

whereas the value of the function at  is 

 Learning Objectives

f x = a f a

y = f(a) + (a)(x−a).f ′

f(x) = 1
x a = 2 f x = 2 (x) = −f ′ 1

x2

(2) = −f ′ 1
4

f a = 2

y = − (x−2).
1

2

1

4

3.10.1a f(x) = 1
x f x = 2 x 2

f f(x) x 2
x = 2.1 y

y = − (2.1 −2) = 0.475.
1

2

1

4

f(2.1)

f(2.1) = ≈ 0.47619.
1

2.1

f(2.1) 3.10.1b x

2 x = 10 y

y = − (10 −2) = −2 = −1.5,
1

2

1

4

1

2

x = 10 f(10) = 0.1.

https://libretexts.org/
https://math.libretexts.org/@go/page/4449?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/03%3A_Differentiation_Rules/3.10%3A_Linear_Approximations_and_Differentials


3.10.2 https://math.libretexts.org/@go/page/4449

Figure : (a) The tangent line to  at  provides a good approximation to  for  near . (b) At , the
value of  on the tangent line to  is . The actual value of  is , which is approximately .

In general, for a differentiable function , the equation of the tangent line to  at  can be used to approximate  for  near
. Therefore, we can write

 for  near .

We call the linear function

the linear approximation, or tangent line approximation, of  at . This function  is also known as the linearization of 
at 

To show how useful the linear approximation can be, we look at how to find the linear approximation for  at 

Find the linear approximation of  at  and use the approximation to estimate .

Solution

Since we are looking for the linear approximation at  using Equation  we know the linear approximation is given
by

We need to find  and 

Therefore, the linear approximation is given by Figure .

Using the linear approximation, we can estimate  by writing

3.10.1 f(x) = 1/x x = 2 f x 2 x = 2.1
y f(x) = 1/x 0.475 f(2.1) 1/2.1 0.47619

f f x = a f(x) x

a

f(x) ≈ f(a) + (a)(x−a)f ′ x a

L(x) = f(a) + (a)(x−a)f ′ (3.10.1)

f x = a L f

x = a.

f(x) = x
−−

√ x = 9.

 Example : Linear Approximation of 3.10.1 x−−√

f(x) = x−−√ x = 9 9.1
−−−

√

x = 9, 3.10.1

L(x) = f(9) + (9)(x−9).f ′

f(9) (9).f ′

f(x) = ⇒ f(9) = = 3x−−√ 9
–

√

(x) = ⇒ (9) = =f ′ 1
2 x√

f ′ 1
2 9√

1
6

3.10.2

L(x) = 3 + (x−9)
1

6

9.1
−−−

√

= f(9.1) ≈ L(9.1) = 3 + (9.1 −9) ≈ 3.0167.9.1
−−−

√
1

6
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Figure : The local linear approximation to  at  provides an approximation to  for  near .

Analysis

Using a calculator, the value of  to four decimal places is . The value given by the linear approximation, , is
very close to the value obtained with a calculator, so it appears that using this linear approximation is a good way to estimate 

, at least for x near . At the same time, it may seem odd to use a linear approximation when we can just push a few buttons
on a calculator to evaluate . However, how does the calculator evaluate ? The calculator uses an approximation! In
fact, calculators and computers use approximations all the time to evaluate mathematical expressions; they just use higher-
degree approximations.

Find the local linear approximation to  at . Use it to approximate  to five decimal places.

Hint

Answer

 

Find the linear approximation of  at  and use it to approximate 

Solution

First we note that since  rad is equivalent to , using the linear approximation at  seems reasonable. The linear
approximation is given by

We see that

Therefore, the linear approximation of  at  is given by Figure .

To estimate  using , we must first convert  to radians. We have  radians, so the estimate for 
is given by

3.10.2 f(x) = x−−√ x = 9 f x 9

9.1
−−−

√ 3.0166 3.0167

x−−√ 9
9.1
−−−

√ 9.1
−−−

√

 Exercise 3.10.1

f(x) = x−−√3 x = 8 8.1
−−−

√3

L(x) = f(a) + (a)(x−a)f ′

L(x) = 2 + (x−8);1
12

2.00833

 Example : Linear Approximation of 3.10.2 sin x

f(x) = sinx x = π
3

sin(62°).

π

3
60° x = π/3

L(x) = f( ) + ( )(x− ).π
3

f ′ π
3

π
3

f(x) = sinx ⇒ f( ) = sin( ) =π

3
π

3
3√

2

(x) = cosx ⇒ ( ) = cos( ) =f ′ f ′ π

3
π

3
1
2

f x = π/3 3.10.3

L(x) = + (x− )
3√

2
1
2

π
3

sin(62°) L 62° 62° = 62π
180

sin(62°)

sin(62°) = f( ) ≈ L( ) = + ( − ) = + ( ) = + ≈ 0.88348.62π
180

62π
180

3√

2
1
2

62π
180

π

3

3√

2
1
2

2π
180

3√

2
π

180

https://libretexts.org/
https://math.libretexts.org/@go/page/4449?pdf


3.10.4 https://math.libretexts.org/@go/page/4449

Figure : The linear approximation to  at  provides an approximation to  for  near 

Find the linear approximation for  at 

Hint

Answer

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation for 
 at , which can be used to estimate roots and powers for real numbers near . The same idea can be

extended to a function of the form  to estimate roots and powers near a different number .

Find the linear approximation of  at . Use this approximation to estimate 

Solution

The linear approximation at  is given by

Because

the linear approximation is given by Figure .

We can approximate  by evaluating  when . We conclude that

3.10.3 f(x) = sin x x = π/3 sin x x π/3.

 Exercise 3.10.2

f(x) = cosx x = .π

2

L(x) = f(a) + (a)(x−a)f ′

L(x) = −x+ π

2

f(x) = (1 +x)n x = 0 1
f(x) = (m+x)n m

 Example : Approximating Roots and Powers3.10.3

f(x) = (1 +x)n x = 0 (1.01 .)3

x = 0

L(x) = f(0) + (0)(x−0).f ′

f(x) = (1 +x ⇒ f(0) = 1)n

(x) = n(1 +x ⇒ (0) = n,f ′ )n−1 f ′

3.10.4a

L(x) = 1 +n(x−0) = 1 +nx

(1.01)3 L(0.01) n = 3

(1.01 = f(1.01) ≈ L(1.01) = 1 +3(0.01) = 1.03.)3
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Figure : (a) The linear approximation of  at  is . (b) The actual value of  is . The linear
approximation of  at  estimates  to be .

Find the linear approximation of  at  without using the result from the preceding example.

Hint

Answer

Differentials
We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the amount a
function value changes as a result of a small change in the input. To discuss this more formally, we define a related concept:
differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input
values.

When we first looked at derivatives, we used the Leibniz notation  to represent the derivative of  with respect to .
Although we used the expressions  and  in this notation, they did not have meaning on their own. Here we see a meaning to
the expressions  and . Suppose  is a differentiable function. Let  be an independent variable that can be assigned
any nonzero real number, and define the dependent variable  by

It is important to notice that  is a function of both  and . The expressions  and  are called differentials. We can divide
both sides of Equation  by  which yields

This is the familiar expression we have used to denote a derivative. Equation  is known as the differential form of Equation 
.

For each of the following functions, find  and evaluate when  and 

a. 
b. 

Solution

3.10.4 f(x) x = 0 L(x) 1.013 1.030301
f(x) x = 0 1.013 1.03

 Exercise 3.10.3

f(x) = (1 +x)4 x = 0

(x) = 4(1 +xf ′ )3

L(x) = 1 +4x

dy/dx y x

dy dx

dy dx y = f(x) dx

dy

dy = (x)dx.f ′ (3.10.2)

dy x dx dy dx

3.10.2 dx,

= (x).
dy

dx
f ′ (3.10.3)

3.10.3
3.10.2

 Example : Computing Differentials3.10.4

dy x = 3 dx = 0.1.

y = +2xx2

y = cosx

https://libretexts.org/
https://math.libretexts.org/@go/page/4449?pdf


3.10.6 https://math.libretexts.org/@go/page/4449

The key step is calculating the derivative. When we have that, we can obtain  directly.

a. Since  we know , and therefore

When  and 

b. Since  This gives us

When  and 

For , find .

Hint

Answer

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a function
resulting from a small change in input values. Consider a function  that is differentiable at point . Suppose the input  changes
by a small amount. We are interested in how much the output  changes. If  changes from  to , then the change in  is 
(also denoted ), and the change in  is given by

Instead of calculating the exact change in , however, it is often easier to approximate the change in  by using a linear
approximation. For  near  can be approximated by the linear approximation (Equation )

Therefore, if  is small,

That is,

In other words, the actual change in the function  if  increases from  to  is approximately the difference between 
 and , where  is the linear approximation of  at . By definition of , this difference is equal to .

In summary,

Therefore, we can use the differential  to approximate the change in  if  increases from  to . We
can see this in the following graph.

dy

f(x) = +2x,x2 (x) = 2x+2f ′

dy = (2x+2)dx.

x = 3 dx = 0.1,

dy = (2 ⋅ 3 +2)(0.1) = 0.8.

f(x) = cosx, (x) = −sin(x).f ′

dy = −sinx dx.

x = 3 dx = 0.1,

dy = −sin(3)(0.1) = −0.1 sin(3).

 Exercise 3.10.4

y = ex
2

dy

dy = (x)dxf ′

dy = 2x dxex
2

f a x

y x a a+dx x dx

Δx y

Δy = f(a+dx) −f(a).

y y

x a, f(x) 3.10.1

L(x) = f(a) + (a)(x−a).f ′

dx

f(a+dx) ≈ L(a+dx) = f(a) + (a)(a+dx−a).f ′

f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx.f ′

f x a a+dx

L(a+dx) f(a) L(x) f a L(x) (a)dxf ′

Δy = f(a+dx) −f(a) ≈ L(a+dx) −f(a) = (a)dx = dy.f ′

dy = (a)dxf ′ y x x = a x = a+dx
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Figure : The differential  is used to approximate the actual change in  if  increases from  to .

We now take a look at how to use differentials to approximate the change in the value of the function that results from a small
change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values of functions
and the result is very close to what we would obtain with the more exact calculation.

Let  Compute  and  at  if 

Solution

The actual change in  if  changes from  to  is given by

The approximate change in  is given by . Since  we have

For  find  and  at  if 

Hint

Answer

Calculating the Amount of Error
Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based on
measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the measurement of
the radius leads to an error in the computed value of the area. Here we examine this type of error and study how differentials can be
used to estimate the error.

Consider a function  with an input that is a measured quantity. Suppose the exact value of the measured quantity is , but the
measured value is . We say the measurement error is  (or ). As a result, an error occurs in the calculated quantity 

. This type of error is known as a propagated error and is given by

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we cannot
calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use differentials to
approximate the propagated error  Specifically, if  is a differentiable function at ,the propagated error is

3.10.5 dy = (a) dxf ′ y x a a+dx

 Example : Approximating Change with Differentials3.10.5

y = +2x.x2 Δy dy x = 3 dx = 0.1.

y x x = 3 x = 3.1

Δy = f(3.1) −f(3) = [(3.1 +2(3.1)] −[ +2(3)] = 0.81.)2 32

y dy = (3)dxf ′ (x) = 2x+2,f ′

dy = (3)dx = (2(3) +2)(0.1) = 0.8.f ′

 Exercise 3.10.5

y = +2x,x2 Δy dy x = 3 dx = 0.2.

dy = (3)dx, Δy = f(3.2) −f(3)f ′

dy = 1.6, Δy = 1.64

f a

a+dx dx Δx

f(x)

Δy = f(a+dx) −f(a).

Δy. f a

Δy ≈ dy = (a)dx.f ′

https://libretexts.org/
https://math.libretexts.org/@go/page/4449?pdf


3.10.8 https://math.libretexts.org/@go/page/4449

Unfortunately, we do not know the exact value  However, we can use the measured value  and estimate

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we assume
the measurement of the side length is made with a certain amount of accuracy.

Suppose the side length of a cube is measured to be  cm with an accuracy of  cm.

a. Use differentials to estimate the error in the computed volume of the cube.
b. Compute the volume of the cube if the side length is (i)  cm and (ii)  cm to compare the estimated error with the

actual potential error.

Solution

a. The measurement of the side length is accurate to within  cm. Therefore,

The volume of a cube is given by , which leads to

Using the measured side length of  cm, we can estimate that

Therefore,

b. If the side length is actually  cm, then the volume of the cube is

If the side length is actually  cm, then the volume of the cube is

Therefore, the actual volume of the cube is between  and . Since the side length is measured to be 5 cm,
the computed volume is  Therefore, the error in the computed volume is

That is,

We see the estimated error  is relatively close to the actual potential error in the computed volume.

Estimate the error in the computed volume of a cube if the side length is measured to be  cm with an accuracy of  cm.

Hint

Answer

The volume measurement is accurate to within .

The measurement error  and the propagated error  are absolute errors. We are typically interested in the size of an
error relative to the size of the quantity being measured or calculated. Given an absolute error  for a particular quantity, we
define the relative error as , where  is the actual value of the quantity. The percentage error is the relative error expressed as

a. a+dx,

Δy ≈ dy ≈ (a+dx)dx.f ′

 Example : Volume of a Cube3.10.6

5 0.1

4.9 5.1

±0.1

−0.1 ≤ dx ≤ 0.1.

V = x3

dV = 3 dx.x2

5

−3(5 (0.1) ≤ dV ≤ 3(5 (0.1).)2 )2

−7.5 ≤ dV ≤ 7.5.

4.9

V (4.9) = (4.9 = 117.649 .)3 cm3

5.1

V (5.1) = (5.1 = 132.651 .)3 cm3

117.649 132.651

V (5) = = 125.53

117.649 −125 ≤ ΔV ≤ 132.651 −125.

−7.351 ≤ ΔV ≤ 7.651.

dV

 Exercise 3.10.6

6 0.2

dV = 3 dxx2

21.6 cm3

dx (= Δx) Δy

Δq
Δq

q
q
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a percentage. For example, if we measure the height of a ladder to be  in. when the actual height is  in., the absolute error is 1
in. but the relative error is , or . By comparison, if we measure the width of a piece of cardboard to be  in.
when the actual width is  in., our absolute error is  in., whereas the relative error is , or  Therefore, the
percentage error in the measurement of the cardboard is larger, even though  in. is less than  in.

An astronaut using a camera measures the radius of Earth as  mi with an error of  mi. Let’s use differentials to
estimate the relative and percentage error of using this radius measurement to calculate the volume of Earth, assuming the
planet is a perfect sphere.

Solution: If the measurement of the radius is accurate to within  we have

Since the volume of a sphere is given by  we have

Using the measured radius of  mi, we can estimate

To estimate the relative error, consider . Since we do not know the exact value of the volume , use the measured radius 

 mi to estimate . We obtain . Therefore the relative error satisfies

which simplifies to

The relative error is  and the percentage error is .

Determine the percentage error if the radius of Earth is measured to be  mi with an error of  mi.

Hint

Use the fact that  to find .

Answer

Key Concepts
A differentiable function  can be approximated at  by the linear function

For a function , if  changes from  to , then

is an approximation for the change in . The actual change in  is

A measurement error  can lead to an error in a calculated quantity . The error in the calculated quantity is known as the
propagated error. The propagated error can be estimated by

63 62
= 0.0161

62
1.6% 8.25

8 1
4

=0.25
8

1
32

3.1%.

0.25 1

 Example : Relative and Percentage Error3.10.7

4000 ±80

±80,

−80 ≤ dr ≤ 80.

V = ( )π ,4
3

r3

dV = 4π dr.r2

4000

−4π(4000 (80) ≤ dV ≤ 4π(4000 (80).)2 )2

dV

V
V

r = 4000 V V ≈ ( )π(40004
3

)3

≤ ≤ ,
−4π(4000 (80))2

4π(4000 /3)3

dV

V

4π(4000 (80))2

4π(4000 /3)3

−0.06 ≤ ≤ 0.06.
dV

V

0.06 6%

 Exercise 3.10.7

3950 ±100

dV = 4π drr2 dV /V

7.6%

y = f(x) a

L(x) = f(a) + (a)(x−a).f ′

y = f(x) x a a+dx

dy = (x)dxf ′

y y

Δy = f(a+dx) −f(a).

dx f(x)

dy ≈ (x)dx.f ′
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To estimate the relative error of a particular quantity , we estimate .

Key Equations
Linear approximation

A differential

Glossary

differential
the differential  is an independent variable that can be assigned any nonzero real number; the differential  is defined to be 

differential form
given a differentiable function  the equation  is the differential form of the derivative of  with
respect to 

linear approximation
the linear function  is the linear approximation of  at 

percentage error
the relative error expressed as a percentage

propagated error
the error that results in a calculated quantity  resulting from a measurement error 

relative error

given an absolute error  for a particular quantity,  is the relative error.

tangent line approximation (linearization)
since the linear approximation of  at  is defined using the equation of the tangent line, the linear approximation of  at 

 is also known as the tangent line approximation to  at 

3.10: Linear Approximations and Differentials is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.2: Linear Approximations and Differentials by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

q
Δq

q

L(x) = f(a) + (a)(x−a)f ′

dy = (x)dxf ′

dx dy

dy = (x)dxf ′

y = (x),f ′ dy = (x)dxf ′ y

x

L(x) = f(a) + (a)(x−a)f ′ f x = a

f(x) dx

Δq
Δq

q

f x = a f

x = a f x = a
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3.11: Hyperbolic Functions
The hyperbolic functions appear with some frequency in applications, and are quite similar in many respects to the trigonometric
functions. This is a bit surprising given our initial definitions.

The hyperbolic cosine is the function

and the hyperbolic sine is the function

Notice that  is even (that is, ) while  is odd ( ), and .
Also, for all , , while  if and only if , which is true precisely when .

The range of  is .

Let . We solve for :

From the last equation, we see , and since , it follows that .

Now suppose , so . Then  is a real number, and , so  is in the range
of .

The other hyperbolic functions are

Definition 4.11.1: Hyperbolic Cosines and Sines

coshx = ,
+ex e−x

2
(3.11.1)

sinhx = .
−ex e−x

2
(3.11.2)

cosh cosh(−x) = cosh(x) sinh sinh(−x) = −sinh(x) coshx+sinhx = ex

x coshx > 0 sinhx = 0 − = 0ex e−x x = 0

Lemma 4.11.2

coshx [1, ∞)

Proof

y = coshx x

y

2y

2yex

0

e
x

e
x

=
+ex e−x

2

= +e
x

e
−x

= +1e
2x

= −2y +1e
2x

e
x

=
2y± 4 −4y2− −−−−−

√

2

= y± −1y
2

− −−−−
√

(3.11.3)

≥ 1y2 y ≥ 0 y ≥ 1

y ≥ 1 y± > 0−1y2− −−−−√ x = ln(y± )−1y2− −−−−√ y = coshx y

cosh(x)

□

Definition 4.11.3: Hyperbolic Tangent and Cotangent

tanhx

cothx

sechx

cschx

=
sinhx

coshx

=
coshx

sinhx

=
1

coshx

=
1

sinhx

(3.11.4)
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The domain of  and  is  while the domain of the other hyperbolic functions is all real numbers. Graphs are
shown in Figure 

Figure : The hyperbolic functions.

Certainly the hyperbolic functions do not closely resemble the trigonometric functions graphically. But they do have analogous
properties, beginning with the following identity.

For all  in , .

The proof is a straightforward computation:

This immediately gives two additional identities:

The identity of the theorem also helps to provide a geometric motivation. Recall that the graph of  is a hyperbola with
asymptotes  whose -intercepts are . If  is a point on the right half of the hyperbola, and if we let , then 

. So for some suitable ,  and  are the coordinates of a typical point on
the hyperbola. In fact, it turns out that  is twice the area shown in the first graph of Figure . Even this is analogous to
trigonometry;  and  are the coordinates of a typical point on the unit circle, and  is twice the area shown in the second
graph of Figure .

Figure : Geometric definitions of sin, cos, sinh, cosh:  is twice the shaded area in each figure.

Given the definitions of the hyperbolic functions, finding their derivatives is straightforward. Here again we see similarities to the
trigonometric functions.

coth csch x ≠ 0
3.11.1

3.11.1

Theorem 4.11.4

x R x− x = 1cosh2 sinh2

Proof

x− x = − = = = 1.cosh2 sinh2 ( +ex e−x)2

4

( −ex e−x)2

4

+2 + − +2 −e2x e−2x e2x e−2x

4

4

4
(3.11.5)

□

1 − x = x and x−1 = x.tanh2 sech2 coth2 csch2 (3.11.6)

− = 1x2 y2

x = ±y x ±1 (x, y) x = cosh t

y = ± = ± = ±sinh t−1x2
− −−−−

√ x−1cosh2− −−−−−−−−√ t cosh t sinh t
t 3.11.2

cos t sin t t

3.11.2

3.11.2 t
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 and \thmrdef{thm:hyperbolic derivatives} .

and

Since ,  is increasing and hence injective, so  has an inverse, . Also,  when , so 
 is injective on  and has a (partial) inverse, . The other hyperbolic functions have inverses as well, though 

 is only a partial inverse. We may compute the derivatives of these functions as we have other inverse functions.

.

Let , so . Then

and so

The other derivatives are left to the exercises.

Contributors
David Guichard (Whitman College)

Integrated by Justin Marshall.

3.11: Hyperbolic Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.11: Hyperbolic Functions by David Guichard is licensed CC BY-NC-SA 4.0.

Theorem 4.11.5

coshx = sinhxd

dx
sinhx = coshxd

dx

Proof

coshx = = = sinhx,
d

dx

d

dx

+ex e−x

2

−ex e−x

2
(3.11.7)

sinhx = = = coshx.
d

dx

d

dx

−ex e−x

2

+ex e−x

2
(3.11.8)

□

coshx > 0 sinhx sinhx arcsinhx sinhx > 0 x > 0
coshx [0, ∞) arccoshx
arcsechx

Theorem 4.11.6

arcsinhx =d

dx

1

1+x2√

Proof

y = arcsinhx sinhy = x

sinhy = cosh(y) ⋅ = 1,
d

dx
y′ (3.11.9)

= = = .y
′ 1

coshy

1

1 + ysinh2
− −−−−−−−−

√

1

1 +x2
− −−−−

√
(3.11.10)

□
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4.1: Maximum and Minimum Values

Define absolute extrema.
Define local extrema.
Explain how to find the critical points of a function over a closed interval.
Describe how to use critical points to locate absolute extrema over a closed interval.

Given a particular function, we are often interested in determining the largest and smallest values of the function. This information
is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance,
because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material
used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use
derivatives to find the largest and smallest values for a function.

Absolute Extrema
Consider the function  over the interval . As . Therefore, the function does not have
a largest value. However, since  for all real numbers  and  when , the function has a smallest value, 

, when . We say that  is the absolute minimum of  and it occurs at . We say that  does
not have an absolute maximum (Figure ).

Figure : The given function has an absolute minimum of  at . The function does not have an absolute maximum.

Let  be a function defined over an interval  and let . We say  has an absolute maximum on  at  if  for
all . We say  has an absolute minimum on  at  if  for all . If  has an absolute maximum on  at  or
an absolute minimum on  at , we say  has an absolute extremum on  at .

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute here does not refer to absolute
value. An absolute extremum may be positive, negative, or zero. Second, if a function  has an absolute extremum over an interval 

 at , the absolute extremum is . The real number  is a point in the domain at which the absolute extremum occurs. For
example, consider the function  over the interval . Since

for all real numbers , we say  has an absolute maximum over  at . The absolute maximum is . It occurs
at , as shown in Figure (b).

A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure  shows
several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the
Extreme Value Theorem, guarantees that a continuous function  over a closed, bounded interval  has both an absolute
maximum and an absolute minimum.

 Learning Objectives

f(x) = +1x2 (−∞, ∞) x → ±∞, f(x) → ∞

+1 ≥ 1x2 x +1 = 1x2 x = 0

1 x = 0 1 f(x) = +1x2 x = 0 f(x) = +1x2
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Figure : Graphs (a), (b), and (c) show several possibilities for absolute extrema for functions with a domain of 
Graphs (d), (e), and (f) show several possibilities for absolute extrema for functions with a domain that is a bounded interval.

If  is a continuous function over the closed, bounded interval , then there is a point in  at which  has an absolute
maximum over  and there is a point in  at which  has an absolute minimum over .

The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There
are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be
continuous over a closed, bounded interval. If the interval  is open or the function has even one point of discontinuity, the function
may not have an absolute maximum or absolute minimum over . For example, consider the functions shown in Figure  (d),
(e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that
has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the
functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the
function in graph (d) is defined over the closed interval , the function is discontinuous at . The function has an absolute
maximum over  but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval 

, but is not defined at , and therefore is not continuous over a closed, bounded interval. The function has an absolute
minimum over , but does not have an absolute maximum over . These two graphs illustrate why a function over a
bounded interval may fail to have an absolute maximum and/or absolute minimum.

4.1.2 (−∞, ∞).

 Theorem : Extreme Value Theorem4.1.1

f [a, b] [a, b] f

[a, b] [a, b] f [a, b]
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Before looking at how to find absolute extrema, let’s examine the related concept of local extrema. This idea is useful in
determining where absolute extrema occur.

Local Extrema and Critical Points
Consider the function  shown in Figure . The graph can be described as two mountains with a valley in the middle. The
absolute maximum value of the function occurs at the higher peak, at . However,  is also a point of interest. Although 

 is not the largest value of , the value  is larger than  for all  near 0. We say  has a local maximum at .
Similarly, the function  does not have an absolute minimum, but it does have a local minimum at  because  is less than 

 for  near 1.

Figure : This function  has two local maxima and one local minimum. The local maximum at  is also the absolute
maximum.

A function  has a local maximum at  if there exists an open interval  containing  such that  is contained in the domain of 
 and  for all . A function  has a local minimum at  if there exists an open interval  containing  such that
 is contained in the domain of  and  for all . A function  has a local extremum at  if  has a local

maximum at  or  has a local minimum at .

Note that if  has an absolute extremum at  and  is defined over an interval containing , then  is also considered a local
extremum. If an absolute extremum for a function  occurs at an endpoint, we do not consider that to be a local extremum, but
instead refer to that as an endpoint extremum.

Given the graph of a function , it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not
always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small
scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where
these extrema occur?

To answer this question, let’s look at Figure  again. The local extrema occur at  and  Notice that at 
and , the derivative . At , the derivative  does not exist, since the function  has a corner there. In fact,
if  has a local extremum at a point , the derivative  must satisfy one of the following conditions: either  or 

 is undefined. Such a value  is known as a critical point and it is important in finding extreme values for functions.

Let  be an interior point in the domain of . We say that  is a critical point of  if  or  is undefined.

As mentioned earlier, if  has a local extremum at a point , then  must be a critical point of . This fact is known as
Fermat’s theorem.

f 4.1.3

x = 2 x = 0

f(0) f f(0) f(x) x f x = 0

f x = 1 f(1)

f(x) x

4.1.3 f x = 2

 Definition: Local Extrema

f c I c I

f f(c) ≥ f(x) x ∈ I f c I c

I f f(c) ≤ f(x) x ∈ I f c f

c f c

f c f c f(c)

f

f
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If  has a local extremum at  and  is differentiable at , then 

Suppose  has a local extremum at  and  is differentiable at . We need to show that . To do this, we will show that
 and , and therefore . Since  has a local extremum at ,  has a local maximum or local

minimum at . Suppose  has a local maximum at . The case in which  has a local minimum at  can be handled similarly.
There then exists an open interval I such that  for all . Since  is differentiable at , from the definition of the
derivative, we know that

Since this limit exists, both one-sided limits also exist and equal . Therefore,

and

Since  is a local maximum, we see that  for  near . Therefore, for  near , but , we have 
. From Equation  we conclude that . Similarly, it can be shown that  Therefore, 

□

From Fermat’s theorem, we conclude that if  has a local extremum at , then either  or  is undefined. In other
words, local extrema can only occur at critical points.

Note this theorem does not claim that a function  must have a local extremum at a critical point. Rather, it states that critical
points are candidates for local extrema. For example, consider the function . We have  when .
Therefore,  is a critical point. However,  is increasing over , and thus  does not have a local extremum
at . In Figure , we see several different possibilities for critical points. In some of these cases, the functions have local
extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the
behavior of a function at a critical point.

 Theorem : Fermat’s Theorem4.1.2
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Figure : (a–e) A function  has a critical point at  if  or  is undefined. A function may or may not have a local
extremum at a critical point.

Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical
point. For now, let’s turn our attention to finding critical points. We will use graphical observations to determine whether a critical
point is associated with a local extremum.

For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local
extremum at each of the critical points.

a. 
b. 
c. 

Solution

a. The derivative  is defined for all real numbers . Therefore, we only need to find the values for 
where . Since , the critical points are  and  From the graph of 
in Figure , we see that  has a local maximum at  and a local minimum at .

Figure : This function has a local maximum and a local minimum.

b. Using the chain rule, we see the derivative is

Therefore,  has critical points when  and when . We conclude that the critical points are . From
the graph of  in Figure , we see that  has a local (and absolute) minimum at , but does not have a local extremum

4.1.4 f c (c) = 0f ′ (c)f ′

 Example : Locating Critical Points4.1.1
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x3 5
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at  or .

Figure : This function has three critical points: , , and . The function has a local (and absolute)
minimum at , but does not have extrema at the other two critical points.

c. By the quotient rule, we see that the derivative is

.

The derivative is defined everywhere. Therefore, we only need to find values for  where . Solving , we
see that  which implies . Therefore, the critical points are . From the graph of  in Figure ,
we see that f has an absolute maximum at  and an absolute minimum at  Hence,  has a local maximum at 

 and a local minimum at . (Note that if  has an absolute extremum over an interval  at a point  that is not an
endpoint of , then  has a local extremum at 

Figure : This function has an absolute maximum and an absolute minimum.

Find all critical points for 

Hint

Calculate 

Answer

Locating Absolute Extrema

The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an
absolute minimum. As shown in Figure , one or both of these absolute extrema could occur at an endpoint. If an absolute
extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local
extremum. Therefore, by Fermat's Theorem, the point  at which the local extremum occurs must be a critical point. We summarize
this result in the following theorem.

x = 1 x = −1

4.1.6 x = 0 x = 1 x = −1
x = 0

(x) = =f ′ 4(1+ )−4x(2x)x2

(1+x2)
2

4−4x2

(1+x2)
2

x (x) = 0f ′ (x) = 0f ′

4 −4 = 0,x2 x = ±1 x = ±1 f 4.1.7

x = 1 x = −1. f

x = 1 x = −1 f I c

I f c. )

4.1.7

 Exercise 4.1.1
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2
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Let  be a continuous function over a closed, bounded interval . The absolute maximum of  over  and the absolute
minimum of  over  must occur at endpoints of  or at critical points of  in .

With this idea in mind, let’s examine a procedure for locating absolute extrema.

Consider a continuous function  defined over the closed interval 

1. Evaluate  at the endpoints  and 
2. Find all critical points of  that lie over the interval  and evaluate  at those critical points.
3. Compare all values found in (1) and (2). From "Location of Absolute Extrema," the absolute extrema must occur at

endpoints or critical points. Therefore, the largest of these values is the absolute maximum of . The smallest of these
values is the absolute minimum of .

Now let’s look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.

For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state
where those values occur.

a.  over 
b.  over .

Solution

a. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. Since  is defined for all real numbers  Therefore, there are no critical points where the
derivative is undefined. It remains to check where . Since  at  and  is in the interval 

 is a candidate for an absolute extremum of  over . We evaluate  and find

.

Step 3. We set up the following table to compare the values found in steps 1 and 2.

Conclusion

 

Absolute maximum

Absolute minimum

From the table, we find that the absolute maximum of  over the interval [1, 3] is , and it occurs at . The absolute
minimum of  over the interval  is , and it occurs at  as shown in Figure .

 Theorem : Location of Absolute Extrema4.1.3

f I f I

f I I f I
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Figure : This function has both an absolute maximum and an absolute minimum.

b. Step 1. Evaluate  at the endpoints  and .

 and 

Step 2. The derivative of  is given by

for . The derivative is zero when , which implies . The derivative is undefined at .
Therefore, the critical points of  are . The point  is an endpoint, so we already evaluated  in step 1.
The point  is not in the interval of interest, so we need only evaluate . We find that

Step 3. We compare the values found in steps 1 and 2, in the following table.

Conclusion

Absolute maximum

Absolute minimum

 

We conclude that the absolute maximum of  over the interval  is zero, and it occurs at . The absolute minimum is 
 and it occurs at  as shown in Figure .

Figure : This function has an absolute maximum at an endpoint of the interval.

4.1.8
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Find the absolute maximum and absolute minimum of  over the interval .

Hint

Look for critical points. Evaluate  at all critical points and at the endpoints.

Answer

The absolute maximum is  and it occurs at . The absolute minimum is  and it occurs at .

At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local
extrema and determined that if a function  has a local extremum at a point , then  must be a critical point of . However, 
being a critical point is not a sufficient condition for  to have a local extremum at . Later in this chapter, we show how to
determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value
Theorem, which will help as we analyze the behavior of the graph of a function.

Key Concepts
A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or have no
absolute maximum or absolute minimum.
If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need not have a
local extremum at a critical point.
A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each extremum
occurs at a critical point or an endpoint.

Glossary

absolute extremum
if  has an absolute maximum or absolute minimum at , we say  has an absolute extremum at 

absolute maximum
if  for all  in the domain of , we say  has an absolute maximum at 

absolute minimum
if  for all  in the domain of , we say  has an absolute minimum at 

critical point
if  or  is undefined, we say that c is a critical point of 

extreme value theorem
if  is a continuous function over a finite, closed interval, then  has an absolute maximum and an absolute minimum

Fermat’s theorem
if  has a local extremum at , then  is a critical point of 

local extremum
if  has a local maximum or local minimum at , we say  has a local extremum at 

local maximum
if there exists an interval  such that  for all , we say  has a local maximum at 

local minimum
if there exists an interval  such that  for all , we say  has a local minimum at 

4.1: Maximum and Minimum Values is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 4.1.2

f(x) = −4x +3x2 [1, 4]

f

3 x = 4 −1 x = 2

f c c f c

f c

f c f c

f(c) ≥ f(x) x f f c

f(c) ≤ f(x) x f f c

(c) = 0f ′ (c)f ′ f

f f

f c c f

f c f c

I f(c) ≥ f(x) x ∈ I f c

I f(c) ≤ f(x) x ∈ I f c
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4.2: The Mean Value Theorem

Explain the meaning of Rolle’s theorem.
Describe the significance of the Mean Value Theorem.
State three important consequences of the Mean Value Theorem.

The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the end of this
section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.

Rolle’s Theorem
Informally, Rolle’s theorem states that if the outputs of a differentiable function  are equal at the endpoints of an interval, then
there must be an interior point  where . Figure  illustrates this theorem.

Figure : If a differentiable function  satisfies , then its derivative must be zero at some point(s) between  and .

Let  be a continuous function over the closed interval  and differentiable over the open interval  such that 
. There then exists at least one  such that 

Let  We consider three cases:

1.  for all 
2. There exists  such that 
3. There exists  such that 

Case 1: If  for all , then  for all 

Case 2: Since  is a continuous function over the closed, bounded interval , by the extreme value theorem, it has an
absolute maximum. Also, since there is a point  such that , the absolute maximum is greater than .
Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an
interior point . Because  has a maximum at an interior point , and  is differentiable at , by Fermat’s theorem, 

Case 3: The case when there exists a point  such that  is analogous to case 2, with maximum replaced by
minimum.

□

An important point about Rolle’s theorem is that the differentiability of the function  is critical. If  is not differentiable, even at a
single point, the result may not hold. For example, the function  is continuous over  and ,
but  for any  as shown in the following figure.

Learning Objectives

f

c (c) = 0f ′ 4.2.1

4.2.1 f f(a) = f(b) a b

Rolle’s Theorem

f [a, b] (a, b)
f(a) = f(b) c ∈ (a, b) (c) = 0.f ′

Proof

k = f(a) = f(b).

f(x) = k x ∈ (a, b).
x ∈ (a, b) f(x) > k.
x ∈ (a, b) f(x) < k.

f(x) = k x ∈ (a, b) (x) = 0f ′ x ∈ (a, b).

f [a, b]
x ∈ (a, b) f(x) > k k

c ∈ (a, b) f c f c

(c) = 0.f ′

x ∈ (a, b) f(x) < k

f f

f(x) = |x| −1 [−1, 1] f(−1) = 0 = f(1)
(c) ≠ 0f ′ c ∈ (−1, 1)
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Figure : Since  is not differentiable at , the conditions of Rolle’s theorem are not satisfied. In fact, the
conclusion does not hold here; there is no  such that 

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points  where 

For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find all values 
in the given interval where 

a.  over 
b.  over 

Solution

a. Since  is a polynomial, it is continuous and differentiable everywhere. In addition,  Therefore, 
satisfies the criteria of Rolle’s theorem. We conclude that there exists at least one value  such that . Since 

 we see that  implies  as shown in the following graph.

Figure : This function is continuous and differentiable over [−2,0],  when .

b. As in part a.  is a polynomial and therefore is continuous and differentiable everywhere. Also,  That
said,  satisfies the criteria of Rolle’s theorem. Differentiating, we find that  Therefore,  when 

. Both points are in the interval , and, therefore, both points satisfy the conclusion of Rolle’s theorem as

shown in the following graph.

4.2.2 f(x) = |x| − 1 x = 0
c ∈ (−1, 1) (c) = 0.f ′

c (c) = 0.f ′

Example : Using Rolle’s Theorem4.2.1

c

(c) = 0.f ′

f(x) = +2xx2 [−2, 0]
f(x) = −4xx3 [−2, 2]

f f(−2) = 0 = f(0). f

c ∈ (−2, 0) (c) = 0f ′

(x) = 2x +2 = 2(x +1),f ′ (c) = 2(c +1) = 0f ′ c = −1

4.2.3 (c) = 0f ′ c = −1

f f(−2) = 0 = f(2).
f (x) = 3 −4.f ′ x2 (c) = 0f ′

x = ± 2
3√

[−2, 2]
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Figure : For this polynomial over  at .

Verify that the function  defined over the interval  satisfies the conditions of Rolle’s theorem. Find
all points  guaranteed by Rolle’s theorem.

Hint

Find all values , where .

Answer

The Mean Value Theorem and Its Meaning
Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions  that are
zero at the endpoints. The Mean Value Theorem generalizes Rolle’s theorem by considering functions that are not necessarily zero
at the endpoints. Consequently, we can view the Mean Value Theorem as a slanted version of Rolle’s theorem (Figure ). The
Mean Value Theorem states that if  is continuous over the closed interval  and differentiable over the open interval ,
then there exists a point  such that the tangent line to the graph of  at  is parallel to the secant line connecting 
and 

Figure : The Mean Value Theorem says that for a function that meets its conditions, at some point the tangent line has the
same slope as the secant line between the ends. For this function, there are two values  and  such that the tangent line to  at 
and  has the same slope as the secant line.

4.2.4 [−2, 2], (c) = 0f ′ x = ±2/ 3
–√

Exercise 4.2.1

f(x) = 2 −8x +6x2 [1, 3]
c

c (c) = 0f ′

c = 2

f

4.2.5
f [a, b] (a, b)

c ∈ (a, b) f c (a, f(a))
(b, f(b)).

4.2.5
c1 c2 f c1

c2
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Let  be continuous over the closed interval  and differentiable over the open interval . Then, there exists at least
one point  such that

The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem.
Consider the line connecting  and  Since the slope of that line is

and the line passes through the point  the equation of that line can be written as

Let  denote the vertical difference between the point  and the point  on that line. Therefore,

Figure : The value  is the vertical difference between the point 
and the point  on the secant line connecting  and .

Since the graph of  intersects the secant line when  and , we see that . Since  is a differentiable
function over ,  is also a differentiable function over . Furthermore, since  is continuous over  is also
continuous over . Therefore,  satisfies the criteria of Rolle’s theorem. Consequently, there exists a point  such
that  Since

we see that

Since  we conclude that

□

In the next example, we show how the Mean Value Theorem can be applied to the function  over the interval . The
method is the same for other functions, although sometimes with more interesting consequences.

Mean Value Theorem

f [a, b] (a, b)
c ∈ (a, b)

(c) =f ′ f(b) −f(a)

b −a

Proof

(a, f(a)) (b, f(b)).

f(b) −f(a)

b −a

(a, f(a)),

y = (x −a) +f(a).
f(b) −f(a)

b −a

g(x) (x, f(x)) (x, y)

g(x) = f(x) −[ (x −a) +f(a)] .
f(b) −f(a)

b −a

4.2.6 g(x) (x, f(x))
(x, y) (a, f(a)) (b, f(b))

f x = a x = b g(a) = 0 = g(b) f

(a, b) g (a, b) f [a, b], g

[a, b] g c ∈ (a, b)
(c) = 0.g′

(x) = (x) − ,g′ f ′ f(b) −f(a)

b −a

(c) = (c) − .g′ f ′ f(b) −f(a)

b −a

(c) = 0,g′

(c) = .f ′ f(b) −f(a)

b −a

f(x) = x−−√ [0, 9]

https://libretexts.org/
https://math.libretexts.org/@go/page/4462?pdf


4.2.5 https://math.libretexts.org/@go/page/4462

For  over the interval , show that  satisfies the hypothesis of the Mean Value Theorem, and therefore there
exists at least one value  such that  is equal to the slope of the line connecting  and . Find
these values  guaranteed by the Mean Value Theorem.

Solution

We know that  is continuous over  and differentiable over  Therefore,  satisfies the hypotheses of the
Mean Value Theorem, and there must exist at least one value  such that  is equal to the slope of the line
connecting  and  (Figure ). To determine which value(s) of  are guaranteed, first calculate the
derivative of . The derivative . The slope of the line connecting  and  is given by

We want to find  such that . That is, we want to find  such that

Solving this equation for , we obtain . At this point, the slope of the tangent line equals the slope of the line joining the
endpoints.

Figure : The slope of the tangent line at  is the same as the slope of the line segment connecting (0,0) and (9,3).

One application that helps illustrate the Mean Value Theorem involves velocity. For example, suppose we drive a car for 1 h
down a straight road with an average velocity of 45 mph. Let  and  denote the position and velocity of the car,
respectively, for  h. Assuming that the position function  is differentiable, we can apply the Mean Value
Theorem to conclude that, at some time , the speed of the car was exactly

If a rock is dropped from a height of 100 ft, its position  seconds after it is dropped until it hits the ground is given by the
function 

a. Determine how long it takes before the rock hits the ground.
b. Find the average velocity  of the rock for when the rock is released and the rock hits the ground.
c. Find the time  guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is 

Solution

Example : Verifying that the Mean Value Theorem Applies4.2.2

f(x) = x−−√ [0, 9] f

c ∈ (0, 9) f '(c) (0, f(0)) (9, f(9))
c

f(x) = x−−√ [0, 9] (0, 9). f

c ∈ (0, 9) f '(c)
(0, f(0)) (9, f(9)) 4.2.7 c

f f '(x) = 1
(2 )x√

(0, f(0)) (9, f(9))

= = = .
f(9) −f(0)

9 −0

−9
–√ 0

–√

9 −0

3

9

1

3

c f '(c) = 1
3

c

= .
1

2 c√

1

3

c c = 9
4

4.2.7 c = 9/4

s(t) v(t)
0 ≤ t ≤ 1 s(t)

c ∈ (0, 1)

v(c) = s'(c) = = 45 mph.
s(1) −s(0)

1 −0

Example : Mean Value Theorem and Velocity4.2.3

t

s(t) = −16 +100.t2

vavg

t .vavg
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a. When the rock hits the ground, its position is . Solving the equation  for , we find that 
. Since we are only considering , the ball will hit the ground  sec after it is dropped.

b. The average velocity is given by

c. The instantaneous velocity is given by the derivative of the position function. Therefore, we need to find a time  such that 
 ft/sec. Since  is continuous over the interval  and differentiable over the interval 

 by the Mean Value Theorem, there is guaranteed to be a point  such that

Taking the derivative of the position function , we find that  Therefore, the equation reduces to 
 Solving this equation for , we have . Therefore,  sec after the rock is dropped, the

instantaneous velocity equals the average velocity of the rock during its free fall:  ft/sec.

Figure : At time  sec, the velocity of the rock is equal to its average velocity from the time it is dropped until it
hits the ground.

Suppose a ball is dropped from a height of 200 ft. Its position at time  is  Find the time  when the
instantaneous velocity of the ball equals its average velocity.

Hint

First, determine how long it takes for the ball to hit the ground. Then, find the average velocity of the ball from the time it
is dropped until it hits the ground.

Answer

 sec

Corollaries of the Mean Value Theorem
Let’s now look at three corollaries of the Mean Value Theorem. These results have important consequences, which we use in
upcoming sections.

At this point, we know the derivative of any constant function is zero. The Mean Value Theorem allows us to conclude that the
converse is also true. In particular, if  for all  in some interval , then  is constant over that interval. This result may
seem intuitively obvious, but it has important implications that are not obvious, and we discuss them shortly.

s(t) = 0 −16 +100 = 0t2 t

t = ± sec5
2

t ≥ 0 5
2

= = = −40 ft/sec.vavg

s(5/2) −s(0)

5/2 −0

0 −100

5/2

t

v(t) = s'(t) = = −40vavg s(t) [0, 5/2]
(0, 5/2), c ∈ (0, 5/2)

s'(c) = = −40.
s(5/2) −s(0)

5/2 −0

s(t) s'(t) = −32t.

s'(c) = −32c = −40. c c = 5
4

5
4

−40

4.2.8 t = 5/4

Exercise 4.2.2

t s(t) = −16 +200.t2 t

5

2 2√

f '(x) = 0 x I f(x)
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Let  be differentiable over an interval . If  for all , then  constant for all 

Since  is differentiable over ,  must be continuous over . Suppose  is not constant for all  in . Then there exist 
, where  and  Choose the notation so that  Therefore,

Since  is a differentiable function, by the Mean Value Theorem, there exists  such that

Therefore, there exists  such that , which contradicts the assumption that  for all .

□

From "Corollary 1: Functions with a Derivative of Zero," it follows that if two functions have the same derivative, they differ by, at
most, a constant.

If  and  are differentiable over an interval  and  for all , then  for some constant .

Let  Then,  for all  By Corollary 1, there is a constant  such that 
 for all . Therefore,  for all 

□

The third corollary of the Mean Value Theorem discusses when a function is increasing and when it is decreasing. Recall that a
function  is increasing over  if  whenever , whereas  is decreasing over  if  whenever 

. Using the Mean Value Theorem, we can show that if the derivative of a function is positive, then the function is
increasing; if the derivative is negative, then the function is decreasing (Figure ). We make use of this fact in the next section,
where we show how to use the derivative of a function to locate local maximum and minimum values of the function, and how to
determine the shape of the graph.

This fact is important because it means that for a given function , if there exists a function  such that ; then, the
only other functions that have a derivative equal to  are  for some constant . We discuss this result in more detail later
in the chapter.

Figure : If a function has a positive derivative over some interval , then the function increases over that interval ; if the
derivative is negative over some interval , then the function decreases over that interval .

Corollary 1: Functions with a Derivative of Zero

f I f '(x) = 0 x ∈ I f(x) = x ∈ I.

Proof

f I f I f(x) x I

a, b ∈ I a ≠ b f(a) ≠ f(b). a < b.

≠ 0.
f(b) −f(a)

b −a

f c ∈ (a, b)

f '(c) = .
f(b) −f(a)

b −a

c ∈ I f '(c) ≠ 0 f '(x) = 0 x ∈ I

Corollary 2: Constant Difference Theorem

f g I f '(x) = g'(x) x ∈ I f(x) = g(x) +C C

Proof

h(x) = f(x) −g(x). h'(x) = f '(x) −g'(x) = 0 x ∈ I. C

h(x) = C x ∈ I f(x) = g(x) +C x ∈ I.

f I f( ) < f( )x1 x2 <x1 x2 f I f( ) > f( )x1 x2

<x1 x2

4.2.9

f F F '(x) = f(x)
f F (x) +C C

4.2.9 I I
I I
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Let  be continuous over the closed interval  and differentiable over the open interval .

i. If  for all , then  is an increasing function over 
ii. If  for all , then  is a decreasing function over 

We will prove i.; the proof of ii. is similar. Suppose  is not an increasing function on . Then there exist  and  in  such that
, but . Since  is a differentiable function over , by the Mean Value Theorem there exists  such

that

Since , we know that . Also,  tells us that  We conclude that

However,  for all . This is a contradiction, and therefore  must be an increasing function over .

□

Key Concepts
If  is continuous over  and differentiable over  and , then there exists a point  such that 

 This is Rolle’s theorem.
If  is continuous over  and differentiable over , then there exists a point  such that

This is the Mean Value Theorem.
If  over an interval , then  is constant over .
If two differentiable functions  and  satisfy  over , then  for some constant .
If  over an interval , then  is increasing over . If  over , then  is decreasing over .

Glossary

mean value theorem

if  is continuous over  and differentiable over , then there exists  such that 

rolle’s theorem
if  is continuous over  and differentiable over , and if , then there exists  such that 

4.2: The Mean Value Theorem is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.4: The Mean Value Theorem by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

Corollary 3: Increasing and Decreasing Functions

f [a, b] (a, b)

f '(x) > 0 x ∈ (a, b) f [a, b].
f '(x) < 0 x ∈ (a, b) f [a, b].

Proof

f I a b I

a < b f(a) ≥ f(b) f I c ∈ (a, b)

f '(c) = .
f(b) −f(a)

b −a

f(a) ≥ f(b) f(b) −f(a) ≤ 0 a < b b −a > 0.

f '(c) = ≤ 0.
f(b) −f(a)

b −a

f '(x) > 0 x ∈ I f I

f [a, b] (a, b) f(a) = f(b) c ∈ (a, b)
f '(c) = 0.

f [a, b] (a, b) c ∈ (a, b)

(c) = .f ′ f(b) −f(a)

b −a

(x) = 0f ′ I f I

f g f '(x) = g'(x) I f(x) = g(x) +C C

f '(x) > 0 I f I f '(x) < 0 I f I

f [a, b] (a, b) c ∈ (a, b) f '(c) =
f(b)−f(a)

b−a

f [a, b] (a, b) f(a) = f(b) c ∈ (a, b) f '(c) = 0
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4.3: How Derivatives Affect the Shape of a Graph

Explain how the sign of the first derivative affects the shape of a function’s graph.
State the first derivative test for critical points.
Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
Explain the concavity test for a function over an open interval.
Explain the relationship between a function and its first and second derivatives.
State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function  has a local extremum at a point , then  must be a critical point of . However,
a function is not guaranteed to have a local extremum at a critical point. For example,  has a critical point at  since 

 is zero at , but  does not have a local extremum at . Using the results from the previous section, we are
now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also
see how the second derivative provides information about the shape of a graph by describing whether the graph of a function
curves upward or curves downward.

The First Derivative Test
Corollary  of the Mean Value Theorem showed that if the derivative of a function is positive over an interval  then the function is
increasing over . On the other hand, if the derivative of the function is negative over an interval , then the function is decreasing
over  as shown in the following figure.

Figure : Both functions are increasing over the interval . At each point , the derivative . Both functions are
decreasing over the interval . At each point , the derivative 

A continuous function  has a local maximum at point  if and only if  switches from increasing to decreasing at point .
Similarly,  has a local minimum at  if and only if  switches from decreasing to increasing at . If  is a continuous function
over an interval  containing  and differentiable over , except possibly at , the only way  can switch from increasing to
decreasing (or vice versa) at point  is if  changes sign as  increases through . If  is differentiable at , the only way that 
can change sign as  increases through  is if . Therefore, for a function  that is continuous over an interval  containing
 and differentiable over , except possibly at , the only way  can switch from increasing to decreasing (or vice versa) is if 

 or  is undefined. Consequently, to locate local extrema for a function , we look for points  in the domain of 
such that  or  is undefined. Recall that such points are called critical points of .

 Learning Objectives

f c c f

f(x) = x3 x = 0
(x) = 3f ′ x2 x = 0 f x = 0

3 I

I I

I

4.3.1 (a, b) x (x) > 0f ′

(a, b) x (x) < 0.f ′

f c f c

f c f c f

I c I c f

c f ′ x c f c f ′

x c (c) = 0f ′ f I

c I c f

(c) = 0f ′ (c)f ′ f c f

(c) = 0f ′ (c)f ′ f
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Note that  need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In Figure 
, we show that if a continuous function  has a local extremum, it must occur at a critical point, but a function may not have a

local extremum at a critical point. We show that if  has a local extremum at a critical point, then the sign of  switches as 
increases through that point.

Figure : The function  has four critical points: ,and . The function  has local maxima at  and , and a local
minimum at . The function  does not have a local extremum at . The sign of  changes at all local extrema.

Using Figure , we summarize the main results regarding local extrema.

If a continuous function  has a local extremum, it must occur at a critical point .
The function has a local extremum at the critical point  if and only if the derivative  switches sign as  increases through .
Therefore, to test whether a function has a local extremum at a critical point , we must determine the sign of  to the left
and right of .

This result is known as the first derivative test.

Suppose that  is a continuous function over an interval  containing a critical point . If  is differentiable over , except
possibly at point , then  satisfies one of the following descriptions:

i. If  changes sign from positive when  to negative when , then  is a local maximum of .
ii. If  changes sign from negative when  to positive when , then  is a local minimum of .

iii. If  has the same sign for  and , then  is neither a local maximum nor a local minimum of 

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to
confirm your results.

Solution

Step 1. The derivative is  To find the critical points, we need to find where  Factoring the
polynomial, we conclude that the critical points must satisfy

Therefore, the critical points are  Now divide the interval  into the smaller intervals 
and 

f

4.3.2 f

f f ′ x

4.3.2 f a, b, c d f a d
b f c f ′

4.3.2

f c

c f ′ x c

c (x)f ′

c

 First Derivative Test

f I c f I

c f(c)

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

 Example : Using the First Derivative Test to Find Local Extrema4.3.1

f(x) = −3 −9x−1.x3 x2

(x) = 3 −6x−9.f ′ x2 (x) = 0.f ′

3( −2x−3) = 3(x−3)(x+1) = 0.x2

x = 3, −1. (−∞, ∞) (−∞, −1), (−1, 3)
(3, ∞).
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Step 2. Since  is a continuous function, to determine the sign of  over each subinterval, it suffices to choose a point
over each of the intervals  and  and determine the sign of  at each of these points. For example,
let’s choose , , and  as test points.

Table: : First Derivative Test for 

Interval Test Point
Sign of 

 at
Test Point

Conclusion

(+)(−)(−)=+  is increasing.

(+)(−)(+)=-  is decreasing.

(+)(+)(+)=+  is increasing.

Step 3. Since  switches sign from positive to negative as  increases through ,  has a local maximum at . Since 
 switches sign from negative to positive as  increases through ,  has a local minimum at . These analytical results

agree with the following graph.

Figure : The function  has a maximum at  and a minimum at 

Use the first derivative test to locate all local extrema for 

Hint

Find all critical points of  and determine the signs of  over particular intervals determined by the critical points.

Answer

f ′ (x)f ′

(−∞, −1), (−1, 3) (3, ∞) f ′

x = −2 x = 0 x = 4

4.3.1 f(x) = − 3 − 9x− 1.x3 x2

(x) = 3(x − 3)(x + 1)f ′

(−∞,−1) x = −2 f

(−1,3) x = 0 f

(3,∞) x = 4 f

f ′ x −1 f x = −1
f ′ x 3 f x = 3

4.3.3 f x = −1 x = 3

 Exercise 4.3.1

f(x) = − + +18x.x3 3
2
x2

f (x)f ′
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 has a local minimum at  and a local maximum at .

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to confirm
your results.

Solution

Step 1. The derivative is

The derivative  when  Therefore,  at . The derivative  is undefined at 
Therefore, we have three critical points: , , and . Consequently, divide the interval  into the
smaller intervals , and .

Step 2: Since  is continuous over each subinterval, it suffices to choose a test point  in each of the intervals from step 1 and
determine the sign of  at each of these points. The points , and  are test points for these
intervals.

Table: : First Derivative Test for 

Interval Test Point Sign of  at

Test Point
Conclusion

 is decreasing.

 is increasing.

 is increasing.

 is decreasing.

Step 3: Since  is decreasing over the interval  and increasing over the interval ,  has a local minimum at 
. Since  is increasing over the interval  and the interval ,  does not have a local extremum at .

Since  is increasing over the interval  and decreasing over the interval ,  has a local maximum at . The
analytical results agree with the following graph.

Figure : The function  has a local minimum at  and a local maximum at 

Use the first derivative test to find all local extrema for .

Hint

The only critical point of  is 

f −2 3

 Example : Using the First Derivative Test4.3.2

f(x) = 5 − .x1/3 x5/3

(x) = − = − = = .f ′ 5

3
x−2/3 5

3
x2/3 5

3x2/3

5x2/3

3

5 −5x4/3

3x2/3

5(1 − )x4/3

3x2/3

(x) = 0f ′ 1 − = 0.x4/3 (x) = 0f ′ x = ±1 (x)f ′ x = 0.
x = 0 x = 1 x = −1 (−∞, ∞)

(−∞, −1), (−1, 0), (0, 1) (1, ∞)

f ′ x

f ′ x = −2, x = − , x =1
2

1
2

x = 2

4.3.2 f(x) = 5 − .x1/3 x5/3

(x) =f ′ 5(1− )x4/3

3x2/3

(−∞,−1) x = −2 = −
(+)(−)

+
f

(−1,0) x = − 1
2 = +

(+)(+)

+
f

(0,1) x = 1
2 = +

(+)(+)

+
f

(1,∞) x = 2 = −
(+)(−)

+
f

f (−∞, −1) (−1, 0) f

x = −1 f (−1, 0) (0, 1) f x = 0
f (0, 1) (1, ∞) f x = 1

4.3.4 f x = −1 x = 1

 Exercise 4.3.2

f(x) =
3

x−1

f x = 1.
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Answer

 has no local extrema because  does not change sign at .

Concavity and Points of Inflection

We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding
the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the
concavity of the function.

Figure  shows a function  with a graph that curves upward. As  increases, the slope of the tangent line increases. Thus,
since the derivative increases as  increases,  is an increasing function. We say this function  is concave up. Figure 
shows a function  that curves downward. As  increases, the slope of the tangent line decreases. Since the derivative decreases as 

 increases,  is a decreasing function. We say this function  is concave down.

Let  be a function that is differentiable over an open interval . If  is increasing over , we say  is concave up over . If 
 is decreasing over , we say  is concave down over .

Figure : (a), (c) Since  is increasing over the interval , we say  is concave up over  Since  is
decreasing over the interval , we say  is concave down over 

In general, without having the graph of a function , how can we determine its concavity? By definition, a function  is
concave up if  is increasing. From Corollary , we know that if  is a differentiable function, then  is increasing if its
derivative . Therefore, a function  that is twice differentiable is concave up when . Similarly, a function 

 is concave down if  is decreasing. We know that a differentiable function  is decreasing if its derivative .
Therefore, a twice-differentiable function  is concave down when . Applying this logic is known as the concavity
test.

f f ′ x = 1

4.3.5a f x

x f ′ f 4.3.5b
f x

x f ′ f

 Definition: concavity test

f I f ′ I f I

f ′ I f I

4.3.5 f ′ (a, b) f (a, b). (b), (d) f ′

(a, b) f (a, b).

f f

f ′ 3 f ′ f ′

(x) > 0f ′′ f (x) > 0f ′′

f f ′ f ′ (x) < 0f ′′

f (x) < 0f ′′
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Let  be a function that is twice differentiable over an interval .

i. If  for all , then  is concave up over 
ii. If  for all  then  is concave down over .

We conclude that we can determine the concavity of a function  by looking at the second derivative of . In addition, we observe
that a function  can switch concavity (Figure ). However, a continuous function can switch concavity only at a point  if 

 or  is undefined. Consequently, to determine the intervals where a function  is concave up and concave down,
we look for those values of  where  or  is undefined. When we have determined these points, we divide the
domain of  into smaller intervals and determine the sign of  over each of these smaller intervals. If  changes sign as we pass
through a point , then  changes concavity. It is important to remember that a function  may not change concavity at a point 
even if  or  is undefined. If, however,  does change concavity at a point  and  is continuous at , we say the
point  is an inflection point of .

If  is continuous at  and  changes concavity at , the point  is an inflection point of .

Figure : Since  for , the function  is concave up over the interval . Since  for , the
function  is concave down over the interval . The point  is an inflection point of .

For the function  determine all intervals where  is concave up and all intervals where  is
concave down. List all inflection points for . Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative  The first derivative is  so the
second derivative is  If the function changes concavity, it occurs either when  or  is
undefined. Since  is defined for all real numbers , we need only find where . Solving the equation ,
we see that  is the only place where  could change concavity. We now test points over the intervals  and 
to determine the concavity of . The points  and  are test points for these intervals.

Table: : Test for Concavity for 

Interval Test Point Sign of  at
Test Point

Conclusion

−  is concave down

+  is concave up

 Test for Concavity

f I

(x) > 0f ′′ x ∈ I f I

(x) < 0f ′′ x ∈ I, f I

f f

f 4.3.6 x

(x) = 0f ′′ (x)f ′′ f

x (x) = 0f ′′ (x)f ′′

f f ′′ f ′′

x f f x

(x) = 0f ′′ (x)f ′′ f a f a

(a, f(a)) f

 Definition: inflection point

f a f a (a, f(a)) f

4.3.6 (x) > 0f ′′ x < a f (−∞,a) (x) < 0f ′′ x > a
f (a, ∞) (a,f(a)) f

 Example : Testing for Concavity4.3.3

f(x) = −6 +9x+30,x3 x2 f f

f

(x).f ′′ (x) = 3 −12x+9,f ′ x2

(x) = 6x−12.f ′′ (x) = 0f ′′ (x)f ′′

f ′′ x (x) = 0f ′′ 6x−12 = 0
x = 2 f (−∞, 2) (2, ∞)

f x = 0 x = 3

4.3.3 f(x) = − 6 + 9x+ 30.x3 x2

(x) = 6x − 12f ′′

(−∞,2) x = 0 f

(2,∞) x = 3 f
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We conclude that  is concave down over the interval  and concave up over the interval . Since  changes
concavity at , the point  is an inflection point. Figure  confirms the analytical results.

Figure : The given function has a point of inflection at  where the graph changes concavity.

For , find all intervals where  is concave up and all intervals where  is concave down.

Hint

Find where 

Answer

 is concave up over the interval  and concave down over the interval 

We now summarize, in Table , the information that the first and second derivatives of a function  provide about the graph of 
, and illustrate this information in Figure .

Table: : What Derivatives Tell Us about Graphs
Sign of Sign of Is  increasing or decreasing? Concavity

Positive Positive Increasing Concave up

Positive Negative Increasing Concave down

Negative Positive Decreasing Concave up

Negative Negative Decreasing Concave down

f (−∞, 2) (2, ∞) f

x = 2 (2, f(2)) = (2, 32) 4.3.7

4.3.7 (2, 32)

 Exercise 4.3.3

f(x) = − + +18xx3 3
2
x2 f f

(x) = 0f ′′

f (−∞, )1
2

( , ∞)1
2

4.3.4 f

f 4.3.8

4.3.4

f ′ f ′′ f
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Figure :Consider a twice-differentiable function  over an open interval . If  for all , the function is
increasing over . If  for all , the function is decreasing over . If  for all , the function is concave
up. If  for all , the function is concave down on .

The Second Derivative Test
The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to locate
extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extremum, it must occur at a critical point. However, a function need not have a
local extremum at a critical point. Here we examine how the second derivative test can be used to determine whether a function
has a local extremum at a critical point. Let  be a twice-differentiable function such that  and  is continuous over an
open interval  containing . Suppose . Since  is continuous over  for all  (Figure ). Then, by
Corollary ,  is a decreasing function over . Since , we conclude that for all  if  and 

 if . Therefore, by the first derivative test,  has a local maximum at .

On the other hand, suppose there exists a point  such that  but . Since  is continuous over an open interval 
 containing , then  for all  (Figure ). Then, by Corollary ,  is an increasing function over . Since 

, we conclude that for all ,  if  and  if . Therefore, by the first derivative test,  has
a local minimum at 

Figure : Consider a twice-differentiable function  such that  is continuous. Since  and , there is an
interval  containing  such that for all  in ,  is increasing if  and  is decreasing if . As a result,  has a local
maximum at . Since  and , there is an interval  containing  such that for all  in ,  is decreasing if 

 and  is increasing if . As a result,  has a local minimum at .

4.3.8 f I (x) > 0f ′ x ∈ I

I (x) < 0f ′ x ∈ I I (x) > 0f ′′ x ∈ I

(x) < 0f ′′ x ∈ I I

f (a) = 0f ′ f ′′

I a (a) < 0f ′′ f ′′ I, (x) < 0f ′′ x ∈ I 4.3.9
3 f ′ I (a) = 0f ′ x ∈ I, (x) > 0f ′ x < a

(x) < 0f ′ x > a f x = a

b (b) = 0f ′ (b) > 0f ′′ f ′′

I b (x) > 0f ′′ x ∈ I 4.3.9 3 f ′ I

(b) = 0f ′ x ∈ I (x) < 0f ′ x < b (x) > 0f ′ x > b f

x = b.

4.3.9 f f ′′ (a) = 0f ′ (a) < 0f ′′

I a x I f x < a f x > a f
x = a (b) = 0f ′ (b) > 0f ′′ I b x I f

x < b f x > b f x = b

https://libretexts.org/
https://math.libretexts.org/@go/page/4463?pdf


4.3.9 https://math.libretexts.org/@go/page/4463

Suppose  and  is continuous over an interval containing .

i. If , then  has a local minimum at .
ii. If , then  has a local maximum at .

iii. If  then the test is inconclusive.

Note that for case iii. when , then  may have a local maximum, local minimum, or neither at . For example, the
functions  and  all have critical points at . In each case, the second derivative is zero at 

. However, the function  has a local minimum at  whereas the function  has a local maximum at
, and the function  does not have a local extremum at .

Let’s now look at how to use the second derivative test to determine whether  has a local maximum or local minimum at a critical
point  where 

Use the second derivative to find the location of all local extrema for 

Solution

To apply the second derivative test, we first need to find critical points  where . The derivative is 
. Therefore,  when .

To determine whether  has a local extremum at any of these points, we need to evaluate the sign of  at these points. The
second derivative is

In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to
determine whether  has a local maximum or local minimum at any of these points.

Table: : Second Derivative Test for 

Conclusion

Local maximum

Second derivative test is inconclusive

Local minimum

By the second derivative test, we conclude that  has a local maximum at  and  has a local minimum at .
The second derivative test is inconclusive at . To determine whether  has a local extrema at  we apply the first
derivative test. To evaluate the sign of  for  and , let  and  be the
two test points. Since  and , we conclude that  is decreasing on both intervals and, therefore,  does not
have a local extrema at  as shown in the following graph.

 Second Derivative Test

(c) = 0f ′ f ′′ c

(c) > 0f ′′ f c

(c) < 0f ′′ f c

(c) = 0,f ′′

(c) = 0f ′′ f c

f(x) = , f(x) = ,x3 x4 f(x) = −x4 x = 0
x = 0 f(x) = x4 x = 0 f(x) = −x4

x = 0 f(x) = x3 x = 0

f

c (c) = 0.f ′

 Example : Using the Second Derivative Test4.3.4

f(x) = −5 .x5 x3

c (c) = 0f ′

(x) = 5 −15f ′ x4 x2 (x) = 5 −15 = 5 ( −3) = 0f ′ x4 x2 x2 x2 x = 0, ± 3
–

√

f f ′′

(x) = 20 −30x = 10x(2 −3).f ′′ x3 x2

f

4.3.5 f(x) = − 5 .x5 x3

x (x)f ′′

− 3
–

√ −30 3
–

√

0 0

3
–

√ 30 3
–

√

f x = − 3
–

√ f x = 3
–

√

x = 0 f x = 0,
(x) = 5 ( −3)f ′ x2 x2 x ∈ (− , 0)3

–
√ x ∈ (0, )3

–
√ x = −1 x = 1

(−1) < 0f ′ (1) < 0f ′ f f

x = 0
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Figure :The function  has a local maximum at  and a local minimum at 

Consider the function . The points  satisfy . Use the second derivative test to
determine whether  has a local maximum or local minimum at those points.

Hint

Answer

 has a local maximum at  and a local minimum at .

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired an
understanding of the basic shape of the graph. In the next section we discuss what happens to a function as  At that point,
we have enough tools to provide accurate graphs of a large variety of functions.

Key Concepts
If  is a critical point of  and  for  and  for , then  has a local maximum at .
If  is a critical point of  and  for  and  for  then  has a local minimum at .
If  over an interval , then  is concave up over .
If  over an interval , then  is concave down over .
If  and , then  has a local minimum at .
If  and , then  has a local maximum at .
If  and , then evaluate  at a test point  to the left of  and a test point  to the right of , to determine
whether  has a local extremum at .

Glossary

concave down
if  is differentiable over an interval  and  is decreasing over , then  is concave down over 

concave up
if  is differentiable over an interval  and  is increasing over , then  is concave up over 

4.3.10 f x = − 3–√ x = 3–√

 Exercise 4.3.4

f(x) = −( ) −18xx3 3
2
x2 c = 3, −2 (c) = 0f ′

f

(x) = 6x−3f ′′

f −2 3

x → ±∞.

c f (x) > 0f ′ x < c (x) < 0f ′ x > c f c

c f (x) < 0f ′ x < c (x) > 0f ′ x > c, f c

(x) > 0f ′′ I f I

(x) < 0f ′′ I f I

(c) = 0f ′ (c) > 0f ′′ f c

(c) = 0f ′ (c) < 0f ′′ f c

(c) = 0f ′ (c) = 0f ′′ (x)f ′ x c x c

f c

f I f ′ I f I

f I f ′ I f I

https://libretexts.org/
https://math.libretexts.org/@go/page/4463?pdf


4.3.11 https://math.libretexts.org/@go/page/4463

concavity
the upward or downward curve of the graph of a function

concavity test
suppose  is twice differentiable over an interval ; if  over , then  is concave up over ; if  over , then  is
concave down over 

first derivative test
let  be a continuous function over an interval  containing a critical point  such that  is differentiable over  except possibly
at ; if  changes sign from positive to negative as  increases through , then  has a local maximum at ; if  changes sign
from negative to positive as  increases through , then  has a local minimum at ; if  does not change sign as  increases
through , then  does not have a local extremum at 

inflection point
if  is continuous at  and  changes concavity at , the point  is an inflection point of 

second derivative test
suppose  and ' is continuous over an interval containing ; if , then  has a local minimum at ; if 

, then  has a local maximum at ; if , then the test is inconclusive
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4.5: Derivatives and the Shape of a Graph by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f I > 0f ′′ I f I <f ′′ I f

I

f I c f I

c f ′ x c f c f ′

x c f c f ′ x

c f c

f c f c (c, f(c)) f

(c) = 0f ′ f ′ c (c) > 0f ′′ f c

(c) < 0f ′′ f c (c) = 0f ′′
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4.4: Indeterminate Forms and l'Hospital's Rule

Recognize when to apply L’Hôpital’s rule.
Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each
case.
Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hôpital’s rule, uses derivatives to calculate
limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of relying on
numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to determine its
exact value.

Applying L’Hôpital’s Rule
L’Hôpital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

If  and  then

However, what happens if  and ? We call this one of the indeterminate forms, of type . This is

considered an indeterminate form because we cannot determine the exact behavior of  as  without further analysis. We

have seen examples of this earlier in the text. For example, consider

and

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

For  we were able to show, using a geometric argument, that

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to
evaluate these limits, but also, and more importantly, it provides us with a way to evaluate many other limits that we could not
calculate previously.

The idea behind L’Hôpital’s rule can be explained using local linear approximations. Consider two differentiable functions  and 
such that  and such that  For  near ,we can write

and

 Learning Objectives

.lim
x→a

f(x)

g(x)

f(x) =lim
x→a

L1 g(x) = ≠ 0,lim
x→a

L2

= .lim
x→a

f(x)

g(x)

L1

L2

f(x) = 0lim
x→a

g(x) = 0lim
x→a

0

0
f(x)

g(x)
x → a

lim
x→2

−4x2

x−2

.lim
x→0

sinx

x

= = (x+2) = 2 +2 = 4.lim
x→2

−4x2

x−2
lim
x→2

(x+2)(x−2)

x−2
lim
x→2

lim
x→0

sinx

x

= 1.lim
x→0

sinx

x

f g

f(x) = 0 = g(x)lim
x→a

lim
x→a

g'(a) ≠ 0 x a

f(x) ≈ f(a) +f '(a)(x−a)

https://libretexts.org/
https://math.libretexts.org/@go/page/4464?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/04%3A_Applications_of_Differentiation/4.04%3A_Indeterminate_Forms_and_l'Hospital's_Rule


4.4.2 https://math.libretexts.org/@go/page/4464

Therefore,

Figure : If , then the ratio  is approximately equal to the ratio of their linear approximations

near .

Since  is differentiable at , then  is continuous at , and therefore . Similarly, . If

we also assume that  and  are continuous at , then  and . Using these ideas, we

conclude that

Note that the assumption that  and  are continuous at  and  can be loosened. We state L’Hôpital’s rule formally for

the indeterminate form . Also note that the notation  does not mean we are actually dividing zero by zero. Rather, we are using

the notation  to represent a quotient of limits, each of which is zero.

Suppose  and  are differentiable functions over an open interval containing , except possibly at . If  and 

 then

assuming the limit on the right exists or is  or . This result also holds if we are considering one-sided limits, or if 
or 

We provide a proof of this theorem in the special case when  and  are all continuous over an open interval containing 
. In that case, since  and  and  are continuous at , it follows that . Therefore,

g(x) ≈ g(a) +g'(a)(x−a).

≈ .
f(x)

g(x)

f(a) +f '(a)(x−a)

g(a) +g'(a)(x−a)

4.4.1 f(x) = g(x)lim
x→a

lim
x→a

f(x)/g(x)

a

f a f a f(a) = f(x) = 0lim
x→a

g(a) = g(x) = 0lim
x→a

f ' g' x = a f '(a) = f '(x)lim
x→a

g'(a) = g'(x)lim
x→a

= = .lim
x→a

f(x)

g(x)
lim
x→a

f '(x)(x−a)

g'(x)(x−a)
lim
x→a

f '(x)

g'(x)

f ' g' a g'(a) ≠ 0
0

0

0

0
0

0

 L’Hôpital’s Rule (0/0 Case)

f g a a f(x) = 0lim
x→a

g(x) = 0,lim
x→a

= ,lim
x→a

f(x)

g(x)
lim
x→a

f '(x)

g'(x)

∞ −∞ a = ∞
a = −∞.

 Proof

f , g, f ', g'

a f(x) = 0 = g(x)lim
x→a

lim
x→a

f g a f(a) = 0 = g(a)
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Note that L’Hôpital’s rule states we can calculate the limit of a quotient  by considering the limit of the quotient of the

derivatives . It is important to realize that we are not calculating the derivative of the quotient .

□

Evaluate each of the following limits by applying L’Hôpital’s rule.

a. 

b. 

c. 

d. 

Solution

a. Since the numerator  and the denominator , we can apply L’Hôpital’s rule to evaluate this limit. We
have

b. As  the numerator  and the denominator  Therefore, we can apply L’Hôpital’s rule. We
obtain

lim
x→a

f(x)

g(x)
= lim

x→a

f(x) −f(a)

g(x) −g(a)

= lim
x→a

f(x) −f(a)

x−a

g(x) −g(a)

x−a

=
lim
x→a

f(x) −f(a)

x−a

lim
x→a

g(x) −g(a)

x−a

=
f '(a)

g'(a)

=
f '(x)lim

x→a

g'(x)lim
x→a

= .lim
x→a

f '(x)

g'(x)

Since f(a) = 0 = g(a)

Multiply numerator and denominator by
1

x−a

The limit of a quotient is the quotient of the limits.

By the definition of the derivative

By the continuity of f ' andg'

The limit of a quotient

f

g
f '

g'

f

g

 Example : Applying L’Hôpital’s Rule (0/0 Case)4.4.1

lim
x→0

1 −cosx

x

lim
x→1

sin(πx)

lnx

lim
x→∞

−1e1/x

1/x

lim
x→0

sinx−x

x2

1 −cosx → 0 x → 0

= = = = = 0.lim
x→0

1 −cosx

x
lim
x→0

(1 −cosx)
d

dx

(x)
d

dx

lim
x→0

sinx

1

sinxlim
x→0

1lim
x→0

0

1

x → 1, sin(πx) → 0 ln(x) → 0.

lim
x→1

sin(πx)

lnx
= lim

x→1

π cos(πx)

1/x

= (πx) cos(πx)lim
x→1

= (π ⋅ 1)(−1) = −π.
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c. As , the numerator  and the denominator . Therefore, we can apply L’Hôpital’s rule. We obtain

d. As  both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s rule. We obtain

Since the numerator and denominator of this new quotient both approach zero as , we apply L’Hôpital’s rule again. In
doing so, we see that

Therefore, we conclude that

Evaluate

Hint

Answer

We can also use L’Hôpital’s rule to evaluate limits of quotients  in which  and . Limits of this form

are classified as indeterminate forms of type . Again, note that we are not actually dividing  by . Since  is not a real
number, that is impossible; rather,  is used to represent a quotient of limits, each of which is  or .

Suppose  and  are differentiable functions over an open interval containing , except possibly at . Suppose 

(or ) and  (or ). Then,

assuming the limit on the right exists or is  or . This result also holds if the limit is infinite, if  or , or the
limit is one-sided.

Evaluate each of the following limits by applying L’Hôpital’s rule.

a. 

x → ∞ −1 → 0e1/x → 01
x

= = = = 1.lim
x→∞

−1e1/x

1

x

lim
x→∞

( )e1/x −1
x2

( )−1

x2

lim
x→∞

e1/x e0

x → 0,

= .lim
x→0

sinx−x

x2
lim
x→0

cosx−1

2x

x → 0

= = 0.lim
x→0

cosx−1

2x
lim
x→0

−sinx

2

= 0.lim
x→0

sinx−x

x2

 Exercise 4.4.1

.lim
x→0

x

tanx

( tanx) = x
d

dx
sec2

1

f(x)

g(x)
f(x) → ±∞ g(x) → ±∞

∞/∞ ∞ ∞ ∞
∞/∞ ∞ −∞

 L’Hôpital’s Rule (  Case)∞/∞

f g a a f(x) = ∞lim
x→a

−∞ g(x) = ∞lim
x→a

−∞

=lim
x→a

f(x)

g(x)
lim
x→a

f '(x)

g'(x)

∞ −∞ a = ∞ −∞

 Example : Applying L’Hôpital’s Rule ( ) Case4.4.2 ∞/∞

lim
x→∞

3x+5

2x+1
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b. 

Solution

a. Since  and  are first-degree polynomials with positive leading coefficients,  and 

. Therefore, we apply L’Hôpital’s rule and obtain

Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the chapter we showed how to evaluate
such a limit by dividing the numerator and denominator by the highest power of x in the denominator. In doing so, we saw that

L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.

b. Here,  and . Therefore, we can apply L’Hôpital’s rule and obtain

Now as . Therefore, the first term in the denominator is approaching zero and the second term is getting
really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate
the limit, we use the definition of  to write

Now  and , so we apply L’Hôpital’s rule again. We find

We conclude that

Evaluate

Hint

Answer

As mentioned, L’Hôpital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that to apply

L’Hôpital’s rule to a quotient , it is essential that the limit of  be of the form  or . Consider the following

example.

lim
x→0+

lnx

cotx

3x+5 2x+1 (3x+5) = ∞lim
x→∞

(2x+1) = ∞lim
x→∞

= = .lim
x→∞

3x+5

2x+1
lim
x→∞

3

2

3

2

= = .lim
x→∞

3x+5

2x+1
lim
x→∞

3 +5/x

2 +1/x

3

2

lnx = −∞lim
x→0+

cotx = ∞lim
x→0+

= = .lim
x→0+

lnx

cotx
lim
x→0+

1/x

− xcsc2
lim
x→0+

1

−x xcsc2

x → , x → ∞0+ csc2

cscx

= .lim
x→0+

1

−x xcsc2
lim
x→0+

xsin2

−x

x = 0lim
x→0+

sin2 −x = 0lim
x→0+

= = = 0.lim
x→0+

xsin2

−x
lim
x→0+

2 sinx cosx

−1

0

−1

= 0.lim
x→0+

lnx

cotx

 Exercise 4.4.2

.lim
x→∞

lnx

5x

( lnx) =
d

dx

1

x

0

f(x)

g(x)

f(x)

g(x)

0

0
∞/∞
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Consider 

Show that the limit cannot be evaluated by applying L’Hôpital’s rule.

Solution

Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply L’Hôpital’s
rule. If we try to do so, we get

and

At which point we would conclude erroneously that

However, since  and  we actually have

We can conclude that

Explain why we cannot apply L’Hôpital’s rule to evaluate . Evaluate  by other means.

Hint

Determine the limits of the numerator and denominator separately.

Answer

 Therefore, we cannot apply L’Hôpital’s rule. The limit of the quotient is 

Other Indeterminate Forms

L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms  and . However, we can also use

L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The expressions 
, and  are all considered indeterminate forms. These expressions are not real numbers. Rather, they

represent forms that arise when trying to evaluate certain limits. Next we realize why these are indeterminate forms and then
understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way

that we arrive at the indeterminate form  or .

 Example : When L’Hôpital’s Rule Does Not Apply4.4.3

.lim
x→1

+5x2

3x+4

( +5) = 2x
d

dx
x2

(3x+4) = 3.
d

dx

= = .lim
x→1

+5x2

3x+4
lim
x→1

2x

3

2

3

( +5) = 6lim
x→1

x2 (3x+4) = 7,lim
x→1

= .lim
x→1

+5x2

3x+4

6

7

≠lim
x→1

+5x2

3x+4
lim
x→1

( +5)
d

dx
x2

(3x+4).
d

dx

 Exercise 4.4.3

lim
x→0+

cosx

x
lim
x→0+

cosx

x

cosx = 1.lim
x→0+

∞.

0

0
∞/∞

0 ⋅ ∞, ∞ −∞, ,1∞ ∞0 00

0

0
∞/∞
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Indeterminate Form of Type 0⋅∞
Suppose we want to evaluate , where  and  (or ) as . Since one term in the product

is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the
notation  to denote the form that arises in this situation. The expression  is considered indeterminate because we cannot
determine without further analysis the exact behavior of the product  as . For example, let  be a positive integer
and consider

 and .

As  and . However, the limit as  of  varies, depending on . If ,

then . If , then . If , then . Here we consider another limit

involving the indeterminate form  and show how to rewrite the function as a quotient to use L’Hôpital’s rule.

Evaluate 

Solution

First, rewrite the function  as a quotient to apply L’Hôpital’s rule. If we write

we see that  as  and  as . Therefore, we can apply L’Hôpital’s rule and obtain

We conclude that

Figure : Finding the limit at  of the function 

Evaluate

(f(x) ⋅ g(x))lim
x→a

f(x) → 0 g(x) → ∞ −∞ x → a

0 ⋅ ∞ 0 ⋅ ∞
f(x)g(x) x → ∞ n

f(x) =
1

( +1)xn
g(x) = 3x2

x → ∞, f(x) → 0 g(x) → ∞ x → ∞ f(x)g(x) =
3x2

( +1)xn
n n = 2

f(x)g(x) = 3lim
x→∞

n = 1 f(x)g(x) = ∞lim
x→∞

n = 3 f(x)g(x) = 0lim
x→∞

0 ⋅ ∞

 Example : Indeterminate Form of Type 4.4.4 0 ⋅ ∞

x lnx.lim
x→0+

x lnx

x lnx =
lnx

1/x

lnx → −∞ x → 0+ → ∞
1

x
x → 0+

= = = (−x) = 0.lim
x→0+

lnx

1/x
lim
x→0+

( lnx)
d

dx

(1/x)
d

dx

lim
x→0+

1/x

−1/x2
lim
x→0+

x lnx = 0.lim
x→0+

4.4.2 x = 0 f(x) = x ln x.

 Exercise 4.4.4

x cotx.lim
x→0
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Hint

Write 

Answer

Indeterminate Form of Type 

Another type of indeterminate form is  Consider the following example. Let  be a positive integer and let 
and . As  and . We are interested in . Depending on whether 

 grows faster,  grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since 
 and , we write  to denote the form of this limit. As with our other indeterminate forms,  has

no meaning on its own and we must do more analysis to determine the value of the limit. For example, suppose the exponent n in
the function  is , then

On the other hand, if  then

However, if , then

Therefore, the limit cannot be determined by considering only . Next we see how to rewrite an expression involving the
indeterminate form  as a fraction to apply L’Hôpital’s rule.

Evaluate

Solution

By combining the fractions, we can write the function as a quotient. Since the least common denominator is  we have

.

As , the numerator  and the denominator  Therefore, we can apply L’Hôpital’s rule.
Taking the derivatives of the numerator and the denominator, we have

As ,  and . Since the denominator is positive as  approaches zero from
the right, we conclude that

Therefore,

x cotx =
x cosx

sinx

1

∞ − ∞

∞ −∞. n f(x) = 3xn

g(x) = 3 +5x2 x → ∞, f(x) → ∞ g(x) → ∞ (f(x) −g(x))lim
x→∞

f(x) g(x)
f(x) → ∞ g(x) → ∞ ∞ −∞ ∞ −∞

f(x) = 3xn n = 3

(f(x) −g(x)) = (3 −3 −5) = ∞.lim
x→∞

lim
x→∞

x3 x2

n = 2,

(f(x) −g(x)) = (3 −3 −5) = −5.lim
x→∞

lim
x→∞

x2 x2

n = 1

(f(x) −g(x)) = (3x−3 −5) = −∞.lim
x→∞

lim
x→∞

x2

∞ −∞
∞ −∞

 Example : Indeterminate Form of Type 4.4.5 ∞ − ∞

( − ) .lim
x→0+

1

x2

1

tanx

tanx,x2

− =
1

x2

1

tanx

(tanx) −x2

tanxx2

x → 0+ tanx− → 0x2 tanx → 0.x2

= .lim
x→0+

(tanx) −x2

tanxx2
lim
x→0+

( x) −2xsec2

x+2x tanxx2 sec2

x → 0+ ( x) −2x → 1sec2 x+2x tanx → 0x2 sec2 x

= ∞.lim
x→0+

( x) −2xsec2

x+2x tanxx2 sec2

( − ) = ∞.lim
x→0+

1

x2

1

tanx
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Evaluate .

Hint

Rewrite the difference of fractions as a single fraction.

Answer

0

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions , and  are all
indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we
would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits.
Now we examine how L’Hôpital’s rule can be used to evaluate limits involving these indeterminate forms.

Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a
limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want to evaluate 

 and we arrive at the indeterminate form . (The indeterminate forms  and  can be handled similarly.) We

proceed as follows. Let

Then,

Therefore,

Since  we know that . Therefore,  is of the indeterminate form , and we

can use the techniques discussed earlier to rewrite the expression  in a form so that we can apply L’Hôpital’s rule.
Suppose , where  may be  or  Then

Since the natural logarithm function is continuous, we conclude that

which gives us

Evaluate

Solution

Let .Then,

 Exercise 4.4.5

( − )lim
x→0+

1

x

1

sinx

,00 ∞0 1∞

f(xlim
x→a

)g(x) ∞0 00 1∞

y = f(x .)g(x)

lny = ln(f(x ) = g(x) ln(f(x)).)g(x)

[ln(y)] = [g(x) ln(f(x))].lim
x→a

lim
x→a

f(x) = ∞,lim
x→a

ln(f(x)) = ∞lim
x→a

g(x) ln(f(x))lim
x→a

0 ⋅ ∞

g(x) ln(f(x))
g(x) ln(f(x)) = Llim

x→a
L ∞ −∞.

[ln(y)] = L.lim
x→a

ln( y) = L,lim
x→a

y = f(x = .lim
x→a

lim
x→a

)g(x) eL

 Example : Indeterminate Form of Type 4.4.6 ∞0

.lim
x→∞

x1/x

y = x1/x

ln( ) = lnx = .x1/x 1

x

lnx

x
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We need to evaluate . Applying L’Hôpital’s rule, we obtain

Therefore,  Since the natural logarithm function is continuous, we conclude that

which leads to

Hence,

Evaluate

Hint

Let  and apply the natural logarithm to both sides of the equation.

Answer

Evaluate

Solution

Let

Therefore,

We now evaluate  Since  and , we have the indeterminate form . To apply

L’Hôpital’s rule, we need to rewrite  as a fraction. We could write

or

Let’s consider the first option. In this case, applying L’Hôpital’s rule, we would obtain

lim
x→∞

lnx

x

lny = = = 0.lim
x→∞

lim
x→∞

lnx

x
lim
x→∞

1/x

1

lny = 0.lim
x→∞

ln( y) = 0,lim
x→∞

= y = = = 1.lim
x→∞

x1/x lim
x→∞

eln( y)limx→∞ e0

= 1.lim
x→∞

x1/x

 Exercise 4.4.6

.lim
x→∞

x1/ ln(x)

y = x1/ ln(x)

e

 Example : Indeterminate Form of Type 4.4.7 00

.lim
x→0+

xsin x

y = .xsin x

lny = ln( ) = sinx lnx.xsin x

sinx lnx.lim
x→0+

sinx = 0lim
x→0+

lnx = −∞lim
x→0+

0 ⋅ ∞

sinx lnx

sinx lnx =
sinx

1/ lnx

sinx lnx = = .
lnx

1/ sinx

lnx

cscx
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Unfortunately, we not only have another expression involving the indeterminate form  but the new limit is even more
complicated to evaluate than the one with which we started. Instead, we try the second option. By writing

and applying L’Hôpital’s rule, we obtain

Using the fact that  and , we can rewrite the expression on the right-hand side as

We conclude that  Therefore,  and we have

Hence,

Evaluate .

Hint

Let  and take the natural logarithm of both sides of the equation.

Answer

1

Growth Rates of Functions
Suppose the functions  and  both approach infinity as . Although the values of both functions become arbitrarily large as
the values of  become sufficiently large, sometimes one function is growing more quickly than the other. For example, 
and  both approach infinity as . However, as Table  shows, the values of  are growing much faster than
the values of .

Table : Comparing the Growth Rates of  and 

10 100 1000 10,000

100 10,000 1,000,000 100,000,000

1000 1,000,000 1,000,000,000 1,000,000,000,000

In fact,

or, equivalently

sinx lnx = = = (−x(lnx cosx).lim
x→0+

lim
x→0+

sinx

1/ lnx
lim
x→0+

cosx

−1/(x(lnx ))2
lim
x→0+

)2

0 ⋅ ∞,

sinx lnx = =
lnx

1/ sinx

lnx

cscx,

sinx lnx = = = .lim
x→0+

lim
x→0+

lnx

cscx
lim
x→0+

1/x

−cscx cotx
lim
x→0+

−1

x cscx cotx

cscx =
1

sinx
cotx =

cosx

sinx

= [ ⋅ (−tanx)] =( ) ⋅( (−tanx)) = 1 ⋅ 0 = 0.lim
x→0+

− xsin2

x cosx
lim
x→0+

sinx

x
lim
x→0+

sinx

x
lim
x→0+

lny = 0.lim
x→0+

ln( y) = 0lim
x→0+

y = = = 1.lim
x→0+

lim
x→0+

xsin x e0

= 1.lim
x→0+

xsin x

 Exercise 4.4.7

lim
x→0+

xx

y = xx

f g x → ∞
x f(x) = x2

g(x) = x3 x → ∞ 4.4.1 x3

x2

4.4.1 x2 x3

x

f(x) = x2

g(x) = x3

= x = ∞.lim
x→∞

x3

x2
lim
x→∞
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As a result, we say  is growing more rapidly than  as . On the other hand, for  and ,
although the values of  are always greater than the values of  for , each value of  is roughly three times the
corresponding value of  as , as shown in Table . In fact,

Table : Comparing the Growth Rates of  and 

10 100 1000 10,000

100 10,000 1,000,000 100,000,000

341 30,401 3,004,001 300,040,001

In this case, we say that  and  are growing at the same rate as 

More generally, suppose  and  are two functions that approach infinity as . We say  grows more rapidly than  as 
 if

On the other hand, if there exists a constant  such that

we say  and  grow at the same rate as .

Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

For each of the following pairs of functions, use L’Hôpital’s rule to evaluate

a.  and 
b.  and 

Solution

a. Since  and , we can use L’Hôpital’s rule to evaluate . We obtain

Since  and , we can apply L’Hôpital’s rule again. Since

we conclude that

Therefore,  grows more rapidly than  as  (See Figure  and Table )

= = 0.lim
x→∞

x2

x3
lim
x→∞

1

x

x3 x2 x → ∞ f(x) = x2 g(x) = 3 +4x+1x2

g(x) f(x) x > 0 g(x)
f(x) x → ∞ 4.4.2

= .lim
x→∞

x2

3 +4x+1x2

1

3

4.4.2 x2 3 + 4x+ 1x2

x

f(x) = x2

g(x) = 3 + 4x + 1x2

x2 3 +4x+1x2 x → ∞.

f g x → ∞ g f

x → ∞

= ∞ or, equivalently, = 0.lim
x→∞

g(x)

f(x)
lim
x→∞

f(x)

g(x)

M ≠ 0

= M ,lim
x→∞

f(x)

g(x)

f g x → ∞

 Example : Comparing the Growth Rates of , , and 4.4.8 ln(x) x2 ex

.lim
x→∞

f(x)

g(x)

f(x) = x2 g(x) = ex

f(x) = ln(x) g(x) = x2

= ∞lim
x→∞

x2 = ∞lim
x→∞

ex [ ]lim
x→∞

x2

ex

= .lim
x→∞

x2

ex
lim
x→∞

2x

ex

2x = ∞lim
x→∞

= ∞lim
x→∞

ex

= = 0,lim
x→∞

2x

ex
lim
x→∞

2

ex

= 0.lim
x→∞

x2

ex

ex x2 x → ∞ 4.4.3 4.4.3
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Figure : An exponential function grows at a faster rate than a power function.

Table : Growth rates of a power function and an exponential function.

5 10 15 20

25 100 225 400

148 22,026 3,269,017 485,165,195

b. Since  and , we can use L’Hôpital’s rule to evaluate . We obtain

Thus,  grows more rapidly than  as  (see Figure  and Table ).

Figure : A power function grows at a faster rate than a logarithmic function.

Table : Growth rates of a power function and a logarithmic function

10 100 1000 10,000

2.303 4.605 6.908 9.210

100 10,000 1,000,000 100,000,000

Compare the growth rates of  and .

Hint

Apply L’Hôpital’s rule to .

Answer

The function  grows faster than .

4.4.3

4.4.3

x

x2

ex

lnx = ∞lim
x→∞

= ∞lim
x→∞

x2 lim
x→∞

lnx

x2

= = = 0.lim
x→∞

lnx

x2
lim
x→∞

1/x

2x
lim
x→∞

1

2x2

x2 lnx x → ∞ 4.4.4 4.4.4

4.4.4

4.4.4

x

ln(x)

x2

 Exercise 4.4.8

x100 2x

/x100 2x

2x x100
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Using the same ideas as in Example . it is not difficult to show that  grows more rapidly than  for any . In Figure 
 and Table , we compare  with  and  as .

Figure : The exponential function  grows faster than  for any . (a) A comparison of  with . (b) A comparison
of  with .

Table : An exponential function grows at a faster rate than any power function

5 10 15 20

125 1000 3375 8000

625 10,000 50,625 160,000

148 22,026 3,269,017 485,165,195

Similarly, it is not difficult to show that  grows more rapidly than  for any . In Figure  and Table , we
compare  with  and .

Figure : The function  grows more slowly than  for any  as .

Table : A logarithmic function grows at a slower rate than any root function

10 100 1000 10,000

2.303 4.605 6.908 9.210

2.154 4.642 10 21.544

3.162 10 31.623 100

Key Concepts

L’Hôpital’s rule can be used to evaluate the limit of a quotient when the indeterminate form  or  arises.

L’Hôpital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving a quotient

that has the indeterminate form  or 

The exponential function  grows faster than any power function .
The logarithmic function  grows more slowly than any power function .

4.4.8a ex xp p > 0
4.4.5 4.4.5 ex x3 x4 x → ∞

4.4.5 ex xp p > 0 ex x3

ex x4

4.4.5

x

x3

x4

ex

xp lnx p > 0 4.4.6 4.4.6
lnx x−−√3 x−−√

4.4.6 y = ln(x) xp p > 0 x → ∞

4.4.6

x

ln(x)

x−−√3

x−−√

0

0
∞/∞

0

0
∞/∞.

ex , p > 0xp

lnx , p > 0xp
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Glossary

indeterminate forms

When evaluating a limit, the forms , , and  are considered indeterminate because further

analysis is required to determine whether the limit exists and, if so, what its value is.

L’Hôpital’s rule
If  and  are differentiable functions over an interval , except possibly at , and  or  and 

 are infinite, then , assuming the limit on the right exists or is  or .

4.4: Indeterminate Forms and l'Hospital's Rule is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.8: L’Hôpital’s Rule by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

0

0
∞/∞, 0 ⋅ ∞, ∞ −∞, ,00 ∞0 1∞

f g a a f(x) = 0 = g(x)lim
x→a

lim
x→a

f(x)lim
x→a

g(x)lim
x→a

=lim
x→a

f(x)

g(x)
lim
x→a

f '(x)

g'(x)
∞ −∞
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4.5: Summary of Curve Sketching

Explain how the sign of the first derivative affects the shape of a function’s graph.
State the first derivative test for critical points.
Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph.
Explain the concavity test for a function over an open interval.
Explain the relationship between a function and its first and second derivatives.
State the second derivative test for local extrema.

Earlier in this chapter we stated that if a function  has a local extremum at a point , then  must be a critical point of . However,
a function is not guaranteed to have a local extremum at a critical point. For example,  has a critical point at  since 

 is zero at , but  does not have a local extremum at . Using the results from the previous section, we are
now able to determine whether a critical point of a function actually corresponds to a local extreme value. In this section, we also
see how the second derivative provides information about the shape of a graph by describing whether the graph of a function
curves upward or curves downward.

The First Derivative Test
Corollary  of the Mean Value Theorem showed that if the derivative of a function is positive over an interval  then the function is
increasing over . On the other hand, if the derivative of the function is negative over an interval , then the function is decreasing
over  as shown in the following figure.

Figure : Both functions are increasing over the interval . At each point , the derivative . Both functions are
decreasing over the interval . At each point , the derivative 

A continuous function  has a local maximum at point  if and only if  switches from increasing to decreasing at point .
Similarly,  has a local minimum at  if and only if  switches from decreasing to increasing at . If  is a continuous function
over an interval  containing  and differentiable over , except possibly at , the only way  can switch from increasing to
decreasing (or vice versa) at point  is if  changes sign as  increases through . If  is differentiable at , the only way that 
can change sign as  increases through  is if . Therefore, for a function  that is continuous over an interval  containing
 and differentiable over , except possibly at , the only way  can switch from increasing to decreasing (or vice versa) is if 

 or  is undefined. Consequently, to locate local extrema for a function , we look for points  in the domain of 
such that  or  is undefined. Recall that such points are called critical points of .

 Learning Objectives

f c c f

f(x) = x3 x = 0
(x) = 3f ′ x2 x = 0 f x = 0

3 I

I I

I

4.5.1 (a, b) x (x) > 0f ′

(a, b) x (x) < 0.f ′

f c f c

f c f c f

I c I c f

c f ′ x c f c f ′

x c (c) = 0f ′ f I

c I c f

(c) = 0f ′ (c)f ′ f c f

(c) = 0f ′ (c)f ′ f
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Note that  need not have a local extrema at a critical point. The critical points are candidates for local extrema only. In Figure 
, we show that if a continuous function  has a local extremum, it must occur at a critical point, but a function may not have a

local extremum at a critical point. We show that if  has a local extremum at a critical point, then the sign of  switches as 
increases through that point.

Figure : The function  has four critical points: ,and . The function  has local maxima at  and , and a local
minimum at . The function  does not have a local extremum at . The sign of  changes at all local extrema.

Using Figure , we summarize the main results regarding local extrema.

If a continuous function  has a local extremum, it must occur at a critical point .
The function has a local extremum at the critical point  if and only if the derivative  switches sign as  increases through .
Therefore, to test whether a function has a local extremum at a critical point , we must determine the sign of  to the left
and right of .

This result is known as the first derivative test.

Suppose that  is a continuous function over an interval  containing a critical point . If  is differentiable over , except
possibly at point , then  satisfies one of the following descriptions:

i. If  changes sign from positive when  to negative when , then  is a local maximum of .
ii. If  changes sign from negative when  to positive when , then  is a local minimum of .

iii. If  has the same sign for  and , then  is neither a local maximum nor a local minimum of 

Now let’s look at how to use this strategy to locate all local extrema for particular functions.

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to
confirm your results.

Solution

Step 1. The derivative is  To find the critical points, we need to find where  Factoring the
polynomial, we conclude that the critical points must satisfy

Therefore, the critical points are  Now divide the interval  into the smaller intervals 
and 

f

4.5.2 f

f f ′ x

4.5.2 f a, b, c d f a d
b f c f ′

4.5.2

f c

c f ′ x c

c (x)f ′

c

 First Derivative Test

f I c f I

c f(c)

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

f ′ x < c x > c f(c) f

 Example : Using the First Derivative Test to Find Local Extrema4.5.1

f(x) = −3 −9x−1.x3 x2

(x) = 3 −6x−9.f ′ x2 (x) = 0.f ′

3( −2x−3) = 3(x−3)(x+1) = 0.x2

x = 3, −1. (−∞, ∞) (−∞, −1), (−1, 3)
(3, ∞).
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Step 2. Since  is a continuous function, to determine the sign of  over each subinterval, it suffices to choose a point
over each of the intervals  and  and determine the sign of  at each of these points. For example,
let’s choose , , and  as test points.

Table: : First Derivative Test for 

Interval Test Point
Sign of 

 at
Test Point

Conclusion

(+)(−)(−)=+  is increasing.

(+)(−)(+)=-  is decreasing.

(+)(+)(+)=+  is increasing.

Step 3. Since  switches sign from positive to negative as  increases through ,  has a local maximum at . Since 
 switches sign from negative to positive as  increases through ,  has a local minimum at . These analytical results

agree with the following graph.

Figure : The function  has a maximum at  and a minimum at 

Use the first derivative test to locate all local extrema for 

Hint

Find all critical points of  and determine the signs of  over particular intervals determined by the critical points.

Answer

f ′ (x)f ′

(−∞, −1), (−1, 3) (3, ∞) f ′

x = −2 x = 0 x = 4

4.5.1 f(x) = − 3 − 9x− 1.x3 x2

(x) = 3(x − 3)(x + 1)f ′

(−∞,−1) x = −2 f

(−1,3) x = 0 f

(3,∞) x = 4 f

f ′ x −1 f x = −1
f ′ x 3 f x = 3

4.5.3 f x = −1 x = 3

 Exercise 4.5.1

f(x) = − + +18x.x3 3
2
x2

f (x)f ′
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 has a local minimum at  and a local maximum at .

Use the first derivative test to find the location of all local extrema for  Use a graphing utility to confirm
your results.

Solution

Step 1. The derivative is

The derivative  when  Therefore,  at . The derivative  is undefined at 
Therefore, we have three critical points: , , and . Consequently, divide the interval  into the
smaller intervals , and .

Step 2: Since  is continuous over each subinterval, it suffices to choose a test point  in each of the intervals from step 1 and
determine the sign of  at each of these points. The points , and  are test points for these
intervals.

Table: : First Derivative Test for 

Interval Test Point Sign of  at

Test Point
Conclusion

 is decreasing.

 is increasing.

 is increasing.

 is decreasing.

Step 3: Since  is decreasing over the interval  and increasing over the interval ,  has a local minimum at 
. Since  is increasing over the interval  and the interval ,  does not have a local extremum at .

Since  is increasing over the interval  and decreasing over the interval ,  has a local maximum at . The
analytical results agree with the following graph.

Figure : The function  has a local minimum at  and a local maximum at 

Use the first derivative test to find all local extrema for .

Hint

The only critical point of  is 

f −2 3

 Example : Using the First Derivative Test4.5.2

f(x) = 5 − .x1/3 x5/3

(x) = − = − = = .f ′ 5

3
x−2/3 5

3
x2/3 5

3x2/3

5x2/3

3

5 −5x4/3

3x2/3

5(1 − )x4/3

3x2/3

(x) = 0f ′ 1 − = 0.x4/3 (x) = 0f ′ x = ±1 (x)f ′ x = 0.
x = 0 x = 1 x = −1 (−∞, ∞)

(−∞, −1), (−1, 0), (0, 1) (1, ∞)

f ′ x

f ′ x = −2, x = − , x =1
2

1
2

x = 2

4.5.2 f(x) = 5 − .x1/3 x5/3

(x) =f ′ 5(1− )x4/3

3x2/3

(−∞,−1) x = −2 = −
(+)(−)

+
f

(−1,0) x = − 1
2 = +

(+)(+)

+
f

(0,1) x = 1
2 = +

(+)(+)

+
f

(1,∞) x = 2 = −
(+)(−)

+
f

f (−∞, −1) (−1, 0) f

x = −1 f (−1, 0) (0, 1) f x = 0
f (0, 1) (1, ∞) f x = 1

4.5.4 f x = −1 x = 1

 Exercise 4.5.2

f(x) =
3

x−1

f x = 1.
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Answer

 has no local extrema because  does not change sign at .

Concavity and Points of Inflection

We now know how to determine where a function is increasing or decreasing. However, there is another issue to consider regarding
the shape of the graph of a function. If the graph curves, does it curve upward or curve downward? This notion is called the
concavity of the function.

Figure  shows a function  with a graph that curves upward. As  increases, the slope of the tangent line increases. Thus,
since the derivative increases as  increases,  is an increasing function. We say this function  is concave up. Figure 
shows a function  that curves downward. As  increases, the slope of the tangent line decreases. Since the derivative decreases as 

 increases,  is a decreasing function. We say this function  is concave down.

Let  be a function that is differentiable over an open interval . If  is increasing over , we say  is concave up over . If 
 is decreasing over , we say  is concave down over .

Figure : (a), (c) Since  is increasing over the interval , we say  is concave up over  Since  is
decreasing over the interval , we say  is concave down over 

In general, without having the graph of a function , how can we determine its concavity? By definition, a function  is
concave up if  is increasing. From Corollary , we know that if  is a differentiable function, then  is increasing if its
derivative . Therefore, a function  that is twice differentiable is concave up when . Similarly, a function 

 is concave down if  is decreasing. We know that a differentiable function  is decreasing if its derivative .
Therefore, a twice-differentiable function  is concave down when . Applying this logic is known as the concavity
test.

f f ′ x = 1

4.5.5a f x

x f ′ f 4.5.5b
f x

x f ′ f

 Definition: concavity test

f I f ′ I f I

f ′ I f I

4.5.5 f ′ (a, b) f (a, b). (b), (d) f ′

(a, b) f (a, b).

f f

f ′ 3 f ′ f ′

(x) > 0f ′′ f (x) > 0f ′′

f f ′ f ′ (x) < 0f ′′

f (x) < 0f ′′
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Let  be a function that is twice differentiable over an interval .

i. If  for all , then  is concave up over 
ii. If  for all  then  is concave down over .

We conclude that we can determine the concavity of a function  by looking at the second derivative of . In addition, we observe
that a function  can switch concavity (Figure ). However, a continuous function can switch concavity only at a point  if 

 or  is undefined. Consequently, to determine the intervals where a function  is concave up and concave down,
we look for those values of  where  or  is undefined. When we have determined these points, we divide the
domain of  into smaller intervals and determine the sign of  over each of these smaller intervals. If  changes sign as we pass
through a point , then  changes concavity. It is important to remember that a function  may not change concavity at a point 
even if  or  is undefined. If, however,  does change concavity at a point  and  is continuous at , we say the
point  is an inflection point of .

If  is continuous at  and  changes concavity at , the point  is an inflection point of .

Figure : Since  for , the function  is concave up over the interval . Since  for , the
function  is concave down over the interval . The point  is an inflection point of .

For the function  determine all intervals where  is concave up and all intervals where  is
concave down. List all inflection points for . Use a graphing utility to confirm your results.

Solution

To determine concavity, we need to find the second derivative  The first derivative is  so the
second derivative is  If the function changes concavity, it occurs either when  or  is
undefined. Since  is defined for all real numbers , we need only find where . Solving the equation ,
we see that  is the only place where  could change concavity. We now test points over the intervals  and 
to determine the concavity of . The points  and  are test points for these intervals.

Table: : Test for Concavity for 

Interval Test Point Sign of  at
Test Point

Conclusion

−  is concave down

+  is concave up

 Test for Concavity

f I

(x) > 0f ′′ x ∈ I f I

(x) < 0f ′′ x ∈ I, f I

f f

f 4.5.6 x

(x) = 0f ′′ (x)f ′′ f

x (x) = 0f ′′ (x)f ′′

f f ′′ f ′′

x f f x

(x) = 0f ′′ (x)f ′′ f a f a

(a, f(a)) f

 Definition: inflection point

f a f a (a, f(a)) f

4.5.6 (x) > 0f ′′ x < a f (−∞,a) (x) < 0f ′′ x > a
f (a, ∞) (a,f(a)) f

 Example : Testing for Concavity4.5.3

f(x) = −6 +9x+30,x3 x2 f f

f

(x).f ′′ (x) = 3 −12x+9,f ′ x2

(x) = 6x−12.f ′′ (x) = 0f ′′ (x)f ′′

f ′′ x (x) = 0f ′′ 6x−12 = 0
x = 2 f (−∞, 2) (2, ∞)

f x = 0 x = 3

4.5.3 f(x) = − 6 + 9x+ 30.x3 x2

(x) = 6x − 12f ′′

(−∞,2) x = 0 f

(2,∞) x = 3 f
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We conclude that  is concave down over the interval  and concave up over the interval . Since  changes
concavity at , the point  is an inflection point. Figure  confirms the analytical results.

Figure : The given function has a point of inflection at  where the graph changes concavity.

For , find all intervals where  is concave up and all intervals where  is concave down.

Hint

Find where 

Answer

 is concave up over the interval  and concave down over the interval 

We now summarize, in Table , the information that the first and second derivatives of a function  provide about the graph of 
, and illustrate this information in Figure .

Table: : What Derivatives Tell Us about Graphs
Sign of Sign of Is  increasing or decreasing? Concavity

Positive Positive Increasing Concave up

Positive Negative Increasing Concave down

Negative Positive Decreasing Concave up

Negative Negative Decreasing Concave down

f (−∞, 2) (2, ∞) f

x = 2 (2, f(2)) = (2, 32) 4.5.7

4.5.7 (2, 32)

 Exercise 4.5.3

f(x) = − + +18xx3 3
2
x2 f f

(x) = 0f ′′

f (−∞, )1
2

( , ∞)1
2

4.5.4 f

f 4.5.8

4.5.4

f ′ f ′′ f
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Figure :Consider a twice-differentiable function  over an open interval . If  for all , the function is
increasing over . If  for all , the function is decreasing over . If  for all , the function is concave
up. If  for all , the function is concave down on .

The Second Derivative Test
The first derivative test provides an analytical tool for finding local extrema, but the second derivative can also be used to locate
extreme values. Using the second derivative can sometimes be a simpler method than using the first derivative.

We know that if a continuous function has a local extremum, it must occur at a critical point. However, a function need not have a
local extremum at a critical point. Here we examine how the second derivative test can be used to determine whether a function
has a local extremum at a critical point. Let  be a twice-differentiable function such that  and  is continuous over an
open interval  containing . Suppose . Since  is continuous over  for all  (Figure ). Then, by
Corollary ,  is a decreasing function over . Since , we conclude that for all  if  and 

 if . Therefore, by the first derivative test,  has a local maximum at .

On the other hand, suppose there exists a point  such that  but . Since  is continuous over an open interval 
 containing , then  for all  (Figure ). Then, by Corollary ,  is an increasing function over . Since 

, we conclude that for all ,  if  and  if . Therefore, by the first derivative test,  has
a local minimum at 

Figure : Consider a twice-differentiable function  such that  is continuous. Since  and , there is an
interval  containing  such that for all  in ,  is increasing if  and  is decreasing if . As a result,  has a local
maximum at . Since  and , there is an interval  containing  such that for all  in ,  is decreasing if 

 and  is increasing if . As a result,  has a local minimum at .

4.5.8 f I (x) > 0f ′ x ∈ I

I (x) < 0f ′ x ∈ I I (x) > 0f ′′ x ∈ I

(x) < 0f ′′ x ∈ I I

f (a) = 0f ′ f ′′

I a (a) < 0f ′′ f ′′ I, (x) < 0f ′′ x ∈ I 4.5.9
3 f ′ I (a) = 0f ′ x ∈ I, (x) > 0f ′ x < a

(x) < 0f ′ x > a f x = a

b (b) = 0f ′ (b) > 0f ′′ f ′′

I b (x) > 0f ′′ x ∈ I 4.5.9 3 f ′ I

(b) = 0f ′ x ∈ I (x) < 0f ′ x < b (x) > 0f ′ x > b f

x = b.

4.5.9 f f ′′ (a) = 0f ′ (a) < 0f ′′

I a x I f x < a f x > a f
x = a (b) = 0f ′ (b) > 0f ′′ I b x I f

x < b f x > b f x = b
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Suppose  and  is continuous over an interval containing .

i. If , then  has a local minimum at .
ii. If , then  has a local maximum at .

iii. If  then the test is inconclusive.

Note that for case iii. when , then  may have a local maximum, local minimum, or neither at . For example, the
functions  and  all have critical points at . In each case, the second derivative is zero at 

. However, the function  has a local minimum at  whereas the function  has a local maximum at
, and the function  does not have a local extremum at .

Let’s now look at how to use the second derivative test to determine whether  has a local maximum or local minimum at a critical
point  where 

Use the second derivative to find the location of all local extrema for 

Solution

To apply the second derivative test, we first need to find critical points  where . The derivative is 
. Therefore,  when .

To determine whether  has a local extremum at any of these points, we need to evaluate the sign of  at these points. The
second derivative is

In the following table, we evaluate the second derivative at each of the critical points and use the second derivative test to
determine whether  has a local maximum or local minimum at any of these points.

Table: : Second Derivative Test for 

Conclusion

Local maximum

Second derivative test is inconclusive

Local minimum

By the second derivative test, we conclude that  has a local maximum at  and  has a local minimum at .
The second derivative test is inconclusive at . To determine whether  has a local extrema at  we apply the first
derivative test. To evaluate the sign of  for  and , let  and  be the
two test points. Since  and , we conclude that  is decreasing on both intervals and, therefore,  does not
have a local extrema at  as shown in the following graph.

 Second Derivative Test

(c) = 0f ′ f ′′ c

(c) > 0f ′′ f c

(c) < 0f ′′ f c

(c) = 0,f ′′

(c) = 0f ′′ f c

f(x) = , f(x) = ,x3 x4 f(x) = −x4 x = 0
x = 0 f(x) = x4 x = 0 f(x) = −x4

x = 0 f(x) = x3 x = 0

f

c (c) = 0.f ′

 Example : Using the Second Derivative Test4.5.4

f(x) = −5 .x5 x3

c (c) = 0f ′

(x) = 5 −15f ′ x4 x2 (x) = 5 −15 = 5 ( −3) = 0f ′ x4 x2 x2 x2 x = 0, ± 3
–

√

f f ′′

(x) = 20 −30x = 10x(2 −3).f ′′ x3 x2

f

4.5.5 f(x) = − 5 .x5 x3

x (x)f ′′

− 3
–

√ −30 3
–

√

0 0

3
–

√ 30 3
–

√

f x = − 3
–

√ f x = 3
–

√

x = 0 f x = 0,
(x) = 5 ( −3)f ′ x2 x2 x ∈ (− , 0)3

–
√ x ∈ (0, )3

–
√ x = −1 x = 1

(−1) < 0f ′ (1) < 0f ′ f f

x = 0
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Figure :The function  has a local maximum at  and a local minimum at 

Consider the function . The points  satisfy . Use the second derivative test to
determine whether  has a local maximum or local minimum at those points.

Hint

Answer

 has a local maximum at  and a local minimum at .

We have now developed the tools we need to determine where a function is increasing and decreasing, as well as acquired an
understanding of the basic shape of the graph. In the next section we discuss what happens to a function as  At that point,
we have enough tools to provide accurate graphs of a large variety of functions.

Key Concepts
If  is a critical point of  and  for  and  for , then  has a local maximum at .
If  is a critical point of  and  for  and  for  then  has a local minimum at .
If  over an interval , then  is concave up over .
If  over an interval , then  is concave down over .
If  and , then  has a local minimum at .
If  and , then  has a local maximum at .
If  and , then evaluate  at a test point  to the left of  and a test point  to the right of , to determine
whether  has a local extremum at .

Glossary

concave down
if  is differentiable over an interval  and  is decreasing over , then  is concave down over 

concave up
if  is differentiable over an interval  and  is increasing over , then  is concave up over 

4.5.10 f x = − 3–√ x = 3–√

 Exercise 4.5.4

f(x) = −( ) −18xx3 3
2
x2 c = 3, −2 (c) = 0f ′

f

(x) = 6x−3f ′′

f −2 3

x → ±∞.

c f (x) > 0f ′ x < c (x) < 0f ′ x > c f c

c f (x) < 0f ′ x < c (x) > 0f ′ x > c, f c

(x) > 0f ′′ I f I

(x) < 0f ′′ I f I

(c) = 0f ′ (c) > 0f ′′ f c

(c) = 0f ′ (c) < 0f ′′ f c

(c) = 0f ′ (c) = 0f ′′ (x)f ′ x c x c

f c

f I f ′ I f I

f I f ′ I f I
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concavity
the upward or downward curve of the graph of a function

concavity test
suppose  is twice differentiable over an interval ; if  over , then  is concave up over ; if  over , then  is
concave down over 

first derivative test
let  be a continuous function over an interval  containing a critical point  such that  is differentiable over  except possibly
at ; if  changes sign from positive to negative as  increases through , then  has a local maximum at ; if  changes sign
from negative to positive as  increases through , then  has a local minimum at ; if  does not change sign as  increases
through , then  does not have a local extremum at 

inflection point
if  is continuous at  and  changes concavity at , the point  is an inflection point of 

second derivative test
suppose  and ' is continuous over an interval containing ; if , then  has a local minimum at ; if 

, then  has a local maximum at ; if , then the test is inconclusive
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4.7: Optimization Problems

Set up and solve optimization problems in several applied fields.

One common application of calculus is calculating the minimum or maximum value of a function. For example, companies often
want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the amount of material
used to package a product with a certain volume. In this section, we show how to set up these types of minimization and
maximization problems and solve them by using the tools developed in this chapter.

Solving Optimization Problems over a Closed, Bounded Interval
The basic idea of the optimization problems that follow is the same. We have a particular quantity that we are interested in
maximizing or minimizing. However, we also have some auxiliary condition that needs to be satisfied. For example, in Example 

, we are interested in maximizing the area of a rectangular garden. Certainly, if we keep making the side lengths of the garden
larger, the area will continue to become larger. However, what if we have some restriction on how much fencing we can use for the
perimeter? In this case, we cannot make the garden as large as we like. Let’s look at how we can maximize the area of a rectangle
subject to some constraint on the perimeter.

A rectangular garden is to be constructed using a rock wall as one side of the garden and wire fencing for the other three sides
(Figure ). Given  of wire fencing, determine the dimensions that would create a garden of maximum area. What is
the maximum area?

Figure : We want to determine the measurements  and  that will create a garden with a maximum area using  of
fencing.

Solution

Let  denote the length of the side of the garden perpendicular to the rock wall and  denote the length of the side parallel to
the rock wall. Then the area of the garden is

We want to find the maximum possible area subject to the constraint that the total fencing is . From Figure , the
total amount of fencing used will be  Therefore, the constraint equation is

Solving this equation for , we have  Thus, we can write the area as

 Learning Objectives

4.7.1

 Example : Maximizing the Area of a Garden4.7.1

4.7.1 100 ft

4.7.1 x y 100 ft

x y

A = x ⋅ y.

100 ft 4.7.1
2x +y.

2x +y = 100.

y y = 100 −2x.

A(x) = x ⋅ (100 −2x) = 100x −2 .x2
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Before trying to maximize the area function  we need to determine the domain under consideration. To
construct a rectangular garden, we certainly need the lengths of both sides to be positive. Therefore, we need  and .
Since , if , then . Therefore, we are trying to determine the maximum value of  for  over the
open interval . We do not know that a function necessarily has a maximum value over an open interval. However, we do
know that a continuous function has an absolute maximum (and absolute minimum) over a closed interval. Therefore, let’s
consider the function  over the closed interval . If the maximum value occurs at an interior point,
then we have found the value  in the open interval  that maximizes the area of the garden.

Therefore, we consider the following problem:

Maximize  over the interval 

As mentioned earlier, since  is a continuous function on a closed, bounded interval, by the extreme value theorem, it has a
maximum and a minimum. These extreme values occur either at endpoints or critical points. At the endpoints, . Since
the area is positive for all  in the open interval , the maximum must occur at a critical point. Differentiating the
function , we obtain

Therefore, the only critical point is  (Figure ). We conclude that the maximum area must occur when .

Figure : To maximize the area of the garden, we need to find the maximum value of the function .

Then we have  To maximize the area of the garden, let  and . The area
of this garden is .

Determine the maximum area if we want to make the same rectangular garden as in Figure , but we have  of
fencing.

Hint

We need to maximize the function  over the interval 

Answer

The maximum area is .

Now let’s look at a general strategy for solving optimization problems similar to Example .

1. Introduce all variables. If applicable, draw a figure and label all variables.
2. Determine which quantity is to be maximized or minimized, and for what range of values of the other variables (if this can

be determined at this time).
3. Write a formula for the quantity to be maximized or minimized in terms of the variables. This formula may involve more

than one variable.

A(x) = 100x −2 ,x2

x > 0 y > 0
y = 100 −2x y > 0 x < 50 A(x) x

(0, 50)

A(x) = 100x −2x2 [0, 50]
x (0, 50)

A(x) = 100x −2x2 [0, 50].

A

A(x) = 0
x (0, 50)

A(x)

A'(x) = 100 −4x.

x = 25 4.7.2 x = 25

4.7.2 A(x) = 100x − 2x2

y = 100 −2x = 100 −2(25) = 50. x = 25 ft y = 50 ft

1250 ft2

 Exercise 4.7.1

4.7.2 200 ft

A(x) = 200x −2x2 [0, 100].

5000 ft2

4.7.1

 Problem-Solving Strategy: Solving Optimization Problems
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4. Write any equations relating the independent variables in the formula from step . Use these equations to write the quantity
to be maximized or minimized as a function of one variable.

5. Identify the domain of consideration for the function in step  based on the physical problem to be solved.
6. Locate the maximum or minimum value of the function from step  This step typically involves looking for critical points

and evaluating a function at endpoints.

Now let’s apply this strategy to maximize the volume of an open-top box given a constraint on the amount of material to be used.

An open-top box is to be made from a  by  piece of cardboard by removing a square from each corner of the box
and folding up the flaps on each side. What size square should be cut out of each corner to get a box with the maximum
volume?

Solution

Step 1: Let  be the side length of the square to be removed from each corner (Figure ). Then, the remaining four flaps
can be folded up to form an open-top box. Let  be the volume of the resulting box.

Figure : A square with side length  inches is removed from each corner of the piece of cardboard. The remaining flaps
are folded to form an open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize .

Step 3: As mentioned in step 2, are trying to maximize the volume of a box. The volume of a box is

where and  are the length, width, and height, respectively.

Step 4: From Figure , we see that the height of the box is  inches, the length is  inches, and the width is 
inches. Therefore, the volume of the box is

Step 5: To determine the domain of consideration, let’s examine Figure . Certainly, we need  Furthermore, the side
length of the square cannot be greater than or equal to half the length of the shorter side, ; otherwise, one of the flaps
would be completely cut off. Therefore, we are trying to determine whether there is a maximum volume of the box for  over
the open interval  Since  is a continuous function over the closed interval , we know  will have an absolute
maximum over the closed interval. Therefore, we consider  over the closed interval  and check whether the absolute
maximum occurs at an interior point.

Step 6: Since  is a continuous function over the closed, bounded interval ,  must have an absolute maximum (and
an absolute minimum). Since  at the endpoints and  for  the maximum must occur at a critical
point. The derivative is

To find the critical points, we need to solve the equation

3

4
4.

 Example : Maximizing the Volume of a Box4.7.2

24 in. 36 in.

x 4.7.3
V

4.7.3 x

V

V = L ⋅ W ⋅ H,

L, W , H

4.7.3 x 36 −2x 24 −2x

.
V (x) = (36 −2x)(24 −2x)x

= 4 −120 +864xx3 x2

4.7.3 x > 0.
24 in.

x

(0, 12). V [0, 12] V

V [0, 12]

V (x) [0, 12] V

V (x) = 0 V (x) > 0 0 < x < 12,

V '(x) = 12 −240x +864.x2

12 −240x +864 = 0.x2
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Dividing both sides of this equation by , the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are

Since  is not in the domain of consideration, the only critical point we need to consider is . Therefore, the
volume is maximized if we let  The maximum volume is

as shown in the following graph.

Figure : Maximizing the volume of the box leads to finding the maximum value of a cubic polynomial.

Suppose the dimensions of the cardboard in Example  are  by  Let  be the side length of each square and
write the volume of the open-top box as a function of . Determine the domain of consideration for .

Hint

The volume of the box is 

Answer

 The domain is .

An island is  mi due north of its closest point along a straight shoreline. A visitor is staying at a cabin on the shore that is  mi
west of that point. The visitor is planning to go from the cabin to the island. Suppose the visitor runs at a rate of  mph and
swims at a rate of  mph. How far should the visitor run before swimming to minimize the time it takes to reach the island?

Solution

Step 1: Let  be the distance running and let  be the distance swimming (Figure ). Let  be the time it takes to get from
the cabin to the island.

12

−20x +72 = 0.x2

.

x =
20 ± (−20 −4(1)(72))2− −−−−−−−−−−−−−

√

2

=
20 ± 112

−−−
√

2

=
20 ±4 7

–
√

2

= 10 ±2 7
–

√

10 +2 7
–

√ 10 −2 7
–

√
x = 10 −2 in.7

–
√

V (10 −2 ) = 640 +448 ≈ 1825 .7
–

√ 7
–

√ in3

4.7.4

 Exercise 4.7.2

4.7.2 20 in. 30 in. x

x x

L ⋅ W ⋅ H.

V (x) = x(20 −2x)(30 −2x). [0, 10]

 Example : Minimizing Travel Time4.7.3

2 6
8

3

x y 4.7.5 T
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Figure : How can we choose  and  to minimize the travel time from the cabin to the island?

Step 2: The problem is to minimize .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the time spent swimming.
Since Distance = Rate × Time  the time spent running is

,

and the time spent swimming is

.

Therefore, the total time spent traveling is

.

Step 4: From Figure , the line segment of  miles forms the hypotenuse of a right triangle with legs of length  mi and 
 mi. Therefore, by the Pythagorean theorem, , and we obtain . Thus, the total

time spent traveling is given by the function

.

Step 5: From Figure , we see that . Therefore,  is the domain of consideration.

Step 6: Since  is a continuous function over a closed, bounded interval, it has a maximum and a minimum. Let’s begin by
looking for any critical points of  over the interval  The derivative is

If , then

Therefore,

Squaring both sides of this equation, we see that if  satisfies this equation, then  must satisfy

4.7.5 x y

T

(D = R ×T ),

= =Trunning

Drunning

Rrunning

x

8

= =Tswimming

Dswimming

Rswimming

y

3

T = +
x

8

y

3

4.7.5 y 2
6 −x +(6 −x =22 )2 y2 y = (6 −x +4)2− −−−−−−−−−

√

T (x) = +
x

8

(6 −x +4)2− −−−−−−−−−
√

3

4.7.5 0 ≤ x ≤ 6 [0, 6]

T (x)
T [0, 6].

T '(x) = − ⋅ 2(6 −x)
1

8

1

2

[(6 −x +4)2 ]−1/2

3

= −
1

8

(6 −x)

3 (6 −x +4)2− −−−−−−−−−√

T '(x) = 0,

=
1

8

6 −x

3 (6 −x +4)2− −−−−−−−−−√
(4.7.1)

3 = 8(6 −x).(6 −x +4)2
− −−−−−−−−−

√ (4.7.2)

x x

9[(6 −x +4] = 64(6 −x ,)2 )2
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which implies

We conclude that if  is a critical point, then  satisfies

[Note that since we are squaring, ]

Therefore, the possibilities for critical points are

Since  is not in the domain, it is not a possibility for a critical point. On the other hand,  is in
the domain. Since we squared both sides of Equation  to arrive at the possible critical points, it remains to verify that 

 satisfies Equation . Since  does satisfy that equation, we conclude that 
is a critical point, and it is the only one. To justify that the time is minimized for this value of , we just need to check the
values of  at the endpoints  and , and compare them with the value of  at the critical point 

. We find that  and , whereas

Therefore, we conclude that  has a local minimum at  mi.

Suppose the island is  mi from shore, and the distance from the cabin to the point on the shore closest to the island is  mi.
Suppose a visitor swims at the rate of  mph and runs at a rate of  mph. Let  denote the distance the visitor will run before
swimming, and find a function for the time it takes the visitor to get from the cabin to the island.

Hint

The time 

Answer

In business, companies are interested in maximizing revenue. In the following example, we consider a scenario in which a
company has collected data on how many cars it is able to lease, depending on the price it charges its customers to rent a car. Let’s
use these data to determine the price the company should charge to maximize the amount of money it brings in.

Owners of a car rental company have determined that if they charge customers  dollars per day to rent a car, where 
, the number of cars  they rent per day can be modeled by the linear function . If they charge

 per day or less, they will rent all their cars. If they charge  per day or more, they will not rent any cars. Assuming the
owners plan to charge customers between  per day and  per day to rent a car, how much should they charge to
maximize their revenue?

Solution

Step 1: Let  be the price charged per car per day and let  be the number of cars rented per day. Let  be the revenue per day.

Step 2: The problem is to maximize 

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per car per day—that is, 

55(6 −x = 36.)2

x x

(x −6 = .)2 36

55

(x −6 = (6 −x .)2 )2

x = 6 ± .
6

55
−−

√

x = 6 +6/ 55
−−

√ x = 6 −6/ 55
−−

√

4.7.2
x = 6 −6/ 55

−−
√ 4.7.1 x = 6 −6/ 55

−−
√ x = 6 −6/ 55

−−
√

x

T (x) x = 0 x = 6 T (x)
x = 6 −6/ 55

−−
√ T (0) ≈ 2.108 h T (6) ≈ 1.417 h

T (6 −6/ ) ≈ 1.368 h.55
−−

√

T x ≈ 5.19

 Exercise 4.7.3

1 15
2.5 6 x

T = + .Trunning Tswimming

T (x) = +
x

6

(15 −x +1)2− −−−−−−−−−−√

2.5

 Example : Maximizing Revenue4.7.4

p

50 ≤ p ≤ 200 n n(p) = 1000 −5p

$50 $200
$50 $200

p n R

R.

R = n ×p.
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Step 4: Since the number of cars rented per day is modeled by the linear function  the revenue  can be
represented by the function

Step 5: Since the owners plan to charge between  per car per day and  per car per day, the problem is to find the
maximum revenue  for  in the closed interval .

Step 6: Since  is a continuous function over the closed, bounded interval , it has an absolute maximum (and an
absolute minimum) in that interval. To find the maximum value, look for critical points. The derivative is 

 Therefore, the critical point is . When  When 
. When .

Therefore, the absolute maximum occurs at . The car rental company should charge  per day per car to
maximize revenue as shown in the following figure.

Figure : To maximize revenue, a car rental company has to balance the price of a rental against the number of cars people
will rent at that price.

A car rental company charges its customers  dollars per day, where . It has found that the number of cars rented
per day can be modeled by the linear function  How much should the company charge each customer to
maximize revenue?

Hint

 where  is the number of cars rented and  is the price charged per car.

Answer

The company should charge  per car per day.

A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the axes. Let  be the length
of the rectangle and  be its width. Let  be the area of the rectangle.

n(p) = 1000 −5p, R

R(p) = n ×p

= (1000 −5p)p

= −5 +1000p.p2

$50 $200
R(p) p [50, 200]

R [50, 200]

R'(p) = −10p +1000. p = 100 p = 100, R(100) = $50, 000.
p = 50, R(p) = $37, 500 p = 200, R(p) = $0

p = $100 $100

4.7.6

 Exercise 4.7.4

p 60 ≤ p ≤ 150
n(p) = 750 −5p.

R(p) = n ×p, n p

$75

 Example : Maximizing the Area of an Inscribed Rectangle4.7.5

+ = 1.
x2

4
y2

L

W A
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Figure : We want to maximize the area of a rectangle inscribed in an ellipse.

Step 2: The problem is to maximize .

Step 3: The area of the rectangle is 

Step 4: Let  be the corner of the rectangle that lies in the first quadrant, as shown in Figure . We can write length 

 and width . Since  and , we have . Therefore, the area is

Step 5: From Figure , we see that to inscribe a rectangle in the ellipse, the -coordinate of the corner in the first quadrant
must satisfy . Therefore, the problem reduces to looking for the maximum value of  over the open interval 

. Since  will have an absolute maximum (and absolute minimum) over the closed interval , we consider 
 over the interval . If the absolute maximum occurs at an interior point, then we have found an

absolute maximum in the open interval.

Step 6: As mentioned earlier,  is a continuous function over the closed, bounded interval . Therefore, it has an
absolute maximum (and absolute minimum). At the endpoints  and ,  For , .

Therefore, the maximum must occur at a critical point. Taking the derivative of , we obtain

To find critical points, we need to find where  We can see that if  is a solution of

then  must satisfy

Therefore,  Thus,  are the possible solutions of Equation . Since we are considering  over the interval 
,  is a possibility for a critical point, but  is not. Therefore, we check whether  is a solution of

Equation . Since  is a solution of Equation , we conclude that  is the only critical point of  in the
interval .

Therefore,  must have an absolute maximum at the critical point . To determine the dimensions of the rectangle,
we need to find the length  and the width . If  then

4.7.7

A

A = LW .

(x, y) 4.7.7

L = 2x W = 2y + = 1
x2

4
y2 y > 0 y = 1 −

x2

4

− −−−−−
√

A = LW = (2x)(2y) = 4x = 2x1 −
x2

4

− −−−−−
√ 4 −x2

− −−−−
√

4.7.7 x

0 < x < 2 A(x)
(0, 2) A(x) [0, 2]

A(x) = 2x 4 −x2
− −−−−

√ [0, 2]

A(x) [0, 2]
x = 0 x = 2 A(x) = 0. 0 < x < 2 A(x) > 0

A(x)

(x)A′ = 2 +2x ⋅ (−2x)4 −x2− −−−−
√

1

2 4 −x2
− −−−−

√

= 2 −4 −x2− −−−−√ 2x2

4 −x2
− −−−−

√

= .
8 −4x2

4 −x2
− −−−−

√

(x) = 0.A′ x

= 0,
8 −4x2

4 −x2
− −−−−

√
(4.7.3)

x

8 −4 = 0.x2

= 2.x2 x = ± 2
–

√ 4.7.3 x

[0, 2] x = 2
–

√ x = − 2
–

√ 2
–

√

4.7.3 x = 2
–√ 4.7.3 2

–√ A(x)
[0, 2]

A(x) x = 2
–

√

L W x = 2
–

√
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Therefore, the dimensions of the rectangle are  and . The area of this rectangle is 

Modify the area function  if the rectangle is to be inscribed in the unit circle . What is the domain of
consideration?

Hint

If  is the vertex of the square that lies in the first quadrant, then the area of the square is 

Answer

 The domain of consideration is .

Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the extreme value theorem, we
were guaranteed that the functions had absolute extrema. Let’s now consider functions for which the domain is neither closed nor
bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is unbounded. For example,
the function  over  has an absolute minimum of  at . Therefore, we can still consider functions
over unbounded domains or open intervals and determine whether they have any absolute extrema. In the next example, we try to
minimize a function over an unbounded domain. We will see that, although the domain of consideration is  the function has
an absolute minimum.

In the following example, we look at constructing a box of least surface area with a prescribed volume. It is not difficult to show
that for a closed-top box, by symmetry, among all boxes with a specified volume, a cube will have the smallest surface area.
Consequently, we consider the modified problem of determining which open-topped box with a specified volume has the smallest
surface area.

A rectangular box with a square base, an open top, and a volume of  is to be constructed. What should the dimensions
of the box be to minimize the surface area of the box? What is the minimum surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable  to represent the length of each side of the square base; let 
represent the height of the box. Let  denote the surface area of the open-top box.

Figure : We want to minimize the surface area of a square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the base. The area of each
of the four vertical sides is  The area of the base is . Therefore, the surface area of the box is

y = = = .1 −
( 2

–
√ )2

4

− −−−−−−−−

√ 1 −
1

2

− −−−−
√

1

2
–

√

L = 2x = 2 2
–

√ W = 2y = =
2

2
–

√
2
–

√

A = LW = (2 )( ) = 4.2
–

√ 2
–

√

 Exercise 4.7.5

A + = 1x2 y2

(x, y) A = (2x)(2y) = 4xy.

A(x) = 4x .1 −x2
− −−−−

√ [0, 1]

f(x) = +4x2 (−∞, ∞) 4 x = 0

(0, ∞),

 Example : Minimizing Surface Area4.7.6

216 in3

x y

S

4.7.8

S

x ⋅ y. x2
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.

Step 4: Since the volume of this box is  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the surface area as a function of  only:

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the other hand,  is
allowed to have any positive value. Note that as  becomes large, the height of the box  becomes correspondingly small so
that . Similarly, as  becomes small, the height of the box becomes correspondingly large. We conclude that the
domain is the open, unbounded interval . Note that, unlike the previous examples, we cannot reduce our problem to
looking for an absolute maximum or absolute minimum over a closed, bounded interval. However, in the next step, we
discover why this function must have an absolute minimum over the interval 

Step 6: Note that as  Also, as . Since  is a continuous function that approaches
infinity at the ends, it must have an absolute minimum at some . This minimum must occur at a critical point of .
The derivative is

Therefore,  when . Solving this equation for , we obtain , so  Since this is

the only critical point of , the absolute minimum must occur at  (see Figure ).

When ,  Therefore, the dimensions of the box should be  and  With

these dimensions, the surface area is

Figure : We can use a graph to determine the dimensions of a box of given the volume and the minimum surface area.

Consider the same open-top box, which is to have volume . Suppose the cost of the material for the base is  and
the cost of the material for the sides is  and we are trying to minimize the cost of this box. Write the cost as a function
of the side lengths of the base. (Let  be the side length of the base and  be the height of the box.)

Hint

If the cost of one of the sides is  the cost of that side is  dollars.

Answer

S = 4xy +x2

yx2 216 in3

y = 216x2

y y =
216

x2
x

S(x) = 4x( )+ .
216

x2
x2

S(x) = +
864

x
x2

y = 216x2 x = 0 x > 0 x

x y

y = 216x2 x

(0, ∞)

(0, ∞).

x → , S(x) → ∞.0+ x → ∞, S(x) → ∞ S

x ∈ (0, ∞) S

S'(x) = − +2x.
864

x2

S'(x) = 0 2x =
864

x2
x = 432x3 x = = 6 .432

−−−
√3

2
–

√3

S x = 6 2
–

√3 4.7.9

x = 6 2
–

√3 y = = 3 in.
216

(6 2
–

√3 )2
2
–

√3 x = 6 in.2
–

√3 y = 3 in.2
–

√3

S(6 ) = +(6 = 1082
–

√3 864

6 2
–

√3
2
–

√3 )2 4
–

√3 in2

4.7.9

 Exercise 4.7.6

216 in3 20¢/in2

30¢/in2

x y

30¢/ ,in2 0.30xy
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 dollars

Key Concepts
To solve an optimization problem, begin by drawing a picture and introducing variables.
Find an equation relating the variables.
Find a function of one variable to describe the quantity that is to be minimized or maximized.
Look for critical points to locate local extrema.

Glossary

optimization problems
problems that are solved by finding the maximum or minimum value of a function
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4.8: Newton's Method

Describe the steps of Newton’s method.
Explain what an iterative process means.
Recognize when Newton’s method does not work.
Apply iterative processes to various situations.

In many areas of pure and applied mathematics, we are interested in finding solutions to an equation of the form  For
most functions, however, it is difficult—if not impossible—to calculate their zeroes explicitly. In this section, we take a look at a
technique that provides a very efficient way of approximating the zeroes of functions. This technique makes use of tangent line
approximations and is behind the method used often by calculators and computers to find zeroes.

Describing Newton’s Method
Consider the task of finding the solutions of  If  is the first-degree polynomial , then the solution of 

 is given by the formula . If  is the second-degree polynomial , the solutions of 
can be found by using the quadratic formula. However, for polynomials of degree 3 or more, finding roots of  becomes more
complicated. Although formulas exist for third- and fourth-degree polynomials, they are quite complicated. Also, if f is a
polynomial of degree 5 or greater, it is known that no such formulas exist. For example, consider the function

No formula exists that allows us to find the solutions of  Similar difficulties exist for nonpolynomial functions. For
example, consider the task of finding solutions of  No simple formula exists for the solutions of this equation. In
cases such as these, we can use Newton’s method to approximate the roots.

Newton’s method makes use of the following idea to approximate the solutions of  By sketching a graph of , we can
estimate a root of . Let’s call this estimate . We then draw the tangent line to  at . If , this tangent line
intersects the -axis at some point . Now let  be the next approximation to the actual root. Typically,  is closer than 
to an actual root. Next we draw the tangent line to  at . If , this tangent line also intersects the -axis, producing
another approximation, . We continue in this way, deriving a list of approximations:  Typically, the numbers 

 quickly approach an actual root , as shown in the following figure.

 Learning Objectives

f(x) = 0.

f(x) = 0. f f(x) = ax +b

f(x) = 0 x = − b
a

f f(x) = a +bx +cx2 f(x) = 0

f

f(x) = +8 +4 −2x −7.x5 x4 x3

f(x) = 0.
tan(x) −x = 0.

f(x) = 0. f

f(x) = 0 x0 f x0 f '( ) ≠ 0x0

x ( , 0)x1 x1 x1 x0

f x1 f '( ) ≠ 0x1 x

x2 , , , … .x0 x1 x2

, , , …x0 x1 x2 x∗
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Figure :The approximations  approach the actual root . The approximations are derived by looking at
tangent lines to the graph of .

Now let’s look at how to calculate the approximations  If  is our first approximation, the approximation  is
defined by letting  be the -intercept of the tangent line to  at . The equation of this tangent line is given by

Therefore,  must satisfy

Solving this equation for , we conclude that

Similarly, the point  is the -intercept of the tangent line to  at . Therefore,  satisfies the equation

In general, for  satisfies

Next we see how to make use of this technique to approximate the root of the polynomial 

Use Newton’s method to approximate a root of  in the interval . Let  and find 
and .

Solution

From Figure , we see that  has one root over the interval . Therefore  seems like a reasonable first
approximation. To find the next approximation, we use Equation . Since , the derivative is 

. Using Equation  with  (and a calculator that displays  digits), we obtain

4.8.1 , , , …x0 x1 x2 x∗

f

, , , … .x0 x1 x2 x0 x1

( , 0)x1 x f x0

y = f( ) +f '( )(x − ).x0 x0 x0

x1

f( ) +f '( )( − ) = 0.x0 x0 x1 x0

x1

= − .x1 x0
f( )x0

( )f ′ x0

( , 0)x2 x f x1 x2

= − .x2 x1
f( )x1

( )f ′ x1

n > 0, xn

= − .xn xn−1
f( )xn−1

( )f ′ xn−1
(4.8.1)

f(x) = −3x +1.x3

 Example : Finding a Root of a Polynomial4.8.1

f(x) = −3x +1x3 [1, 2] = 2x0 , , , ,x1 x2 x3 x4

x5

4.8.2 f [1, 2] = 2x0

4.8.1 f(x) = −3x +1x3

f '(x) = 3 −3x2 4.8.1 n = 1 10
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To find the next approximation, , we use Equation  with  and the value of  stored on the calculator. We find
that

Continuing in this way, we obtain the following results:

We note that we obtained the same value for  and . Therefore, any subsequent application of Newton’s method will most
likely give the same value for .

Figure : The function  has one root over the interval 

Letting , let’s use Newton’s method to approximate the root of  over the interval  by
calculating  and .

Hint

Use Equation .

Answer

 

Newton’s method can also be used to approximate square roots. Here we show how to approximate . This method can be
modified to approximate the square root of any positive number.

Use Newton’s method to approximate  (Figure ). Let , let , and calculate .
(We note that since  has a zero at , the initial value  is a reasonable choice to approximate ).

= − = 2 − = 2 − ≈ 1.666666667.x1 x0
f( )x0

( )f ′ x0

f(2)

(2)f ′

3

9

x2 4.8.1 n = 2 x1

= − ≈ 1.548611111.x2 x1
f( )x1

( )f ′ x1

≈ 1.666666667x1

≈ 1.548611111x2

≈ 1.532390162x3

≈ 1.532088989x4

≈ 1.532088886x5

≈ 1.532088886.x6

x5 x6

xn

4.8.2 f(x) = − 3x + 1x3 [1, 2].

 Exercise 4.8.1

= 0x0 f(x) = −3x +1x3 [0, 1]
x1 x2

4.8.1

≈ 0.33333333x1

≈ 0.347222222x2

2
–

√

 Example : Finding a Square Root4.8.2

2
–

√ 4.8.3 f(x) = −2x2 = 2x0 , , , ,x1 x2 x3 x4 x5

f(x) = −2x2 2
–

√ = 2x0 2
–

√
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Figure : We can use Newton’s method to find .

Solution

For  From Equation , we know that

Therefore,

Continuing in this way, we find that

Since we obtained the same value for  and , it is unlikely that the value  will change on any subsequent application of
Newton’s method. We conclude that 

Use Newton’s method to approximate  by letting  and . Find  and .

Hint

4.8.3 2
–√

f(x) = −2, f '(x) = 2x.x2 4.8.1

xn = −xn−1
f( )xn−1

( )f ′ xn−1

= −xn−1

−2x2
n−1

2xn−1

= +
1

2
xn−1

1

xn−1

= ( + ) .
1

2
xn−1

2

xn−1

= ( + ) = (2 + ) = 1.5x1
1
2

x0
2

x0

1
2

2
2

= ( + ) = (1.5 + ) ≈ 1.416666667.x2
1
2

x1
2

x1

1
2

2
1.5

= 1.5x1

≈ 1.416666667x2

≈ 1.414215686x3

≈ 1.414213562x4

≈ 1.414213562.x5

x4 x5 xn

≈ 1.414213562.2
–

√

 Exercise 4.8.2

3
–

√ f(x) = −3x2 = 3x0 x1 x2
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For , Equation  reduces to .

Answer

 

When using Newton’s method, each approximation after the initial guess is defined in terms of the previous approximation by

using the same formula. In particular, by defining the function , we can rewrite Equation  as 

. This type of process, where each  is defined in terms of  by repeating the same function, is an example of
an iterative process. Shortly, we examine other iterative processes. First, let’s look at the reasons why Newton’s method could fail
to find a root.

Failures of Newton’s Method

Typically, Newton’s method is used to find roots fairly quickly. However, things can go wrong. Some reasons why Newton’s
method might fail include the following:

1. At one of the approximations , the derivative  is zero at , but . As a result, the tangent line of  at  does not
intersect the -axis. Therefore, we cannot continue the iterative process.

2. The approximations  may approach a different root. If the function  has more than one root, it is possible that
our approximations do not approach the one for which we are looking, but approach a different root (see Figure ). This
event most often occurs when we do not choose the approximation  close enough to the desired root.

3. The approximations may fail to approach a root entirely. In Example , we provide an example of a function and an initial
guess  such that the successive approximations never approach a root because the successive approximations continue to
alternate back and forth between two values.

Figure : If the initial guess  is too far from the root sought, it may lead to approximations that approach a different root.

Consider the function . Let . Show that the sequence  fails to approach a root of .

Solution

For  the derivative is .Therefore,

In the next step,

f(x) = −3x2 4.8.1 = +xn
xn−1

2
3

2xn−1

= 2x1

= 1.75x2

F (x) = x −[ ]
f(x)

f'(x)
4.8.1

= F ( )xn xn−1 xn xn−1

xn f ' xn f( ) ≠ 0xn f xn

x

, , , …x0 x1 x2 f

4.8.4
x0

4.8.3
x0

4.8.4 x0

 Example : When Newton’s Method Fails4.8.3

f(x) = −2x +2x3 = 0x0 , , …x1 x2 f

f(x) = −2x +2,x3 f '(x) = 3 −2x2

= − = 0 − = − = 1.x1 x0
f( )x0

f '( )x0

f(0)

f '(0)

2

−2

= − = 1 − = 1 − = 0.x2 x1
f( )x1

( )f ′ x1

f(1)

f '(1)

1

1
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Consequently, the numbers  continue to bounce back and forth between  and  and never get closer to the root
of  which is over the interval  (Figure ). Fortunately, if we choose an initial approximation  closer to the
actual root, we can avoid this situation.

Figure : The approximations continue to alternate between  and  and never approach the root of .

For  let  and find  and .

Hint

Use Equation .

Answer

 

From Example , we see that Newton’s method does not always work. However, when it does work, the sequence of
approximations approaches the root very quickly. Discussions of how quickly the sequence of approximations approach a root
found using Newton’s method are included in texts on numerical analysis.

Other Iterative Processes
As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative
process.

Consider a function  and an initial number . Define the subsequent numbers  by the formula . This process is
an iterative process that creates a list of numbers  This list of numbers may approach a finite number 
as  gets larger, or it may not. In Example , we see an example of a function  and an initial guess  such that the resulting
list of numbers approaches a finite value.

Let  and let . For all , let . Find the values . Make a conjecture
about what happens to this list of numbers  as . If the list of numbers 
approaches a finite number , then  satisfies , and  is called a fixed point of .

Solution

If , then

, , , …x0 x1 x2 0 1
f [−2, −1] 4.8.5 x0

4.8.5 0 1 f

 Exercise 4.8.3

f(x) = −2x +2,x3 = −1.5x0 x1 x2

4.8.1

≈ −1.842105263x1

≈ −1.772826920x2

4.8.3

F x0 xn = F ( )xn xn−1

, , , … , , … .x0 x1 x2 xn x∗

n 4.8.4 F x0

 Example : Finding a Limit for an Iterative Process4.8.4

F (x) = x +41
2

= 0x0 n ≥ 1 = F ( )xn xn−1 , , , ,x1 x2 x3 x4 x5

, , , … , , …x1 x2 x3 xn n → ∞ , , , …x1 x2 x3

x∗ x∗ = F ( )x∗ x∗ x∗ F

= 0x0

= (0) +4 = 4x1
1
2

= (4) +4 = 6x2
1
2

= (6) +4 = 7x3
1
2

= (7) +4 = 7.5x4
1
2

https://libretexts.org/
https://math.libretexts.org/@go/page/4468?pdf


4.8.7 https://math.libretexts.org/@go/page/4468

From this list, we conjecture that the values  approach .

Figure  provides a graphical argument that the values approach  as . Starting at the point , we draw a
vertical line to the point . The next number in our list is . We use  to calculate . Therefore, we
draw a horizontal line connecting  to the point  on the line , and then draw a vertical line connecting 

 to the point . The output  becomes . Continuing in this way, we could create an infinite number
of line segments. These line segments are trapped between the lines  and . The line segments get closer to
the intersection point of these two lines, which occurs when . Solving the equation  we conclude they
intersect at . Therefore, our graphical evidence agrees with our numerical evidence that the list of numbers 

 approaches  as .

Figure : This iterative process approaches the value 

Consider the function . Let  and let  for . Find . Make a
conjecture about what happens to the list of numbers  as 

Hint

Consider the point where the lines  and  intersect.

Answer

Iterative processes can yield some very interesting behavior. In this section, we have seen several examples of iterative
processes that converge to a fixed point. We also saw in Example  that the iterative process bounced back and forth
between two values. We call this kind of behavior a 2-cycle. Iterative processes can converge to cycles with various
periodicities, such as 2−cycles, 4−cycles (where the iterative process repeats a sequence of four values), 8-cycles, and so on.

Some iterative processes yield what mathematicians call chaos. In this case, the iterative process jumps from value to value in a
seemingly random fashion and never converges or settles into a cycle. Although a complete exploration of chaos is beyond the
scope of this text, in this project we look at one of the key properties of a chaotic iterative process: sensitive dependence on

= (7.5) +4 = 7.75x5
1
2

= (7.75) +4 = 7.875x6
1
2

= (7.875) +4 = 7.9375x7
1
2

= (7.9375) +4 = 7.96875x8
1
2

= (7.96875) +4 = 7.984375.x9
1
2

xn 8

4.8.6 8 n → ∞ ( , )x0 x0

( , F ( ))x0 x0 = F ( )x1 x0 x1 x2

( , )x0 x1 ( , )x1 x1 y = x

( , )x1 x1 ( , F ( ))x1 x1 F ( )x1 x2

F (x) = +4x
2

y = x

x = F (x) x = +4,x
2

x = 8
, , , …x0 x1 x2 = 8x∗ n → ∞

4.8.6 = 8.x∗

 Exercise 4.8.4

F (x) = x +61
3

= 0x0 = F ( )xn xn−1 n ≥ 2 , , , ,x1 x2 x3 x4 x5

, , , … , …x1 x2 x3 xn n → ∞.

y = x y = F (x)

= 6, = 8, = , = , = ; = 9x1 x2 x3
26
3

x4
80
9

x5
242
27

x∗
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initial conditions. This property refers to the concept that small changes in initial conditions can generate drastically different
behavior in the iterative process.

Probably the best-known example of chaos is the Mandelbrot set (see Figure ), named after Benoit Mandelbrot (1924–
2010), who investigated its properties and helped popularize the field of chaos theory. The Mandelbrot set is usually generated
by computer and shows fascinating details on enlargement, including self-replication of the set. Several colorized versions of
the set have been shown in museums and can be found online and in popular books on the subject.

Figure : The Mandelbrot set is a well-known example of a set of points generated by the iterative chaotic behavior of a
relatively simple function.

In this project we use the logistic map

where  and 

as the function in our iterative process. The logistic map is a deceptively simple function; but, depending on the value of , the
resulting iterative process displays some very interesting behavior. It can lead to fixed points, cycles, and even chaos.

To visualize the long-term behavior of the iterative process associated with the logistic map, we will use a tool called a cobweb
diagram. As we did with the iterative process we examined earlier in this section, we first draw a vertical line from the point 

 to the point . We then draw a horizontal line from that point to the point  then draw a
vertical line to , and continue the process until the long-term behavior of the system becomes apparent.
Figure  shows the long-term behavior of the logistic map when  and . (The first  iterations are not
plotted.) The long-term behavior of this iterative process is an -cycle.

4.8.7

4.8.7

f(x) = rx(1 −x)

x ∈ [0, 1] r > 0

r

( , 0)x0 ( , f( )) = ( , )x0 x0 x0 x1 ( , ),x1 x1

( , f( )) = ( , )x1 x1 x1 x2

4.8.8 r = 3.55 = 0.2x0 100
8
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Figure : A cobweb diagram for  is presented here. The sequence of values results in an 8-cycle.

1. Let  and choose . Either by hand or by using a computer, calculate the first  values in the sequence.
Does the sequence appear to converge? If so, to what value? Does it result in a cycle? If so, what kind of cycle (for
example, −cycle, −cycle.)?

2. What happens when ?
3. For  and , calculate the first  sequence values. Generate a cobweb diagram for each iterative process.

(Several free applets are available online that generate cobweb diagrams for the logistic map.) What is the long-term
behavior in each of these cases?

4. Now let  Calculate the first  sequence values and generate a cobweb diagram. What is the long-term behavior in
this case?

5. Repeat the process for  but let  How does this behavior compare with the behavior for ?

Key Concepts
Newton’s method approximates roots of  by starting with an initial approximation , then uses tangent lines to the
graph of  to create a sequence of approximations 
Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method fails to work
because the list of numbers  does not approach a finite value or it approaches a value other than the root sought.
Any process in which a list of numbers  is generated by defining an initial number  and defining the
subsequent numbers by the equation  for some function  is an iterative process. Newton’s method is an

example of an iterative process, where the function  for a given function .

Glossary

iterative process
process in which a list of numbers  is generated by starting with a number  and defining  for 

Newton’s method
method for approximating roots of  using an initial guess ; each subsequent approximation is defined by the

equation 

4.8: Newton's Method is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.9: Newton’s Method by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

4.8.8 f(x) = 3.55x(1 − x)
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2 4
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f(x) = 0 x0
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F (x) = x −[ ]
f(x)

f'(x)
f

, , , …x0 x1 x2 x3 x0 = F ( )xn xn−1
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4.9: Antiderivatives
At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their applications. We now
ask a question that turns this process around: Given a function , how do we find a function with the derivative  and why would we be
interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function  is a function with a derivative . Why are
we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look at various examples throughout the
remainder of the text. Here we examine one specific example that involves rectilinear motion. In our examination in Derivatives of rectilinear
motion, we showed that given a position function  of an object, then its velocity function  is the derivative of —that is, .
Furthermore, the acceleration  is the derivative of the velocity —that is, . Now suppose we are given an
acceleration function , but not the velocity function v or the position function . Since , determining the velocity function requires
us to find an antiderivative of the acceleration function. Then, since  determining the position function requires us to find an
antiderivative of the velocity function. Rectilinear motion is just one case in which the need for antiderivatives arises. We will see many more
examples throughout the remainder of the text. For now, let’s look at the terminology and notation for antiderivatives, and determine the
antiderivatives for several types of functions. We examine various techniques for finding antiderivatives of more complicated functions later in
the text (Introduction to Techniques of Integration).

The Reverse of Differentiation

At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function , how can we find a
function with derivative ? If we can find a function  derivative  we call  an antiderivative of .

Definition: Antiderivative
A function  is an antiderivative of the function  if

for all  in the domain of .

Consider the function . Knowing the power rule of differentiation, we conclude that  is an antiderivative of  since 
. Are there any other antiderivatives of ? Yes; since the derivative of any constant  is zero,  is also an antiderivative of .

Therefore,  and  are also antiderivatives. Are there any others that are not of the form  for some constant ? The answer
is no. From Corollary 2 of the Mean Value Theorem, we know that if  and  are differentiable functions such that  then 

 for some constant . This fact leads to the following important theorem.

General Form of an Antiderivative
Let  be an antiderivative of  over an interval . Then,

I. for each constant , the function  is also an antiderivative of  over ;
II. if  is an antiderivative of  over , there is a constant  for which  over .

In other words, the most general form of the antiderivative of  over  is .

We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

Example : Finding Antiderivatives
For each of the following functions, find all antiderivatives.

a. 

b. 

c. 
d. 

Solution:

a. Because

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant , and every
function of the form  is an antiderivative of .

b. Let  For  and

f f

f f

s(t) v(t) s(t) v(t) = s'(t)
a(t) v(t) a(t) = v'(t) = (t)s′′

a s a(t) = v'(t)
v(t) = s'(t),

f

f F f , F f

F f

F '(x) = f(x) (4.9.1)

x f

f(x) = 2x F (x) = x2 f

F '(x) = 2x f C +Cx2 2x
+5x2 −x2 2

–
√ +Cx2 C

F G F '(x) = G'(x),
F (x) −G(x) = C C

F f I

C F (x) +C f I

G f I C G(x) = F (x) +C I

f I F (x) +C

4.9.1

f(x) = 3x2

f(x) =
1

x
f(x) = cosx
f(x) = ex

( ) = 3
d

dx
x3 x2

F (x) = x3 3x2 3x2 +Cx3 C

+Cx3 3x2

f(x) = ln |x|. x > 0, f(x) = ln(x)
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For  and

Therefore,

Thus,  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant  and every

function of the form  is an antiderivative of .

c. We have

so  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant  and
every function of the form  is an antiderivative of .

d. Since

then  is an antiderivative of . Therefore, every antiderivative of  is of the form  for some constant  and every
function of the form  is an antiderivative of .

Exercise 
Find all antiderivatives of .

Hint

What function has a derivative of ?

Answer

Indefinite Integrals

We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties allow us to find

antiderivatives of more complicated functions. Given a function , we use the notation  or  to denote the derivative of . Here we

introduce notation for antiderivatives. If  is an antiderivative of , we say that  is the most general antiderivative of  and write

The symbol  is called an integral sign, and  is called the indefinite integral of .

Definition: Indefinite Integrals
Given a function , the indefinite integral of , denoted

is the most general antiderivative of . If  is an antiderivative of , then

The expression  is called the integrand and the variable x is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function  is usually referred to as integrating .

(lnx) = .
d

dx

1

x

x < 0, f(x) = ln(−x)

(ln(−x)) = − = .
d

dx

1

−x

1

x

(ln |x|) = .
d

dx

1

x

F (x) = ln |x|
1

x

1

x
ln |x| +C C

ln |x| +C
1

x

(sinx) = cosx,
d

dx

F (x) = sinx cosx cosx sinx+C C

sinx+C cosx

( ) = ,
d

dx
ex ex

F (x) = ex ex ex +Cex C

+Cex ex

4.9.1

f(x) = sinx

sinx

−cosx+C

f f '(x)
df

dx
f

F f F (x) +C f

∫ f(x)dx = F (x) +C. (4.9.2)

∫ ∫ f(x)dx f

f f

∫ f(x)dx, (4.9.3)

f F f

∫ f(x)dx = F (x) +C. (4.9.4)

f(x)

f f
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For a function  and an antiderivative , the functions , where  is any real number, is often referred to as the family of
antiderivatives of . For example, since  is an antiderivative of  and any antiderivative of  is of the form  we write

The collection of all functions of the form  where  is any real number, is known as the family of antiderivatives of . Figure shows a
graph of this family of antiderivatives.

Figure : The family of antiderivatives of  consists of all functions of the form , where  is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for ,

which comes directly from

.

This fact is known as the power rule for integrals.

Power Rule for Integrals
For 

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite integrals for
several common functions. A more complete list appears in Appendix B.

Table : Integration Formulas
Differentiation Formula Indefinite Integral

 for 

f F F (x) +C C

f x2 2x 2x +C,x2

∫ 2xdx = +C.x2 (4.9.5)

+C,x2 C 2x

4.9.1 2x +Cx2 C

n ≠ −1

∫ dx = +C,xn
xn+1

n+1

( ) = (n+1) =
d

dx

xn+1

n+1

xn

n+1
xn

n ≠ −1,

∫ dx = +C.xn
xn+1

n+1
(4.9.6)

(k) = 0
d

dx
∫ kdx = ∫ k dx = kx +Cx0

( ) = n
d

dx
xn xn−1 ∫ dn = +Cxn

xn+1

n+ 1
n ≠ −1

(ln|x|) =
d

dx

1

x
∫ dx = ln|x| +C

1

x

( ) =
d

dx
ex ex ∫ dx = +Cex ex
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Differentiation Formula Indefinite Integral

From the definition of indefinite integral of , we know

if and only if  is an antiderivative of . Therefore, when claiming that

it is important to check whether this statement is correct by verifying that 

Example : Verifying an Indefinite Integral

Each of the following statements is of the form  Verify that each statement is correct by showing that 

a. 

b. 

Solution:

a. Since

,

the statement

is correct.

Note that we are verifying an indefinite integral for a sum. Furthermore,  and  are antiderivatives of  and , respectively, and the sum

of the antiderivatives is an antiderivative of the sum. We discuss this fact again later in this section.

b. Using the product rule, we see that

Therefore, the statement

is correct.

(sinx) = cosx
d

dx
∫ cosxdx = sinx +C

(cosx) = −sinx
d

dx
∫ sinxdx = −cosx +C

(tanx) = se x
d

dx
c2 ∫ se xdx = tanx +Cc2

(cscx) = −cscxcotx
d

dx
∫ cscxcotxdx = −cscx +C

(secx) = secx tanx
d

dx
∫ secx tanxdx = secx +C

(cotx) = −cs x
d

dx
c2 ∫ cs xdx = −cotx +Cc2

(si x) =
d

dx
n−1 1

1 − x2− −−−−
√

∫ = si x +C
1

1 − x2− −−−−√
n−1

(ta x) =
d

dx
n−1 1

1 + x2
∫ dx = ta x +C

1

1 + x2
n−1

(se |x|) =
d

dx
c−1 1

x − 1x2− −−−−
√

∫ dx = se |x| +C
1

x − 1x2− −−−−√
c−1

f

∫ f(x)dx = F (x) +C (4.9.7)

F f

∫ f(x)dx = F (x) +C (4.9.8)

F '(x) = f(x).

4.9.2

∫ f(x)dx = F (x) +C. F '(x) = f(x).

∫(x+ )dx = + +Cex
x2

2
ex

∫ x dx = x − +Cex ex ex

( + +C) = x+
d

dx

x2

2
ex ex

∫ (x+ )dx = + +Cex
x2

2
ex

x2

2
ex x ex

(x − +C) = +x − = x .
d

dx
ex ex ex ex ex ex

∫ x dx = x − +Cex ex ex
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Note that we are verifying an indefinite integral for a product. The antiderivative xex−ex is not a product of the antiderivatives. Furthermore,
the product of antiderivatives,  is not an antiderivative of  since

.

In general, the product of antiderivatives is not an antiderivative of a product.

Exercise 
Verify that

Hint

Calculate

Answer

In Table, we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating indefinite integrals for more
complicated functions. For example, consider finding an antiderivative of a sum . In Example a. we showed that an antiderivative of the

sum  is given by the sum ( —that is, an antiderivative of a sum is given by a sum of antiderivatives. This result was not specific

to this example. In general, if  and  are antiderivatives of any functions  and , respectively, then

Therefore,  is an antiderivative of  and we have

Similarly,

In addition, consider the task of finding an antiderivative of  where  is any real number. Since

for any real number , we conclude that

These properties are summarized next.

Properties of Indefinite Integrals
Let  and  be antiderivatives of  and , respectively, and let  be any real number.

Sums and Differences

Constant Multiples

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with antiderivatives that are
known. Evaluating integrals involving products, quotients, or compositions is more complicated (see Exampleb. for an example involving an

/2x2ex xex

( ) = x + ≠ x
d

dx

x2ex

2
ex

x2ex

2
ex

4.9.2

∫ x cosx dx = x sinx+cosx+C.

(x sinx+cosx+C).
d

dx

(x sinx+cosx+C) = sinx+x cosx−sinx = x cosx
d

dx

f +g

x+ex ) +
x2

2
ex

F G f g

(F (x) +G(x)) = F '(x) +G'(x) = f(x) +g(x).
d

dx

F (x) +G(x) f(x) +g(x)

∫ (f(x) +g(x))dx = F (x) +G(x) +C.

∫ (f(x) −g(x))dx = F (x) −G(x) +C.

kf(x), k

(kf(x)) = k F (x) = kF '(x)
d

dx

d

dx

k

∫ kf(x)dx = kF (x) +C.

F G f g k

∫(f(x) ±g(x))dx = F (x) ±G(x) +C

∫ kf(x)dx = kF (x) +C
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antiderivative of a product.) We look at and address integrals involving these more complicated functions in Introduction to Integration. In the
next example, we examine how to use this theorem to calculate the indefinite integrals of several functions.

Example : Evaluating Indefinite Integrals

Evaluate each of the following indefinite integrals:

a. 

b. 

c. 

d. 

Solution:

a. Using Note, we can integrate each of the four terms in the integrand separately. We obtain

From the second part of Note, each coefficient can be written in front of the integral sign, which gives

Using the power rule for integrals, we conclude that

b. Rewrite the integrand as

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

c. Using Note, write the integral as

Then, use the fact that  is an antiderivative of  to conclude that

d. Rewrite the integrand as

Therefore,

Exercise 

Evaluate .

Hint

Integrate each term in the integrand separately, making use of the power rule.

Answer

4.9.3

∫(5 −7 +3x+4)dxx3 x2

∫ dx
+4x2 x−−√3

x

∫ dx
4

1 +x2

∫ tanx cosxdx

∫(5 −7 +3x+4)dx = ∫ 5 dx−∫ 7 dx+∫ 3xdx+∫ 4dx.x3 x2 x3 x2

∫ 5 dx−∫ 7 dx+∫ 3xdx+∫ 4dx = 5 ∫ dx−7 ∫ dx+3 ∫ xdx+4 ∫ 1dx.x3 x2 x3 x2

∫(5 −7 +3x+4)dx = − + +4x+C.x3 x2 5

4
x4 7

3
x3 3

2
x2

= + = 0.
+4x2 x

−−
√3

x

x2

x

4 x
−−

√3

x

∫(x+ )dx = ∫ xdx+4 ∫ dx
4

x2/3
x−2/3

= +4 +C])
1

2
x2 1

( ) +1
−2

3

x(−2/3)+1

= +12 +C.
1

2
x2 x1/3

4 ∫ dx.
1

1 +x2

ta (x)n−1 1

(1 + )x2

∫ dx = 4ta (x) +C.
4

1 +x2
n−1

tanx cosx = cosx = sinx.
sinx

cosx

∫ tanx cosx = ∫ sinx = −cosx+C.

4.9.3

∫(4 −5 +x−7)dxx3 x2

− + −7x+Cx4 5

3
x3 1

2
x2
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Initial-Value Problems
We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in the text. Here we turn
to one common use for antiderivatives that arises often in many applications: solving differential equations.

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

is a simple example of a differential equation. Solving this equation means finding a function  with a derivative . Therefore, the solutions of
Equation are the antiderivatives of . If  is one antiderivative of , every function of the form  is a solution of that differential
equation. For example, the solutions of

are given by

.

Sometimes we are interested in determining whether a particular solution curve passes through a certain point  —that is, .
The problem of finding a function  that satisfies a differential equation

with the additional condition

is an example of an initial-value problem. The condition  is known as an initial condition. For example, looking for a function  that
satisfies the differential equation

and the initial condition

is an example of an initial-value problem. Since the solutions of the differential equation are  to find a function  that also satisfies
the initial condition, we need to find  such that . From this equation, we see that , and we conclude that 

 is the solution of this initial-value problem as shown in the following graph.

Figure : Some of the solution curves of the differential equation  are displayed. The function  satisfies the

differential equation and the initial condition 

Example : Solving an Initial-Value Problem

= f(x)
dy

dx

y f

f F f y = F (x) +C

= 6
dy

dx
x2

y = ∫ 6 dx = 2 +Cx2 x3

( , )x0 y0 y( ) =x0 y0

y

= f(x)
dy

dx

y( ) =x0 y0

y( ) =x0 y0 y

= 6
dy

dx
x2

y(1) = 5

y = 2 +C,x3 y

C y(1) = 2(1 +C = 5)3 C = 3
y = 2 +3x3

4.9.2 = 6
dy

dx
x2 y = 2 +3x3

y(1) = 5.

4.9.4
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Solve the initial-value problem

Solution

First we need to solve the differential equation. If , then

Next we need to look for a solution  that satisfies the initial condition. The initial condition y(0)=5 means we need a constant  such that 
 Therefore,

The solution of the initial-value problem is 

Exercise 

Solve the initial value problem .

Hint

Find all antiderivatives of 

Answer

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car. We are interested in
how long it takes for the car to stop. Recall that the velocity function  is the derivative of a position function  and the acceleration 
is the derivative of the velocity function. In earlier examples in the text, we could calculate the velocity from the position and then compute the
acceleration from the velocity. In the next example we work the other way around. Given an acceleration function, we calculate the velocity
function. We then use the velocity function to determine the position function.

Example :
A car is traveling at the rate of  ft/sec (  mph) when the brakes are applied. The car begins decelerating at a constant rate of  ft/sec .

a. How many seconds elapse before the car stops?
b. How far does the car travel during that time?

Solution

a. First we introduce variables for this problem. Let  be the time (in seconds) after the brakes are first applied. Let  be the acceleration of
the car (in feet per seconds squared) at time . Let  be the velocity of the car (in feet per second) at time . Let  be the car’s position
(in feet) beyond the point where the brakes are applied at time .

The car is traveling at a rate of . Therefore, the initial velocity is  ft/sec. Since the car is decelerating, the acceleration is

.

The acceleration is the derivative of the velocity,

Therefore, we have an initial-value problem to solve:

Integrating, we find that

Since  Thus, the velocity function is

= sinx, y(0) = 5.
dy

dx
(4.9.9)

= sinx
dy

dx

y = ∫ sin(x)dx = −cosx+C. (4.9.10)

y C

−cosx+C = 5.

C = 5 +cos(0) = 6. (4.9.11)

y = −cosx+6.

4.9.4

= 3 , y(1) = 2
dy

dx
x−2

f(x) = 3x−2.

y = − +5
3

x

v(t) s(t), a(t)

4.9.5

88 60 15 2

t a(t)
t v(t) t s(t)

t

88ft/sec v(0) = 88

a(t) = −15ft/s2

v'(t) = 15.

v'(t) = −15, v(0) = 88.

v(t) = −15t+C.

v(0) = 88,C = 88.

v(t) = −15t+88.
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To find how long it takes for the car to stop, we need to find the time t such that the velocity is zero. Solving  we obtain 

 sec.

b. To find how far the car travels during this time, we need to find the position of the car after  sec. We know the velocity  is the

derivative of the position . Consider the initial position to be . Therefore, we need to solve the initial-value problem

Integrating, we have

Since , the constant is . Therefore, the position function is

After  sec, the position is  ft.

Exercise 

Suppose the car is traveling at the rate of  ft/sec. How long does it take for the car to stop? How far will the car travel?

Hint

Answer

Key Concepts
If  is an antiderivative of , then every antiderivative of  is of the form  for some constant .
Solving the initial-value problem

requires us first to find the set of antiderivatives of  and then to look for the particular antiderivative that also satisfies the initial condition.

Glossary

antiderivative
a function  such that  for all  in the domain of  is an antiderivative of 

indefinite integral
the most general antiderivative of  is the indefinite integral of ; we use the notation  to denote the indefinite integral of 

initial value problem

a problem that requires finding a function  that satisfies the differential equation  together with the initial condition 

Contributors
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CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

4.9: Antiderivatives is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

−15t+88 = 0,

t =
88

15
88

15
v(t)

s(t) s(0) = 0

s'(t) = −15t+88, s(0) = 0.

s(t) = − +88t+C.
15

2
t2

s(0) = 0 C = 0

s(t) = − +88t.
15

2
t2

t =
88

15
s( ) ≈ 258.133

88

15

4.9.5

44

v(t) = −15t+44.

2.93sec, 64.5ft

F f f F (x) +C C

= f(x), y( ) =
dy

dx
x0 y0

f

F F '(x) = f(x) x f f

f(x) f ∫ f(x)dx f

y = f(x)
dy

dx
y( ) =x0 y0
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5.1: Areas and Distances

Use sigma (summation) notation to calculate sums and powers of integers.
Use the sum of rectangular areas to approximate the area under a curve.
Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by the
shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes, the
areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations to the
total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area formulas. These
areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function  and the x-axis on a
closed interval  Like Archimedes, we first approximate the area under the curve using shapes of known area (namely,
rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking a limit allows us
to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when  is continuous and
nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general cases.

Sigma (Summation) Notation
As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This process
often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at some new
notation here, called sigma notation (also known as summation notation). The Greek capital letter , sigma, is used to express
long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20 without sigma notation, we
have to write

We could probably skip writing a couple of terms and write

which is better, but still cumbersome. With sigma notation, we write this sum as

which is much more compact. Typically, sigma notation is presented in the form

where  describes the terms to be added, and the  is called the . Each term is evaluated, then we sum all the values,

beginning with the value when  and ending with the value when  For example, an expression like  is interpreted

as . Note that the index is used only to keep track of the terms to be added; it does not factor into the
calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we like for the index.
Typically, mathematicians use , and  for indices.

Let’s try a couple of examples of using sigma notation.

 Learning Objectives

f(x),

[a, b].

f(x)

Σ

1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20.

1 +2 +3 +4 +⋯ +19 +20,

i∑
i=1

20

∑
i=1

n

ai

ai i index

i = 1 i = n. ∑
i=2

7

si

+ + + + +s2 s3 s4 s5 s6 s7

i, j, k, m n
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a. Write in sigma notation and evaluate the sum of terms  for 
b. Write the sum in sigma notation:

Solution

a. Write

b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as .

Write in sigma notation and evaluate the sum of terms  for 

Hint

Use the solving steps in Example  as a guide.

Answer

The properties associated with the summation process are given in the following rule.

Let  and  represent two sequences of terms and let  be a constant. The following properties hold
for all positive integers  and for integers , with 

i. 

ii. 

iii. 

iv. 

v. 

We prove properties (ii.) and (iii.) here, and leave proof of the other properties to the Exercises.

(ii.) We have

 Example : Using Sigma Notation5.1.1

3i i = 1, 2, 3, 4, 5.

1 + + + + .
1

4

1

9

1

16

1

25

= 3 + + + + = 363.∑
i=1

5

3i 32 33 34 35

∑
i=1

5 1

i2

 Exercise 5.1.1

2i i = 3, 4, 5, 6.

5.1.1

= + + + = 120∑
i=3

6

2i 23 24 25 26

 Rule: Properties of Sigma Notation

, , … ,a1 a2 an , , … ,b1 b2 bn c

n m 1 ≤ m ≤ n.

c = nc∑
i=1

n

c = c∑
i=1

n

ai ∑
i=1

n

ai

( + ) = +∑
i=1

n

ai bi ∑
i=1

n

ai ∑
i=1

n

bi

( − ) = −∑
i=1

n

ai bi ∑
i=1

n

ai ∑
i=1

n

bi

= +∑
i=1

n

ai ∑
i=1

m

ai ∑
i=m+1

n

ai

 Proof

c = c +c +c +⋯ +c = c( + + +⋯ + ) = c .∑
i=1

n

ai a1 a2 a3 an a1 a2 a3 an ∑
i=1

n

ai
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(iii.) We have

□

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next rule, for
sums and powers of integers, and we use them in the next set of examples.

1. The sum of  integers is given by

2. The sum of consecutive integers squared is given by

3. The sum of consecutive integers cubed is given by

Write using sigma notation and evaluate:

a. The sum of the terms  for 
b. The sum of the terms  for 

Solution

a. Multiplying out , we can break the expression into three terms.

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

( + )∑
i=1

n

ai bi = ( + ) +( + ) +( + ) +⋯ +( + )a1 b1 a2 b2 a3 b3 an bn

= ( + + +⋯ + ) +( + + +⋯ + )a1 a2 a3 an b1 b2 b3 bn

= + .∑
i=1

n

ai ∑
i=1

n

bi

(5.1.1)

(5.1.2)

(5.1.3)

 Rule: Sums and Powers of Integers

n

i = 1 +2 +⋯ +n = .∑
i=1

n n(n+1)

2
(5.1.4)

= + +⋯ + = .∑
i=1

n

i2 12 22 n2 n(n+1)(2n+1)

6
(5.1.5)

= + +⋯ + = .∑
i=1

n

i3 13 23 n3 (n+1n2 )2

4
(5.1.6)

 Example : Evaluation Using Sigma Notation5.1.2

(i−3)2 i = 1, 2, … , 200.

( − )i3 i2 i = 1, 2, 3, 4, 5, 6

(i−3)2

(i−3∑
i=1

200

)2 = ( −6i+9)∑
i=1

200

i2

= − 6i+ 9∑
i=1

200

i2 ∑
i=1

200

∑
i=1

200

= −6 i+ 9∑
i=1

200

i2 ∑
i=1

200

∑
i=1

200

= −6 [ ]+9(200)
200(200 +1)(400 +1)

6

200(200 +1)

2

= 2, 686, 700 −120, 600 +1800

= 2, 567, 900
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Find the sum of the values of  for 

Hint

Use the properties of sigma notation to solve the problem.

Answer

Find the sum of the values of  over the integers 

Solution

Using Equation , we have

Evaluate the sum indicated by the notation .

Hint

Use the rule on sum and powers of integers (Equations - ).

Answer

Approximating Area

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let  be a
continuous, nonnegative function defined on the closed interval . We want to approximate the area  bounded by  above,
the -axis below, the line  on the left, and the line  on the right (Figure ).

( − )∑
i=1

6

i3 i2 = −∑
i=1

6

i3 ∑
i=1

6

i2

= −
(6 +162 )2

4

6(6 +1)(2(6) +1)

6

= −
1764

4

546

6

= 350

 Exercise 5.1.2

4 +3i i = 1, 2, … , 100.

15, 550

 Example : Finding the Sum of the Function Values5.1.3

f(x) = x3 1, 2, 3, … , 10.

5.1.6

= = = 3025∑
i=0

10

i3
(10 (10 +1)2 )2

4

100(121)

4

 Exercise 5.1.3

(2k+1)∑
k=1

20

5.1.45.1.6

440

f(x)

[a, b] A f(x)

x x = a x = b 5.1.1
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Figure : An area (shaded region) bounded by the curve  at top, the -axis at bottom, the line  to the left, and the
line  at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small shapes
that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin by dividing the

interval  into  subintervals of equal width, . We do this by selecting equally spaced points  with 

 and

for 

We denote the width of each subinterval with the notation  so  and

for  This notion of dividing an interval  into subintervals by selecting points from within the interval is used
quite often in approximating the area under a curve, so let’s define some relevant terminology.

A set of points  for  with , which divides the interval  into
subintervals of the form  is called a partition of . If the subintervals all have the same
width, the set of points forms a regular partition (or uniform partition) of the interval 

We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two methods:
the left-endpoint approximation and the right-endpoint approximation.

On each subinterval  (for ), construct a rectangle with width  and height equal to , which
is the function value at the left endpoint of the subinterval. Then the area of this rectangle is . Adding the areas of
all these rectangles, we get an approximate value for  (Figure ). We use the notation  to denote that this is a left-
endpoint approximation of  using  subintervals.

5.1.1 f(x) x x = a
x = b

[a, b] n
b−a

n
, , , … ,x0 x1 x2 xn

= a, = b,x0 xn

− =xi xi−1
b−a

n

i = 1, 2, 3, … ,n.

Δx, Δx = b−a

n

= + iΔxxi x0

i = 1, 2, 3, … ,n. [a, b]

 Definition: Partitions

P = xi i = 0, 1, 2, … ,n a = < < <. . . < = bx0 x1 x2 xn [a, b]

[ , ], [ , ], . . . , [ , ]x0 x1 x1 x2 xn−1 xn [a, b]

[a, b].

 Rule: Left-Endpoint Approximation

[ , ]xi−1 xi i = 1, 2, 3, … ,n Δx f( )xi−1

f( )Δxxi−1

A 5.1.2 Ln

A n

A ≈ = f( )Δx+f( )Δx+⋯ +f( )Δx = f( )ΔxLn x0 x1 xn−1 ∑
i=1

n

xi−1
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Figure : In the left-endpoint approximation of area under a curve, the height of each rectangle is determined by the
function value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the left-
endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Construct a rectangle on each subinterval , only this time the height of the rectangle is determined by the function
value  at the right endpoint of the subinterval. Then, the area of each rectangle is  and the approximation for 
is given by

The notation  indicates this is a right-endpoint approximation for  (Figure ).

Figure : In the right-endpoint approximation of area under a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the right-endpoint approximation differs from the left-endpoint
approximation in Figure .

The graphs in Figure  represent the curve . In Figure  we divide the region represented by the interval 

into six subintervals, each of width . Thus, . We then form six rectangles by drawing vertical lines perpendicular to 
, the left endpoint of each subinterval. We determine the height of each rectangle by calculating  for 

The intervals are . We find the area of each rectangle by multiplying the height by
the width. Then, the sum of the rectangular areas approximates the area between  and the -axis. When the left endpoints are
used to calculate height, we have a left-endpoint approximation. Thus,

5.1.2

 Rule: Right-Endpoint Approximation

[ , ]xi−1 xi
f( )xi f( ) Δxxi A

A ≈ = f( )Δx+f( )Δx+⋯ +f( )Δx = f( )Δx.Rn x1 x2 xn ∑
i=1

n

xi

Rn A 5.1.3

5.1.3

5.1.2

5.1.4 f(x) =
x2

2
5.1.4b [0, 3]

0.5 Δx = 0.5

xi−1 f( )xi−1 i = 1, 2, 3, 4, 5, 6.

[0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3]

f(x) x

A ≈ L6 = f( )Δx = f( )Δx+f( )Δx+f( )Δx+f( )Δx+f( )Δx+f( )Δx∑
i=1

6

xi−1 x0 x1 x2 x3 x4 x5

= f(0)0.5 +f(0.5)0.5 +f(1)0.5 +f(1.5)0.5 +f(2)0.5 +f(2.5)0.5

= (0)0.5 +(0.125)0.5 +(0.5)0.5 +(1.125)0.5 +(2)0.5 +(3.125)0.5

= 0 +0.0625 +0.25 +0.5625 +1 +1.5625

= 3.4375 units2
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Figure : Methods of approximating the area under a curve by using (a) the left endpoints and (b) the right endpoints.

In Figure , we draw vertical lines perpendicular to  such that  is the right endpoint of each subinterval, and calculate 
 for . We multiply each  by  to find the rectangular areas, and then add them. This is a right-

endpoint approximation of the area under . Thus,

Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of  on the interval
; use .

Solution

First, divide the interval  into  equal subintervals. Using . This is the width of each

rectangle. The intervals  are shown in Figure . Using a left-endpoint approximation, the
heights are  and  Then,

Figure : The graph shows the left-endpoint approximation of the area under  from  to .

The right-endpoint approximation is shown in Figure . The intervals are the same,  but now use the right
endpoint to calculate the height of the rectangles. We have

5.1.4

5.1.4b xi xi
f( )xi i = 1, 2, 3, 4, 5, 6 f( )xi Δx

f(x)

A ≈ R6 = f( )Δx = f( )Δx+f( )Δx+f( )Δx+f( )Δx+f( )Δx+f( )Δx∑
i=1

6

xi x1 x2 x3 x4 x5 x6

= f(0.5)0.5 +f(1)0.5 +f(1.5)0.5 +f(2)0.5 +f(2.5)0.5 +f(3)0.5

= (0.125)0.5 +(0.5)0.5 +(1.125)0.5 +(2)0.5 +(3.125)0.5 +(4.5)0.5

= 0.0625 +0.25 +0.5625 +1 +1.5625 +2.25

= 5.6875 .units2

 Example : Approximating the Area Under a Curve5.1.4

f(x) = x2

[0, 2] n = 4

[0, 2] n n = 4, Δx = = 0.5
(2 −0)

4
[0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] 5.1.5

f(0) = 0, f(0.5) = 0.25, f(1) = 1, f(1.5) = 2.25.

L4 = f( )Δx+f( )Δx+f( )Δx+f( )Δxx0 x1 x2 x3

= 0(0.5) +0.25(0.5) +1(0.5) +2.25(0.5)

= 1.75 units2

5.1.5 f(x) = x2 0 2

5.1.6 Δx = 0.5,

https://libretexts.org/
https://math.libretexts.org/@go/page/4471?pdf


5.1.8 https://math.libretexts.org/@go/page/4471

Figure : The graph shows the right-endpoint approximation of the area under  from  to .

The left-endpoint approximation is ; the right-endpoint approximation is .

Sketch left-endpoint and right-endpoint approximations for  on ; use . Approximate the area using both

methods.

Hint

Follow the solving strategy in Example  step-by-step.

Answer

The left-endpoint approximation is . The right-endpoint approximation is . See the below
Media.

Looking at Figure  and the graphs in Example , we can see that when we use a small number of intervals, neither the left-
endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under the curve.
However, it seems logical that if we increase the number of points in our partition, our estimate of  will improve. We will have
more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea of
increasing , first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally  rectangles. Then, let’s
do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region. Figure 
shows the area of the region under the curve  on the interval  using a left-endpoint approximation where 

 The width of each rectangle is

R4 = f( )Δx+f( )Δx+f( )Δx+f( )Δxx1 x2 x3 x4

= 0.25(0.5) +1(0.5) +2.25(0.5) +4(0.5)

= 3.75 units2

5.1.6 f(x) = x2 0 2

1.75 units2 3.75 units2

 Exercise 5.1.4

f(x) =
1

x
[1, 2] n = 4

5.1.4

0.7595 units2 0.6345 units2

5.1.4 5.1.4

A

n 32

5.1.7

f(x) = (x−1 +4)3 [0, 2]

n = 4.
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The area is approximated by the summed areas of the rectangles, or

Figure : With a left-endpoint approximation and dividing the region from  to  into four equal intervals, the area under the
curve is approximately equal to the sum of the areas of the rectangles.

Figure  shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure  with
this graph with eight rectangles, we can see there appears to be less white space under the curve when  This white space is
area under the curve we are unable to include using our approximation. The area of the rectangles is

Figure : The region under the curve is divided into  rectangular areas of equal width for a left-endpoint approximation.

The graph in Figure  shows the same function with  rectangles inscribed under the curve. There appears to be little white
space left. The area occupied by the rectangles is

Figure : Here,  rectangles are inscribed under the curve for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the same
curve, using four rectangles (Figure ), yields an area

Δx = = .
2 −0

4

1

2

= f(0)(0.5) +f(0.5)(0.5) +f(1)(0.5) +f(1.5)0.5 = 7.5L4 units2

5.1.7 a b

5.1.8 5.1.7

n = 8.

= f(0)(0.25) +f(0.25)(0.25) +f(0.5)(0.25) +f(0.75)(0.25) +f(1)(0.25) +f(1.25)(0.25) +f(1.5)(0.25)L8

+f(1.75)(0.25) = 7.75 units2

5.1.8 n = 8

5.1.9 32

= f(0)(0.0625) +f(0.0625)(0.0625) +f(0.125)(0.0625) +⋯ +f(1.9375)(0.0625) = 7.9375 .L32 units2

5.1.9 32

5.1.10

= f(0.5)(0.5) +f(1)(0.5) +f(1.5)(0.5) +f(2)(0.5) = 8.5 .R4 units2
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Figure : Now we divide the area under the curve into four equal subintervals for a right-endpoint approximation.

Dividing the region over the interval  into eight rectangles results in  The graph is shown in Figure 

. The area is

Figure : Here we use right-endpoint approximation for a region divided into eight equal subintervals.

Last, the right-endpoint approximation with  is close to the actual area (Figure ). The area is approximately

Figure : The region is divided into  equal subintervals for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area under the
curve better as  gets larger. Furthermore, as  increases, both the left-endpoint and right-endpoint approximations appear to
approach an area of  square units. Table  shows a numerical comparison of the left- and right-endpoint methods. The idea
that the approximations of the area under the curve get better and better as  gets larger and larger is very important, and we now
explore this idea in more detail.

Table : Converging Values of Left- and Right-Endpoint Approximations as  Increases
Value of Approximate Area Approximate Area 

5.1.10

[0, 2] Δx = = 0.25.
2 −0

8
5.1.11

= f(0.25)(0.25) +f(0.5)(0.25) +f(0.75)(0.25) +f(1)(0.25) +f(1.25)(0.25) +f(1.5)(0.25) +f(1.75)(0.25)R8

+f(2)(0.25) = 8.25 units2

5.1.11

n = 32 5.1.12

= f(0.0625)(0.0625) +f(0.125)(0.0625) +f(0.1875)(0.0625) +⋯ +f(2)(0.0625) = 8.0625R32 units2

5.1.12 32

n n

8 5.1.15

n

5.1.15 n

n Ln Rn

n = 4 7.5 8.5

n = 8 7.75 8.25
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Value of Approximate Area Approximate Area 

Forming Riemann Sums

So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been determined
by evaluating the function at either the right or left endpoints of the subinterval . In reality, there is no reason to restrict
evaluation of the function to one of these two points only. We could evaluate the function at any point  in the subinterval 

, and use  as the height of our rectangle. This gives us an estimate for the area of the form

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed the
idea.

Let  be defined on a closed interval  and let  be any partition of . Let  be the width of each subinterval 
 and for each , let  be any point in . A Riemann sum is defined for  as

At this point, we'll choose a regular partition , as we have in our examples above. This forces all  to be equal to 

for any natural number of intervals .

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as  get larger and larger.
The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of . We are now ready
to define the area under a curve in terms of Riemann sums.

Let  be a continuous, nonnegative function on an interval , and let  be a Riemann sum for  with a

regular partition . Then, the area under the curve  on  is given by

See a graphical demonstration of the construction of a Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit of a
function  as  goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series; however, for now
we can assume that the computational techniques we used to compute limits of functions can also be used to calculate limits of
sums.

Second, we must consider what to do if the expression converges to different limits for different choices of  Fortunately, this
does not happen. Although the proof is beyond the scope of this text, it can be shown that if  is continuous on the closed

interval , then  exists and is unique (in other words, it does not depend on the choice of ).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for . Although
any choice for  gives us an estimate of the area under the curve, we don’t necessarily know whether that estimate is too high
(overestimate) or too low (underestimate). If it is important to know whether our estimate is high or low, we can select our value
for  to guarantee one result or the other.

n Ln Rn

n = 32 7.94 8.06

[ , ]xi−1 xi
x∗
i

[ , ]xi−1 xi f( )x∗
i

A ≈ f( ) Δx.∑
i=1

n

x∗
i

 Definition: Riemann sum

f(x) [a, b] P [a, b] Δxi
[ , ]xi−1 xi i x∗

i [ , ]xi−1 xi f(x)

f( ) Δ .∑
i=1

n

x∗
i xi

P Δxi Δx =
b−a

n
n

n

n

 Definition: Area Under the Curve

f(x) [a, b] f( ) Δx∑
i=1

n

x∗
i f(x)

P y = f(x) [a, b]

A = f( ) Δx.lim
n→∞

∑
i=1

n

x∗
i

f(x) x

.x∗
i

f(x)

[a, b] f( )Δxlim
n→∞

∑
i=1

n

x∗
i x∗

i

x∗
i

x∗
i

x∗
i
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If we want an overestimate, for example, we can choose  such that for   for all .
In other words, we choose  so that for   is the maximum function value on the interval . If we

select  in this way, then the Riemann sum  is called an upper sum. Similarly, if we want an underestimate, we can

choose  so that for   is the minimum function value on the interval . In this case, the
associated Riemann sum is called a lower sum. Note that if  is either increasing or decreasing throughout the interval ,
then the maximum and minimum values of the function occur at the endpoints of the subintervals, so the upper and lower sums are
just the same as the left- and right-endpoint approximations.

Find a lower sum for  on ; let  subintervals.

Solution

With  over the interval . We can list the intervals as  and .

Because the function is decreasing over the interval  Figure shows that a lower sum is obtained by using the right
endpoints.

Figure : The graph of  is set up for a right-endpoint approximation of the area bounded by the curve and
the -axis on , and it shows a lower sum.

The Riemann sum is

The area of   is a lower sum and an underestimate.

a. Find an upper sum for  on ; let 
b. Sketch the approximation.

Hint

 is decreasing on , so the maximum function values occur at the left endpoints of the subintervals.

Answer

a. Upper sum=

b.

x∗
i i = 1, 2, 3, … ,n,f( ) ≥ f(x)x∗

i x ∈ [ −1, ]xi xi
x∗
i i = 1, 2, 3, … ,n,f( )x∗

i [ , ]xi−1 xi

x∗
i f( )Δx∑

i=1

n

x∗
i

x ∗ i i = 1, 2, 3, … ,n, f( )x∗
i [ , ]xi−1 xi

f(x) [a, b]

 Example : Finding Lower and Upper Sums5.1.5

f(x) = 10 −x2 [1, 2] n = 4

n = 4 [1, 2], Δx =
1

4
[1, 1.25], [1.25, 1.5], [1.5, 1.75], [1.75, 2]

[1, 2],

5.1.13 f(x) = 10 −x2

x [1, 2]

(10 − )(0.25)∑
k=1

4

x2 = 0.25[10 −(1.25 +10 −(1.5 +10 −(1.75 +10 −(2 ])2 )2 )2 )2

= 0.25[8.4375 +7.75 +6.9375 +6]

= 7.28 .units2

7.28 units2

 Exercise 5.1.5

f(x) = 10 −x2 [1, 2] n = 4.

f(x) [1, 2]

8.0313 .units2
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Find a lower sum for  over the interval ; let 

Solution

Let’s first look at the graph in Figure  to get a better idea of the area of interest.

Figure : The graph of  is divided into six regions: .

The intervals are , and . Note that  is increasing on the
interval , so a left-endpoint approximation gives us the lower sum. A left-endpoint approximation is the Riemann sum 

.We have

Using the function  over the interval  find an upper sum; let 

Hint

Follow the steps from Example .

Answer

Key Concepts

The use of sigma (summation) notation of the form  is useful for expressing long sums of values in compact form.

For a continuous function defined over an interval  the process of dividing the interval into  equal parts, extending a
rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing the areas yields an
approximation of the area of that region.

 Example : Finding Lower and Upper Sums for 5.1.6 f(x) = sin x

f(x) = sinx [a, b] = [0, ]π
2

n = 6.

5.1.14

5.1.14 y = sin x Δx = =
π/2

6

π

12

[0, ] , [ , ] , [ , ] , [ , ] , [ , ]π

12
π

12
π

6
π

6
π

4
π

4
π

3
π

3
5π
12

[ , ]5π
12

π

2
f(x) = sinx

[0, ]π
2

sin ( )∑5
i=0 xi

π

12

A ≈ sin(0)( )+sin( ) ( )+sin( ) ( )+sin( ) ( )+sin( ) ( )+sin( ) ( ) ≈ 0.863 .π
12

π
12

π
12

π
6

π
12

π
4

π
12

π
3

π
12

5π
12

π
12

units2

 Exercise 5.1.6

f(x) = sinx [0, ] ,π

2
n = 6.

5.1.6

A ≈ 1.125 units2

∑
i=1

n

ai

[a, b], n
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When using a regular partition, the width of each rectangle is .

Riemann sums are expressions of the form  and can be used to estimate the area under the curve  Left-

and right-endpoint approximations are special kinds of Riemann sums where the values of  are chosen to be the left or right
endpoints of the subintervals, respectively.
Riemann sums allow for much flexibility in choosing the set of points  at which the function is evaluated, often with an eye
to obtaining a lower sum or an upper sum.

Key Equations
Properties of Sigma Notation

Sums and Powers of Integers

Left-Endpoint Approximation

Right-Endpoint Approximation

Glossary

left-endpoint approximation
an approximation of the area under a curve computed by using the left endpoint of each subinterval to calculate the height of the
vertical sides of each rectangle

lower sum
a sum obtained by using the minimum value of  on each subinterval

partition

Δx =
b−a

n

f( )Δx,∑
i=1

n

x∗
i y = f(x).

x∗
i

x∗
i

c∑
i=1

n

c∑
i=1

n

ai

( + )∑
i=1

n

ai bi

( − )∑
i=1

n

ai bi

∑
i=1

n

ai

= nc

= c∑
i=1

n

ai

= +∑
i=1

n

ai ∑
i=1

n

bi

= −∑
i=1

n

ai ∑
i=1

n

bi

= +∑
i=1

m

ai ∑
i=m+1

n

ai

i = 1 +2 +⋯ +n =∑
i=1

n n(n+1)

2

= + +⋯ + =∑
i=1

n

i2 12 22 n2 n(n+1)(2n+1)

6

= + +⋯ + =∑
i=0

n

i3 13 23 n3 (n+1n2 )2

4

A ≈ = f( )Δx+f( )Δx+⋯ +f( )Δx = f( )ΔxLn x0 x1 xn−1 ∑
i=1

n

xi−1

A ≈ = f( )Δx+f( )Δx+⋯ +f( )Δx = f( )ΔxRn x1 x2 xn ∑
i=1

n

xi

f(x)
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a set of points that divides an interval into subintervals

regular partition
a partition in which the subintervals all have the same width

riemann sum

an estimate of the area under the curve of the form 

right-endpoint approximation
the right-endpoint approximation is an approximation of the area of the rectangles under a curve using the right endpoint of
each subinterval to construct the vertical sides of each rectangle

sigma notation
(also, summation notation) the Greek letter sigma ( ) indicates addition of the values; the values of the index above and
below the sigma indicate where to begin the summation and where to end it

upper sum
a sum obtained by using the maximum value of  on each subinterval

5.1: Areas and Distances is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

5.1: Approximating Areas by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

A ≈ f( )Δx∑
i=1

n

x∗
i

Σ

f(x)
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5.2: The Definite Integral

5.2: The Definite Integral is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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5.3: The Fundamental Theorem of Calculus

5.3: The Fundamental Theorem of Calculus is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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5.4: Indefinite Integrals and the Net Change Theorem

Apply the basic integration formulas.
Explain the significance of the net change theorem.
Use the net change theorem to solve applied problems.
Apply the integrals of odd and even functions.

In this section, we use some basic integration formulas studied previously to solve some key applied problems. It is important to
note that these formulas are presented in terms of indefinite integrals. Although definite and indefinite integrals are closely related,
there are some key differences to keep in mind. A definite integral is either a number (when the limits of integration are constants)
or a single function (when one or both of the limits of integration are variables). An indefinite integral represents a family of
functions, all of which differ by a constant. As you become more familiar with integration, you will get a feel for when to use
definite integrals and when to use indefinite integrals. You will naturally select the correct approach for a given problem without
thinking too much about it. However, until these concepts are cemented in your mind, think carefully about whether you need a
definite integral or an indefinite integral and make sure you are using the proper notation based on your choice.

Basic Integration Formulas
Recall the integration formulas given in the section on Antiderivatives and the properties of definite integrals. Let’s look at a few
examples of how to apply these formulas and properties.

Use the power rule to integrate the function .

Solution

The first step is to rewrite the function and simplify it so we can apply the power rule:

Now apply the power rule:

Find the definite integral of  over the interval 

Hint

Follow the process from Example  to solve the problem.

Answer

 Learning Objectives

 Example : Integrating a Function Using the Power Rule5.4.1

(1 + t)dt∫
4

1
t√

(1 + t)dt∫
4

1
t√ = (1 + t)dt∫

4

1
t1/2

= ( + )dt.∫
4

1
t1/2 t3/2

( + )dt∫
4

1
t1/2 t3/2 = ( + )

2

3
t3/2 2

5
t5/2 ∣

∣
∣
4

1

= [ (4 + (4 ]−[ (1 + (1 ]
2

3
)3/2 2

5
)5/2 2

3
)3/2 2

5
)5/2

= .
256

15

 Exercise 5.4.1

f(x) = −3xx2 [1, 3].
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The Net Change Theorem

The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value equals the
initial value plus the integral of the rate of change of that quantity. The formula can be expressed in two ways. The second is more
familiar; it is simply the definite integral.

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

or

Subtracting  from both sides of the Equation  yields Equation . Since they are equivalent formulas, which one we
use depends on the application.

The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to name
only a few applications. Net change accounts for negative quantities automatically without having to write more than one integral.
To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement.

We looked at a simple example of this in The Definite Integral section. Suppose a car is moving due north (the positive direction) at
40 mph between 2 p.m. and 4 p.m., then the car moves south at 30 mph between 4 p.m. and 5 p.m. We can graph this motion as
shown in Figure .

Figure : The graph shows speed versus time for the given motion of a car.

Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled. The net
displacement is given by

Thus, at 5 p.m. the car is 50 mi north of its starting position. The total distance traveled is given by

Therefore, between 2 p.m. and 5 p.m., the car traveled a total of 110 mi.

( −3x) dx = −∫
3

1
x2 10

3

 Net Change Theorem

F (b) = F (a) + (x)dx∫
b

a

F ′ (5.4.1)

(x)dx = F (b) −F (a).∫
b

a

F ′ (5.4.2)

F (a) 5.4.1 5.4.2

5.4.1

5.4.1

v(t)dt = 40 dt+ −30 dt = 80 −30 = 50.∫
5

2
∫

4

2
∫

5

4

|v(t)| dt = 40 dt+ 30 dt = 80 +30 = 110.∫
5

2
∫

4

2
∫

5

4
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To summarize, net displacement may include both positive and negative values. In other words, the velocity function accounts for
both forward distance and backward distance. To find net displacement, integrate the velocity function over the interval. Total
distance traveled, on the other hand, is always positive. To find the total distance traveled by an object, regardless of direction, we
need to integrate the absolute value of the velocity function.

Given a velocity function  (in meters per second) for a particle in motion from time  to time  find the
net displacement of the particle.

Solution

Applying the net change theorem, we have

The net displacement is  m (Figure ).

Figure : The graph shows velocity versus time for a particle moving with a linear velocity function.

Use Example  to find the total distance traveled by a particle according to the velocity function  m/sec over
a time interval 

Solution

The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the absolute value
of the velocity function to find the total distance traveled.

To continue with the example, use two integrals to find the total distance. First, find the -intercept of the function, since that is
where the division of the interval occurs. Set the equation equal to zero and solve for . Thus,

The two subintervals are  and . To find the total distance traveled, integrate the absolute value of the function.
Since the function is negative over the interval , we have  over that interval. Over , the function is
positive, so . Thus, we have

 Example : Finding Net Displacement5.4.2

v(t) = 3t−5 t = 0 t = 3,

(3t−5)dt =( −5t) = [ −5(3)]−0 = −15 = − = − .∫
3

0

3t2

2
∣
∣
∣
3

0

3(3)2

2

27

2

27

2

30

2

3

2

− 3
2

5.4.2

5.4.2

 Example : Finding the Total Distance Traveled5.4.3

5.4.2 v(t) = 3t−5
[0, 3].

t

t

3t−5

3t

t

= 0

= 5

= .
5

3

[0, ]5
3

[ , 3]5
3

[0, ]5
3

v(t) = −v(t)∣∣ ∣∣ [ , 3]5
3

v(t) = v(t)∣∣ ∣∣
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So, the total distance traveled is  m.

Find the net displacement and total distance traveled in meters given the velocity function  over the interval 
.

Hint

Follow the procedures from Examples  and . Note that  for  and  for .

Answer

Net displacement:  m; total distance traveled:  m.

Applying the Net Change Theorem

The net change theorem can be applied to the flow and consumption of fluids, as shown in Example .

If the motor on a motorboat is started at  and the boat consumes gasoline at the rate of  gal/hr, how much gasoline
is used in the first  hours?

Solution

Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus. The limits of
integration are the endpoints of the interval [0,2]. We have

Thus, the motorboat uses  gal of gas in  hours.

|v(t)| dt∫
3

0
= −v(t)dt+ v(t)dt∫

5/3

0
∫

3

5/3

= 5 −3t dt+ 3t−5 dt∫
5/3

0
∫

3

5/3

=(5t− ) +( −5t)
3t2

2
∣
∣
∣
5/3

0

3t2

2
∣
∣
∣
3

5/3

= [5( ) − ]−0 +[ −15]−[ − ]
5

3

3(5/3)2

2

27

2

3(5/3)2

2

25

3

= − + −15 − +
25

3

25

6

27

2

25

6

25

3

=
41

6

14
6

 Exercise 5.4.2

f(t) = −21
2
et

[0, 2]

5.4.2 5.4.3 f(t) ≤ 0 t ≤ ln4 f(t) ≥ 0 t ≥ ln4

≈ −0.8055−9e2

2
4 ln4 −7.5 + ≈ 1.740e2

2

5.4.4

 Example : How Many Gallons of Gasoline Are Consumed?5.4.4

t = 0 5 − t3

2

(5 − ) dt∫
2

0
t3 =(5t− )

t4

4

∣

∣
∣
2

0

= [5(2) − ]−0
(2)4

4

= 10 −
16

4

= 6.

6 2
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As we saw at the beginning of the chapter, top iceboat racers can attain speeds of up to five times the wind speed. Andrew is
an intermediate iceboater, though, so he attains speeds equal to only twice the wind speed.

Figure : (credit: modification of work by Carter Brown, Flickr)

Suppose Andrew takes his iceboat out one morning when a light -mph breeze has been blowing all morning. As Andrew gets
his iceboat set up, though, the wind begins to pick up. During his first half hour of iceboating, the wind speed increases
according to the function  For the second half hour of Andrew’s outing, the wind remains steady at  mph. In
other words, the wind speed is given by

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he moves in a straight line away from his
starting point, how far is Andrew from his starting point after  hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then

Substituting the expressions we were given for , we get

Andrew is 25 mi from his starting point after 1 hour.

 Example : Chapter Opener: Iceboats5.4.5

5.4.3

5

v(t) = 20t+5. 15

v(t) = {
20t+5,

15,

for 0 ≤ t ≤ 1
2

for  ≤ t ≤ 11
2

1

Distance = 2v(t)dt.∫
1

0

v(t)

2v(t)dt∫
1

0
= 2v(t)dt+ 2v(t)dt∫

1/2

0
∫

1

1/2

= 2(20t+5)dt+ 2(15)dt∫
1/2

0
∫

1

1/3

= (40t+10)dt+ 30 dt∫
1/2

0
∫

1

1/2

= [20 +10t] +[30t]t2 ∣
∣
∣
1/2

0

∣
∣
∣
1

1/2

=( +5)−0 +(30 −15)
20

4

= 25.
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Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind starts to die down
according to the function  In other words, the wind speed is given by

Under these conditions, how far from his starting point is Andrew after 1 hour?

Hint

Don’t forget that Andrew’s iceboat moves twice as fast as the wind.

Answer

 mi

Integrating Even and Odd Functions
We saw in Functions and Graphs that an even function is a function in which  for all  in the domain—that is, the
graph of the curve is unchanged when  is replaced with . The graphs of even functions are symmetric about the -axis. An odd
function is one in which  for all  in the domain, and the graph of the function is symmetric about the origin.

Integrals of even functions, when the limits of integration are from  to , involve two equal areas, because they are symmetric
about the -axis. Integrals of odd functions, when the limits of integration are similarly  evaluate to zero because the areas
above and below the -axis are equal.

For continuous even functions such that 

For continuous odd functions such that 

Integrate the even function  and verify that the integration formula for even functions holds.

Solution

The symmetry appears in the graphs in Figure . Graph (a) shows the region below the curve and above the -axis. We
have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above the curve and below the -
axis. The signed area of this region is negative. Both views illustrate the symmetry about the -axis of an even function. We
have

 Exercise 5.4.3

v(t) = −10t+15.

v(t) = { .
20t+5,

−10t+15,

for 0 ≤ t ≤ 1
2

for  ≤ t ≤ 11
2

17.5

f(−x) = f(x) x

x −x y

f(−x) = −f(x) x

−a a

y [−a, a],
x

 Integrals of Even and Odd Functions

f(−x) = f(x),

f(x)dx = 2 f(x)dx.∫
a

−a

∫
a

0

f(−x) = −f(x),

f(x)dx = 0.∫
a

−a

 Example : Integrating an Even Function5.4.6

(3 −2)dx∫
2

−2
x8

5.4.4 x

x

y
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To verify the integration formula for even functions, we can calculate the integral from  to  and double it, then check to
make sure we get the same answer.

Since  we have verified the formula for even functions in this particular example.

Figure : Graph (a) shows the positive area between the curve and the -axis, whereas graph (b) shows the negative area
between the curve and the -axis. Both views show the symmetry about the -axis.

Evaluate the definite integral of the odd function  over the interval 

Solution

The graph is shown in Figure . We can see the symmetry about the origin by the positive area above the -axis over 
, and the negative area below the -axis over  we have

(3 −2)dx∫
2

−2
x8 =( −2x)

x9

3

∣

∣
∣
2

−2

= [ −2(2)]−[ −2(−2)]
(2)9

3

(−2)9

3

=( −4)−(− +4)
512

3

512

3

= .
1000

3

0 2

(3 −2)dx =( −2x) = −4 =∫
2

0
x8 x9

3
∣
∣
∣
2

0

512

3

500

3

2 ⋅ = ,500
3

1000
3

5.4.4 x
x y

 Example : Integrating an Odd Function5.4.7

−5 sinx [−π, π].

5.4.5 x

[−π, 0] x [0, π].

−5 sinx dx∫
π

−π

= −5(−cosx)
∣
∣
∣
π

−π

= 5 cosx
∣
∣
∣
π

−π

= [5 cosπ] − [5 cos(−π)]

= −5 −(−5) = 0.
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Figure :The graph shows areas between a curve and the -axis for an odd function.

Integrate the function 

Hint

Integrate an even function.

Answer

Key Concepts
The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral of the rate
of change. Net change can be a positive number, a negative number, or zero.
The area under an even function over a symmetric interval can be calculated by doubling the area over the positive -axis. For
an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

Key Equations
Net Change Theorem

or

Glossary

net change theorem
if we know the rate of change of a quantity, the net change theorem says the future quantity is equal to the initial quantity plus
the integral of the rate of change of the quantity

5.4: Indefinite Integrals and the Net Change Theorem is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.

5.4.5 x

 Exercise 5.4.4

dx.∫
2

−2
x4

64

5

x

F (b) = F (a) + (x)dx∫
b

a

F ′

(x)dx = F (b) −F (a)∫
b

a

F ′
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5.5: The Substitution Rule

Use substitution to evaluate indefinite integrals.
Use substitution to evaluate definite integrals.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback of this
method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we examine a
technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us find antiderivatives
when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that is, the
integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to see? We are
looking for an integrand of the form . For example, in the integral

we have

and

Then

and

and we see that our integrand is in the correct form. The method is called substitution because we substitute part of the integrand
with the variable  and part of the integrand with . It is also referred to as change of variables because we are changing variables
to obtain an expression that is easier to work with for applying the integration rules.

Let ,, where  is continuous over an interval, let  be continuous over the corresponding range of , and let 
 be an antiderivative of  Then,

Let , , , and  be as specified in the theorem. Then

Integrating both sides with respect to , we see that

 Learning Objectives

f[g(x)]g'(x)dx

∫ ( −3 2x dx.x2 )3 (5.5.1)

f(x) = x3

g(x) = −3.x2

(x) = 2x.g′

f [g(x)]g'(x) = ( −3 (2x),x2 )3

u du

 Substitution with Indefinite Integrals

u = g(x) g'(x) f(x) g

F (x) f(x).

∫ f [g(x)]g'(x)dx = ∫ f(u)du

= F (u) +C

= F (g(x)) +C

 Proof

f g u F

[F (g(x))] = F '(g(x))g'(x) = f [g(x)]g'(x).
d

dx

x

∫ f [g(x)]g'(x)dx = F (g(x)) +C.
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If we now substitute , and , we get

□

Returning to the problem we looked at originally, we let  and then .

Rewrite the integral (Equation ) in terms of :

Using the power rule for integrals, we have

Substitute the original expression for  back into the solution:

We can generalize the procedure in the following Problem-Solving Strategy.

1. Look carefully at the integrand and select an expression  within the integrand to set equal to u. Let’s select . such
that  is also part of the integrand.

2. Substitute  and  into the integral.
3. We should now be able to evaluate the integral with respect to . If the integral can’t be evaluated we need to go back and

select a different expression to use as .
4. Evaluate the integral in terms of .
5. Write the result in terms of  and the expression 

Use substitution to find the antiderivative of 

Solution

The first step is to choose an expression for . We choose  because then  and we already have  in
the integrand. Write the integral in terms of :

Remember that  is the derivative of the expression chosen for , regardless of what is inside the integrand. Now we can
evaluate the integral with respect to :

Analysis

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand. Picking a value

for  of , we let  We have

u = g(x) du = (x)dxg′

∫ f [g(x)]g'(x)dx = ∫ f(u)du = F (u) +C = F (g(x)) +C.

u = −3x2 du = 2x dx

5.5.1 u

∫ ( −3 (2x dx) = ∫ du.x2 )3 u3

∫ du = +C.u3 u4

4

x

+C = +C.
u4

4

( −3x2 )4

4

 Problem-Solving Strategy: Integration by Substitution

g(x) g(x)
g'(x)

u = g(x) du = g'(x)dx.
u

u

u

x g(x).

 Example : Using Substitution to Find an Antiderivative5.5.1

∫ 6x(3 +4 dx.x2 )4

u u = 3 +4x2 du = 6x dx du

u

∫ 6x(3 +4 dx = ∫ du.x2 )4 u4

du u

u

∫ du = +C = +C.u4 u5

5

(3 +4x2 )5

5

C 1 y = (3 +4 +1.
1

5
x2 )5

y = (3 +4 +1,
1

5
x2 )5

https://libretexts.org/
https://math.libretexts.org/@go/page/4475?pdf


5.5.3 https://math.libretexts.org/@go/page/4475

so

This is exactly the expression we started with inside the integrand.

Use substitution to find the antiderivative of 

Hint

Let 

Answer

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are substituting.

Use substitution to find the antiderivative of

Solution

Rewrite the integral as  Let  and  Now we have a problem because 

and the original expression has only  We have to alter our expression for  or the integral in  will be twice as large as it

should be. If we multiply both sides of the  equation by . we can solve this problem. Thus,

Write the integral in terms of , but pull the  outside the integration symbol:

Integrate the expression in :

y' =( ) 5(3 +4 6x
1

5
x2 )4

= 6x(3 +4 .x2 )4

 Exercise 5.5.1

∫ 3 ( −3 dx.x2 x3 )2

u = −3.x3

∫ 3 ( −3 dx = ( −3 +Cx2 x3 )2 1

3
x3 )3

 Example : Using Substitution with Alteration5.5.2

∫ z dz.−5z2− −−−−√

∫ z( −5 dz.z2 )1/2 u = −5z2 du = 2z dz. du = 2z dz

z dz. du u

du
1

2

u = −5z2

du = 2z dz

du = (2z)dz = z dz.
1

2

1

2

u
1

2

∫ z( −5 dz = ∫ du.z2 )1/2 1

2
u1/2

u
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Use substitution to find the antiderivative of 

Hint

Multiply the du equation by .

Answer

Use substitution to evaluate the integral 

Solution

We know the derivative of  is , so we set . Then 

Substituting into the integral, we have

Evaluating the integral, we get

Putting the answer back in terms of t, we get

Use substitution to evaluate the integral 

Hint

Use the process from Example  to solve the problem.

Answer

∫ du
1

2
u1/2 =( ) +C

1

2

u3/2

3

2

=( )( ) +C
1

2

2

3
u3/2

= +C
1

3
u3/2

= ( −5 +C
1

3
z2 )3/2

 Exercise 5.5.2

∫ ( +5 dx.x2 x3 )9

1

3

∫ ( +5 dx = +Cx2 x3 )9 ( +5x3 )10

30

 Example : Using Substitution with Integrals of Trigonometric Functions5.5.3

∫ dt.
sin t

tcos3

cos t −sin t u = cos t du = −sin t dt.

∫ dt = −∫ .
sin t

tcos3

du

u3

−∫ = −∫ du = −(− ) +C.
du

u3
u−3 1

2
u−2

∫ dt = +C = +C.
sin t

tcos3

1

2u2

1

2 tcos2

 Exercise 5.5.3

∫ dt.
cos t

tsin2

5.5.3
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Use substitution to evaluate the indefinite integral 

Hint

Use the process from Example  to solve the problem.

Answer

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a constant.
We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we are done,  should
be the only variable in the integrand. In some cases, this means solving for the original variable in terms of . This technique
should become clear in the next example.

Use substitution to find the antiderivative of

Solution

If we let  then . But this does not account for the  in the numerator of the integrand. We need to express 
in terms of  If , then  Now we can rewrite the integral in terms of 

Then we integrate in the usual way, replace  with the original expression, and factor and simplify the result. Thus,

Substitution for Definite Integrals

Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a change to
the limits of integration. If we change variables in the integrand, the limits of integration change as well.

∫ dt = − +C
cos t

tsin2

1

sin t

 Exercise 5.5.4

∫ t sin t dt.cos3

5.5.3

∫ t sin t dt = − +Ccos3 tcos4

4

u

u

 Example : Finding an Antiderivative Using -Substitution5.5.4 u

∫ dx.
x

x−1
− −−−−

√

u = x−1, du = dx x x

u. u = x−1 x = u+1. u :

∫ dx = ∫ du = ∫ ( + ) du = ∫ ( + ) du.
x

x−1
− −−−−

√

u+1

u−−√
u−−√

1

u−−√
u1/2 u−1/2

u

∫ ( + )duu1/2 u−1/2 = +2 +C
2

3
u3/2 u1/2

= (x−1 +2(x−1 +C
2

3
)3/2 )1/2

= (x−1 [ (x−1) +2]+C)1/2 2

3

= (x−1 ( x− + ))1/2 2

3

2

3

6

3

= (x−1 ( x+ ))1/2 2

3

4

3

= (x−1 (x+2) +C.
2

3
)1/2
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Let  and let  be continuous over an interval , and let  be continuous over the range of  Then,

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for
indefinite integrals, if  is an antiderivative of  we have

Then

and we have the desired result.

Use substitution to evaluate

Solution

Let , so . Since the original function includes one factor of  and , multiply both sides
of the  equation by  Then,

To adjust the limits of integration, note that when  and when 

Then

Evaluating this expression, we get

 Substitution with Definite Integrals

u = g(x) g′ [a, b] f u = g(x).

f(g(x))g'(x)dx = f(u)du.∫
b

a

∫
g(b)

g(a)

F (x) f(x),

∫ f(g(x))g'(x)dx = F (g(x)) +C.

f [g(x)]g'(x)dx∫
b

a

= F (g(x))
∣
∣
∣
x=b

x=a

= F (g(b)) −F (g(a))

= F (u)
∣
∣
∣
u=g(b)

u=g(a)

= f(u)du∫
g(b)

g(a)

 Example : Using Substitution to Evaluate a Definite Integral5.5.5

(1 +2 dx.∫
1

0
x2 x3)5

u = 1 +2x3 du = 6 dxx2 x2 du = 6 dxx2

du 1/6.

du

becomes du
1

6

= 6 dxx2

= dx.x2

x = 0, u = 1 +2(0) = 1, x = 1, u = 1 +2(1) = 3.

(1 +2 dx = du.∫
1

0
x2 x3)5 1

6
∫

3

1
u5

du
1

6
∫

3

1
u5 =( )( )

1

6

u6

6
∣
∣
3

1

= [(3 −(1 ]
1

36
)6 )6

= .
182

9
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Use substitution to evaluate the definite integral 

Hint

Use the steps from Example  to solve the problem.

Answer

Use substitution to evaluate 

Hint

Use the process from Example  to solve the problem.

Answer

Use substitution to evaluate

Solution

Let  Then,  To adjust the limits of integration, we note that when , and when 
. So our substitution gives

Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of integration
apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before we can apply
substitution. Also, we have the option of replacing the original expression for  after we find the antiderivative, which means that
we do not have to change the limits of integration. These two approaches are shown in Example .

 Exercise 5.5.5

y(2 −3 dy.∫
0

−1
y2 )5

5.5.5

y(2 −3 dy =∫
0

−1
y2 )5 91

3

 Exercise 5.5.6

cos( ) dx.∫
1

0
x2 π

2
x3

5.5.5

cos( ) dx = ≈ 0.2122∫
1

0
x2 π

2
x3 2

3π

 Example : Using Substitution with an Exponential Function5.5.6

x dx.∫
1

0
e4 +3x2

u = 4 +3.x3 du = 8x dx. x = 0, u = 3
x = 1, u = 7

x dx∫
1

0
e4 +3x2

= du
1

8
∫

7

3
eu

=
1

8
eu∣

∣
7

3

=
−e7 e3

8

≈ 134.568

u
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Use substitution to evaluate

Solution

Let us first use a trigonometric identity to rewrite the integral. The trig identity  allows us to rewrite the

integral as

Then,

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let  Then, 

 or . Also, when  and when  Expressing the second integral in terms of 

, we have

Key Concepts
Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative. The term
‘substitution’ refers to changing variables or substituting the variable  and  for appropriate expressions in the integrand.
When using substitution for a definite integral, we also have to change the limits of integration.

Key Equations
Substitution with Indefinite Integrals

Substitution with Definite Integrals

Glossary

change of variables
the substitution of a variable, such as , for an expression in the integrand

integration by substitution

 Example : Using Substitution to Evaluate a Trigonometric Integral5.5.7

θ dθ.∫
π/2

0
cos2

θ =cos2 1 +cos 2θ

2

θ dθ = dθ.∫
π/2

0
cos2 ∫

π/2

0

1 +cos 2θ

2

( ) dθ∫
π/2

0

1 +cos 2θ

2
= ( + cos 2θ) dθ∫

π/2

0

1

2

1

2

= dθ+ cos 2θ dθ.
1

2
∫

π/2

0
∫

π/2

0

u = 2θ.

du = 2 dθ, du = dθ
1

2
θ = 0, u = 0, θ = π/2, u = π.

u

dθ+ cos 2θ dθ
1

2
∫

π/2

0

1

2
∫

π/2

0
= dθ+ ( ) cosu du

1

2
∫

π/2

0

1

2

1

2
∫

π

0

= + sinu
θ

2
∣
∣
∣
θ=π/2

θ=0

1

4
∣
∣
∣
u=θ

u=0

= ( −0)+(0 −0) =
π

4

π

4

u du

∫ f [g(x)]g'(x)dx = ∫ f(u)du = F (u) +C = F (g(x)) +C

f(g(x)) (x)dx = f(u)du∫
b

a

g′ ∫
g(b)

g(a)

u
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a technique for integration that allows integration of functions that are the result of a chain-rule derivative

5.5: The Substitution Rule is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

5.5: Substitution by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

https://libretexts.org/
https://math.libretexts.org/@go/page/4475?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/05%3A_Integrals/5.05%3A_The_Substitution_Rule
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/05%3A_Integrals/5.05%3A_The_Substitution_Rule?no-cache
https://math.libretexts.org/@go/page/2515
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


1

CHAPTER OVERVIEW

6: Applications of Integration

A general Calculus Textmap organized around the textbook 

Calculus: Early Transcendentals 

by James Stewart

I    II    III    IV   V    VI    VII    VIII    IX    X    XI    XII    XIII    XIV    XV    XVI    XVII

This Textmap is currently under construction... please be patient with us.

6.1: Areas Between Curves
6.2: Volumes
6.3: Volumes by Cylindrical Shells
6.4: Work
6.5: Average Value of a Function

6: Applications of Integration is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/01%3A_Functions_and_Models
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/02%3A_Limits_and_Derivatives
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/03%3A_Differentiation_Rules
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/04%3A_Applications_of_Differentiation
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/05%3A_Integrals
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/07%3A_Techniques_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/08%3A_Further_Applications_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/09%3A_Differential_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/11%3A_Infinite_Sequences_And_Series
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/12%3A_Vectors_and_The_Geometry_of_Space
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/14%3A_Partial_Derivatives
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/16%3A_Vector_Calculus
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/17%3A_SecondOrder_Differential_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.01%3A_Areas_Between_Curves
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.02%3A_Volumes
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.03%3A_Volumes_by_Cylindrical_Shells
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.04%3A_Work
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.05%3A_Average_Value_of_a_Function
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration?no-cache


6.1.1 https://math.libretexts.org/@go/page/4477

6.1: Areas Between Curves

6.1: Areas Between Curves is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://math.libretexts.org/@go/page/4477?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.01%3A_Areas_Between_Curves
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.01%3A_Areas_Between_Curves
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.01%3A_Areas_Between_Curves?no-cache


6.2.1 https://math.libretexts.org/@go/page/4478

6.2: Volumes

6.2: Volumes is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://math.libretexts.org/@go/page/4478?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.02%3A_Volumes
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.02%3A_Volumes
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.02%3A_Volumes?no-cache


6.3.1 https://math.libretexts.org/@go/page/4479

6.3: Volumes by Cylindrical Shells

Calculate the volume of a solid of revolution by using the method of cylindrical shells.
Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution. We
can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and washer
methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical shells, we
integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable of integration we
want to use can be a significant advantage with more complicated functions. Also, the specific geometry of the solid sometimes
makes the method of using cylindrical shells more appealing than using the washer method. In the last part of this section, we
review all the methods for finding volume that we have studied and lay out some guidelines to help you determine which method to
use in a given situation.

The Method of Cylindrical Shells

Again, we are working with a solid of revolution. As before, we define a region , bounded above by the graph of a function 
, below by the -axis, and on the left and right by the lines  and , respectively, as shown in Figure . We

then revolve this region around the -axis, as shown in Figure . Note that this is different from what we have done before.
Previously, regions defined in terms of functions of  were revolved around the -axis or a line parallel to it.

Figure : (a) A region bounded by the graph of a function of . (b) The solid of revolution formed when the region is revolved
around the -axis.

As we have done many times before, partition the interval  using a regular partition,  and, for 
, choose a point . Then, construct a rectangle over the interval  of height  and width 

. A representative rectangle is shown in Figure . When that rectangle is revolved around the -axis, instead of a disk or a
washer, we get a cylindrical shell, as shown in Figure .

 Learning Objectives

R

y = f(x) x x = a x = b 6.3.1a
y 6.3.1b

x x

6.3.1 x
y

[a, b] P = , , … ,x0 x1 xn
i = 1, 2, … ,n ∈ [ , ]x∗

i xi−1 xi [ , ]xi−1 xi f( )x∗
i

Δx 6.3.2a y

6.3.2
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Figure : (a) A representative rectangle. (b) When this rectangle is revolved around the -axis, the result is a cylindrical shell.
(c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure .

Figure : Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections are
annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius  and inner radius . Thus, the
cross-sectional area is . The height of the cylinder is  Then the volume of the shell is

Note that  so we have

Furthermore,  is both the midpoint of the interval  and the average radius of the shell, and we can approximate

this by . We then have

6.3.2 y

6.3.3

6.3.3

xi xi−1

π −πx2
i x2

i−1 f( ).x∗
i

= f( )(π −π )Vshell x∗
i x2

i x2
i−1

= π f( )( − )x∗
i x2

i x2
i−1

= π f( )( + )( − )x∗
i xi xi−1 xi xi−1

= 2π f( )( ) ( − ).x∗
i

+xi xi−1

2
xi xi−1

− = Δx,xi xi−1

= 2π f( )( ) Δx.Vshell x∗
i

+xi xi−1

2

+xi xi−1

2
[ , ]xi−1 xi

x∗
i

≈ 2π f( ) Δx.Vshell x∗
i x∗

i
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Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate (Figure 
).

Figure : (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly longer
than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height , width , and
thickness  (Figure). The volume of the shell, then, is approximately the volume of the flat plate. Multiplying the height, width,
and depth of the plate, we get

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain

Here we have another Riemann sum, this time for the function  Taking the limit as  gives us

This leads to the following rule for the method of cylindrical shells.

Let  be continuous and nonnegative. Define  as the region bounded above by the graph of , below by the -axis, on
the left by the line , and on the right by the line . Then the volume of the solid of revolution formed by revolving 
around the -axis is given by

Now let’s consider an example.

Define  as the region bounded above by the graph of  and below by the -axis over the interval . Find the
volume of the solid of revolution formed by revolving  around the -axis.

6.3.4

6.3.4

f( )x∗
i 2πx∗

i

Δx

≈ f( )(2π ) Δx,Vshell x∗
i x∗

i

V ≈ (2π f( ) Δx).∑
i=1

n

x∗
i x∗

i

2π x f(x). n → ∞

V = (2π f( ) Δx) = (2π x f(x))dx.lim
n→∞

∑
i=1

n

x∗
i x∗

i ∫
b

a

 Rule: The Method of Cylindrical Shells

f(x) R f(x) x

x = a x = b R

y

V = (2π x f(x))dx.∫
b

a

 Example : The Method of Cylindrical Shells I6.3.1

R f(x) = 1/x x [1, 3]
R y
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Solution

First we must graph the region  and the associated solid of revolution, as shown in Figure .

Figure : (a) The region  under the graph of  over the interval . (b) The solid of revolution generated by
revolving  about the -axis.

Figure  (c) Visualizing the solid of revolution with CalcPlot3D.

Then the volume of the solid is given by

R 6.3.5

6.3.5 R f(x) = 1/x [1, 3]
R y

6.3.5
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Define R as the region bounded above by the graph of  and below by the -axis over the interval . Find the
volume of the solid of revolution formed by revolving  around the -axis.

Hint

Use the procedure from Example .

Answer

Define  as the region bounded above by the graph of  and below by the -axis over the interval . Find
the volume of the solid of revolution formed by revolving  around the -axis.

Solution

First graph the region  and the associated solid of revolution, as shown in Figure .

Figure : (a) The region  under the graph of  over the interval  (b) The volume of revolution
obtained by revolving  about the -axis.

Then the volume of the solid is given by

V = (2π x f(x))dx∫
b

a

= (2π x( )) dx∫
3

1

1

x

= 2π dx∫
3

1

= 2π x = 4π .
∣
∣
∣
3

1
units3

 Exercise 6.3.1

f(x) = x2 x [1, 2]
R y

6.3.1

15π

2
units3

 Example : The Method of Cylindrical Shells II6.3.2

R f(x) = 2x−x2 x [0, 2]
R y

R 6.3.6

6.3.6 R f(x) = 2x−x2 [0, 2].
R y
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Define  as the region bounded above by the graph of  and below by the -axis over the interval . Find
the volume of the solid of revolution formed by revolving  around the -axis.

Hint

Use the process from Example .

Answer

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution, revolved
around the -axis, when we want to integrate with respect to . The analogous rule for this type of solid is given here.

Let  be continuous and nonnegative. Define  as the region bounded on the right by the graph of , on the left by the 
-axis, below by the line , and above by the line . Then, the volume of the solid of revolution formed by revolving 
 around the -axis is given by

Define  as the region bounded on the right by the graph of  and on the left by the -axis for . Find the
volume of the solid of revolution formed by revolving  around the -axis.

Solution

First, we need to graph the region  and the associated solid of revolution, as shown in Figure .

V = (2π x f(x))dx∫
b

a

= (2π x(2x− ))dx∫
2

0
x2

= 2π (2 − )dx∫
2

0
x2 x3

= 2π[ − ]
2x3

3

x4

4

∣

∣
∣

2

0

=
8π

3
units3

 Exercise 6.3.2

R f(x) = 3x−x2 x [0, 2]
R y

6.3.2

8π units3

x y

 Rule: The Method of Cylindrical Shells for Solids of Revolution around the -axisx

g(y) Q g(y)
y y = c y = d

Q x

V = (2π y g(y))dy.∫
d

c

 Example : The Method of Cylindrical Shells for a Solid Revolved around the -axis6.3.3 x

Q g(y) = 2 y√ y y ∈ [0, 4]
Q x

Q 6.3.7
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Figure : (a) The region  to the left of the function  over the interval . (b) The solid of revolution generated by
revolving  around the -axis.

Label the shaded region . Then the volume of the solid is given by

Define  as the region bounded on the right by the graph of  and on the left by the -axis for . Find the
volume of the solid of revolution formed by revolving  around the -axis.

Hint

Use the process from Example .

Answer

 units

For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than one of
the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall that we found
the volume of one of the shells to be given by

6.3.7 Q g(y) [0, 4]
Q x

Q

V = (2π y g(y))dy∫
d

c

= (2π y(2 ))dy∫
4

0
y√

= 4π dy∫
4

0
y3/2

= 4π [ ]
2y5/2

5

∣

∣
∣

4

0

=
256π

5
units3

 Exercise 6.3.3

Q g(y) = 3/y y y ∈ [1, 3]
Q x

6.3.3

12π 3
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This was based on a shell with an outer radius of  and an inner radius of . If, however, we rotate the region around a line
other than the -axis, we have a different outer and inner radius. Suppose, for example, that we rotate the region around the line 

 where  is some positive constant. Then, the outer radius of the shell is  and the inner radius of the shell is 
. Substituting these terms into the expression for volume, we see that when a plane region is rotated around the line 
 the volume of a shell is given by

As before, we notice that  is the midpoint of the interval  and can be approximated by . Then, the

approximate volume of the shell is

The remainder of the development proceeds as before, and we see that

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In each case,
the volume formula must be adjusted accordingly. Specifically, the -term in the integral must be replaced with an expression
representing the radius of a shell. To see how this works, consider the following example.

Define  as the region bounded above by the graph of  and below by the -axis over the interval . Find the
volume of the solid of revolution formed by revolving  around the line 

Solution

First, graph the region  and the associated solid of revolution, as shown in Figure .
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 Example : A Region of Revolution Revolved around a Line6.3.4

R f(x) = x x [1, 2]
R x = −1.

R 6.3.8
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Figure : (a) The region  between the graph of  and the -axis over the interval . (b) The solid of revolution
generated by revolving  around the line 

Note that the radius of a shell is given by . Then the volume of the solid is given by

Define  as the region bounded above by the graph of  and below by the -axis over the interval . Find the
volume of the solid of revolution formed by revolving  around the line .

Hint

Use the process from Example .

Answer

 units

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is bounded
by the graphs of two functions.

Define  as the region bounded above by the graph of the function  and below by the graph of the function 
 over the interval . Find the volume of the solid of revolution generated by revolving  around the -axis.

Solution

First, graph the region  and the associated solid of revolution, as shown in Figure .

6.3.8 R f(x) x [1, 2]
R x = −1.

x+1

V = 2π(x+1)f(x)dx∫
2

1

= 2π(x+1)x dx = 2π +x dx∫
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1
∫
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1
x2

= 2π [ + ]
x3

3

x2

2
∣
∣
∣
2

1

=
23π

3
units3

 Exercise 6.3.4

R f(x) = x2 x [0, 1]
R x = −2

6.3.4

11π

6
3

 Example : A Region of Revolution Bounded by the Graphs of Two Functions6.3.5

R f(x) = x−−√
g(x) = 1/x [1, 4] R y

R 6.3.9
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Figure : (a) The region  between the graph of  and the graph of  over the interval . (b) The solid of
revolution generated by revolving  around the -axis.

Note that the axis of revolution is the -axis, so the radius of a shell is given simply by . We don’t need to make any
adjustments to the x-term of our integrand. The height of a shell, though, is given by , so in this case we need to
adjust the  term of the integrand. Then the volume of the solid is given by

Define  as the region bounded above by the graph of  and below by the graph of  over the interval .
Find the volume of the solid of revolution formed by revolving  around the -axis.

Hint

Hint: Use the process from Example .

Answer

 units

Which Method Should We Use?

We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use? It
often comes down to a choice of which integral is easiest to evaluate. Figure  describes the different approaches for solids of
revolution around the -axis. It’s up to you to develop the analogous table for solids of revolution around the -axis.

6.3.9 R f(x) g(x) [1, 4]
R y

y x

f(x) −g(x)
f(x)
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 Exercise 6.3.5
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Figure 

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

For each of the following problems, select the best method to find the volume of a solid of revolution generated by revolving
the given region around the -axis, and set up the integral to find the volume (do not evaluate the integral).

a. The region bounded by the graphs of  and the -axis.
b. The region bounded by the graphs of  and the -axis.

Solution

a.

First, sketch the region and the solid of revolution as shown.

6.3.10

 Example : Selecting the Best Method6.3.6

x

y = x, y = 2 −x, x

y = 4x−x2 x
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Figure : (a) The region  bounded by two lines and the -axis. (b) The solid of revolution generated by revolving 
about the -axis.

Looking at the region, if we want to integrate with respect to , we would have to break the integral into two pieces, because
we have different functions bounding the region over  and . In this case, using the disk method, we would have

If we used the shell method instead, we would use functions of y to represent the curves, producing

Neither of these integrals is particularly onerous, but since the shell method requires only one integral, and the integrand
requires less simplification, we should probably go with the shell method in this case.

b.

First, sketch the region and the solid of revolution as shown.

Figure : (a) The region  between the curve and the -axis. (b) The solid of revolution generated by revolving  about
the -axis.

6.3.11 R x R
x

x

[0, 1] [1, 2]
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2

1
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0
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1

0
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Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on the left and right by
the same function. Therefore, we can dismiss the method of shells. The solid has no cavity in the middle, so we can use the
method of disks. Then

Select the best method to find the volume of a solid of revolution generated by revolving the given region around the -axis,
and set up the integral to find the volume (do not evaluate the integral): the region bounded by the graphs of  and 

.

Hint

Sketch the region and use Figure  to decide which integral is easiest to evaluate.

Answer

Use the method of washers;

Key Concepts
The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of revolution.
This method is sometimes preferable to either the method of disks or the method of washers because we integrate with respect
to the other variable. In some cases, one integral is substantially more complicated than the other.
The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration method to
use.

Key Equations
Method of Cylindrical Shells

Glossary

method of cylindrical shells
a method of calculating the volume of a solid of revolution by dividing the solid into nested cylindrical shells; this method is
different from the methods of disks or washers in that we integrate with respect to the opposite variable

6.3: Volumes by Cylindrical Shells is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

6.3: Volumes of Revolution - Cylindrical Shells by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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6.4: Work

In this section, we strive to understand the ideas generated by the following important questions:

How do we measure the work accomplished by a varying force that moves an object a certain distance?
What is the total force exerted by water against a dam?
How are both of the above concepts and their corresponding use of definite integrals similar to problems we have
encountered in the past involving formulas such as “distance equals rate times time” and “mass equals density times
volume”?

In our work to date with the definite integral, we have seen several different circumstances where the integral enables us to measure
the accumulation of a quantity that varies, provided the quantity is approximately constant over small intervals. For instance, based
on the fact that the area of a rectangle is  if we wish to find the area bounded by a nonnegative curve  and the 

-axis on an interval , a representative slice of width  has area , and thus as we let the width of the
representative slice tend to zero, we find that the exact area of the region is

In a similar way, if we know that the velocity of a moving object is given by the function , and we wish to know the
distance the object travels on an interval  where  is nonnegative, we can use a definite integral to generalize the fact that 

 when the rate, , is constant. More specifically, on a short time interval ,  is roughly constant, and hence for a
small slice of time, , and so as the width of the time interval  tends to zero, the exact distance traveled is given
by the definite integral

Finally, when we recently learned about the mass of an object of non-constant density, we saw that since  (mass equals
density times volume, provided that density is constant), if we can consider a small slice of an object on which the density is
approximately constant, a definite integral may be used to determine the exact mass of the object. For instance, if we have a thin
rod whose cross sections have constant density, but whose density is distributed along the  axis according to the function 

, it follows that for a small slice of the rod that is  thick, . In the limit as , we then find that
the total mass is given by

Note that all three of these situations are similar in that we have a basic rule ( ) where one of the
two quantities being multiplied is no longer constant; in each, we consider a small interval for the other variable in the formula,
calculate the approximate value of the desired quantity (area, distance, or mass) over the small interval, and then use a definite
integral to sum the results as the length of the small intervals is allowed to approach zero. It should be apparent that this approach
will work effectively for other situations where we have a quantity of interest that varies. We next turn to the notion of work: from
physics, a basic principal is that work is the product of force and distance. For example, if a person exerts a force of 20 pounds to
lift a 20-pound weight 4 feet off the ground, the total work accomplished is

If force and distance are measured in English units (pounds and feet), then the units on work are foot-pounds. If instead we work in
metric units, where forces are measured in Newtons and distances in meters, the units on work are Newton-meters.

Learning Objectives

A = l ⋅w, y = f(x)

x [a, b] Δx = f(x)ΔxAslice

A = f(x)dx.∫
b

a

(6.4.1)

y = v(t)

[a, b] v(t)

d = r ⋅ t r Δt v(t)

= v(t)Δtdslice Δt

d = v(t)dt.∫
b

a

(6.4.2)

M = D ⋅V

x

y = ρ(x) Δx = ρ(x)ΔxMslice Δx → 0

M = ρ(x)dx.∫
b

a

(6.4.3)

A = l ⋅w, d = r ⋅ t,M = D ⋅V
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Figure 6.14: Three settings where we compute the accumulation of a varying quantity: the area under , the distance
traveled by an object with velocity , and the mass of a bar with density function .

Of course, the formula  only applies when the force is constant while it is exerted over the distance . In Preview
Activity 6.4, we explore one way that we can use a definite integral to compute the total work accomplished when the force exerted
varies.

A bucket is being lifted from the bottom of a 50-foot deep well; its weight (including the water), , in pounds at a height 
feet above the water is given by the function . When the bucket leaves the water, the bucket and water together weigh 

 pounds, and when the bucket reaches the top of the well,  pounds. Assume that the bucket loses water
at a constant rate (as a function of height, ) throughout its journey from the bottom to the top of the well.

a. Find a formula for .
b. Compute the value of the product , where  feet. Include units on your answer. Explain why this product

represents the approximate work it took to move the bucket of water from  to .
c. Is the value in (b) an over- or under-estimate of the actual amount of work it took to move the bucket from  to ?

Why?
d. Compute the value of the product , where  feet. Include units on your answer. What is the meaning of

the value you found?
e. More generally, what does the quantity  measure for a given value of  and a small positive value of 

?
f. Evaluate the definite integral . What is the meaning of the value you find? Why?

Work
Because work is calculated by the rule , whenever the force  is constant, it follows that we can use a definite integral
to compute the work accomplished by a varying force. For example, suppose that in a setting similar to the problem posed in
Preview Activity 6.4, we have a bucket being lifted in a 50-foot well whose weight at height h is given by

In contrast to the problem in the preview activity, this bucket is not leaking at a constant rate; but because the weight of the bucket
and water is not constant, we have to use a definite integral to determine the total work that results from lifting the bucket. Observe
that at a height  above the water, the approximate work to move the bucket a small distance  is

Hence, if we let  tend to 0 and take the sum of all of the slices of work accomplished on these small intervals, it follows that the
total work is given by

y = f(x)

y = v(t) y = ρ(x)

W = F ⋅ d d

Preview Activity 6.4.1

B h

B(h)

B(0) = 20 B(50) = 12

h

B(h)

B(5)Δh Δh = 2

h = 5 h = 7

h = 5 h = 7

B(22)Δh Δh = 0.25

= B(h)ΔhWslice h

Δh

B(h)dh∫ 5
00

W = F ⋅ d F

B(h) = 12 +8 .e−0.1h (6.4.7)

h Δh

= B(h)Δh = (12 +8 )Δh.Wslice e−0.1h (6.4.8)

Δh

W = B(h) dh = (12 +8 )dh.∫
50

0

∫
50

0

e−0.1h (6.4.9)
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While is a straightforward exercise to evaluate this integral exactly using the First Fundamental Theorem of Calculus, in applied
settings such as this one we will typically use computing technology to find accurate approximations of integrals that are of interest
to us. Here, it turns out that

Our work in Preview Activity 6.1 and in the most recent example above employs the following important general principle.

For an object being moved in the positive direction along an axis, , by a force , the total work to move the object from  to 
is given by

Consider the following situations in which a varying force accomplishes work.

a. Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet long and weighs 0.3 pounds per foot; initially
the rope is fully extended. How much work is required to haul in the entire length of the rope? (Hint: set up a function 

 whose value is the weight of the rope remaining over the cliff after h feet have been hauled in.)
b. A leaky bucket is being hauled up from a 100 foot deep well. When lifted from the water, the bucket and water together

weigh 40 pounds. As the bucket is being hauled upward at a constant rate, the bucket leaks water at a constant rate so that it
is losing weight at a rate of 0.1 pounds per foot. What function  tells the weight of the bucket after the bucket has been
lifted  feet? What is the total amount of work accomplished in lifting the bucket to the top of the well?

c. Now suppose that the bucket in (b) does not leak at a constant rate, but rather that its weight at a height  feet above the
water is given by . What is the total work required to lift the bucket 100 feet? What is the average
force exerted on the bucket on the interval  to ?

d. From physics, Hooke’s Law for springs states that the amount of force required to hold a spring that is compressed (or
extended) to a particular length is proportionate to the distance the spring is compressed (or extended) from its natural
length. That is, the force to compress (or extend) a spring  units from its natural length is  for some constant 
(which is called the spring constant.) For springs, we choose to measure the force in pounds and the distance the spring is
compressed in feet. Suppose that a force of 5 pounds extends a particular spring 4 inches (1/3 foot) beyond its natural
length.

i. Use the given fact that  to find the spring constant .
ii. Find the work done to extend the spring from its natural length to 1 foot beyond its natural length.

iii. Find the work required to extend the spring from 1 foot beyond its natural length to 1.5 feet beyond its natural length.

Work: Pumping Liquid from a Tank
In certain geographic locations where the water table is high, residential homes with basements have a peculiar feature: in the
basement, one finds a large hole in the floor, and in the hole, there is water. For example, in Figure 6.15 where we see a sump
crock.

W = (12 +8 )dh ≈ 679.461 foot-pounds.∫
50

0

e−0.1h (6.4.10)

x F (x) a b

W = F (x)dx.∫
b

a

(6.4.11)
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Figure 6.15: A sump crock. Image credit to www.warreninspect.com/basement-moisture.

Essentially, a sump crock provides an outlet for water that may build up beneath the basement floor; of course, as that water rises, it
is imperative that the water not flood the basement. Hence, in the crock we see the presence of a floating pump that sits on the
surface of the water: this pump is activated by elevation, so when the water level reaches a particular height, the pump turns on and
pumps a certain portion of the water out of the crock, hence relieving the water buildup beneath the foundation. One of the
questions we’d like to answer is: how much work does a sump pump accomplish? To that end, let’s suppose that we have a sump
crock that has the shape of a frustum of a cone, as pictured in Figure 6.16. Assume that the crock has a diameter of 3 feet at its
surface, a diameter of 1.5 feet at its base, and a depth of 4 feet. In addition, suppose that the sump pump is set up so that it pumps
the water vertically up a pipe to a drain that is located at ground level just outside a basement window. To accomplish this, the
pump must send the water to a location 9 feet above the surface of the sump crock.

Figure 6.16: A sump crock with approximately cylindrical cross-sections that is 4 feet deep, 1.5 feet in diameter at its base, and 3
feet in diameter at its top.

It turns out to be advantageous to think of the depth below the surface of the crock as being the independent variable, so, in
problems such as this one we typically let the positive -axis point down, and the positive -axis to the right, as pictured in the
figure. As we think about the work that the pump does, we first realize that the pump sits on the surface of the water, so it makes
sense to think about the pump moving the water one “slice” at a time, where it takes a thin slice from the surface, pumps it out of
the tank, and then proceeds to pump the next slice below. For the sump crock described in this example, each slice of water is
cylindrical in shape. We see that the radius of each approximately cylindrical slice varies according to the linear function 
that passes through the points (0, 1.5) and (4, 0.75), where  is the depth of the particular slice in the tank; it is a straightforward
exercise to find that . Now we are prepared to think about the overall problem in several steps:

a. determining the volume of a typical slice;
b. finding the weight (We assume that the weight density of water is 62.4 pounds per cubic foot) of a typical slice (and thus the

force that must be exerted on it)
c. deciding the distance that a typical slice moves; and
d. computing the work to move a representative slice. Once we know the work it takes to move one slice, we use a definite

integral over an appropriate interval to find the total work.

Consider a representative cylindrical slice that sits on the surface of the water at a depth of  feet below the top of the crock. It
follows that the approximate volume of that slice is given by

.

Since water weighs 62.4 lb/ft3 , it follows that the approximate weight of a representative slice, which is also the approximate force
the pump must exert to move the slice, is

.

Because the slice is located at a depth of  feet below the top of the crock, the slice being moved by the pump must move  feet to
get to the level of the basement floor, and then, as stated in the problem description, be moved another 9 feet to reach the drain at
ground level outside a basement window. Hence, the total distance a representative slice travels is

.

x y

y = f(x)

x

f(x) = 1.5 −0.1875x

x

= πf(x Δx = π(1.5 −0.1875x ΔxVslice )2 )2

= 62.4  ⋅   = 62.4π(1.5 −0.1875x ΔxFslice Vslice )2

x x

= x+9dslice
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Finally, we note that the work to move a representative slice is given by

,

since the force to move a particular slice is constant. We sum the work required to move slices throughout the tank (from  to 
), let , and hence

,

which, when evaluated using appropriate technology, shows that the total work is  foot-pounds.

The preceding example demonstrates the standard approach to finding the work required to empty a tank filled with liquid. The
main task in each such problem is to determine the volume of a representative slice, followed by the force exerted on the slice, as
well as the distance such a slice moves. In the case where the units are metric, there is one key difference: in the metric setting,
rather than weight, we normally first find the mass of a slice. For instance, if distance is measured in meters, the mass density of
water is 1000 kg/m  . In that setting, we can find the mass of a typical slice (in kg). To determine the force required to move it, we
use F = ma, where m is the object’s mass and a is the gravitational constant 9.81 N/kg  . That is, in metric units, the weight density
of water is 9810 N/m  .

In each of the following problems, determine the total work required to accomplish the described task. In parts (b) and (c), a
key step is to find a formula for a function that describes the curve that forms the side boundary of the tank.

Figure 6.17: A trough with triangular ends, as described in Activity 6.11, part (c).

a. Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters. Suppose the tank is filled with 4 meters of water
of mass density 1000 kg/m  , and the top 1 meter of water is pumped over the top of the tank.

b. Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank is full to a depth of 7 feet with water of weight
density 62.4 pounds/ft , and the top 5 feet of water are pumped out of the tank to a tanker truck whose height is 5 feet
above the top of the tank.

c. Consider a trough with triangular ends, as pictured in Figure 6.17, where the tank is 10 feet long, the top is 5 feet wide, and
the tank is 4 feet deep. Say that the trough is full to within 1 foot of the top with water of weight density 62.4 pounds/ft ,
and a pump is used to empty the tank until the water remaining in the tank is 1 foot deep.

Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to understand how much force water will exert against the face of the dam.
The first thing we realize is the force exerted by the fluid is related to the natural concept of pressure. The pressure a force exerts on
a region is measured in units of force per unit of area: for example, the air pressure in a tire is often measured in pounds per square
inch (PSI). Hence, we see that the general relationship is given by

, or ,

where P represents pressure, F represents force, and A the area of the region being considered. Of course, in the equation F = PA,
we assume that the pressure is constant over the entire region A.

Most people know from experience that the deeper one dives underwater while swimming, the greater the pressure that is exerted
by the water. This is due to the fact that the deeper one dives, the more water there is right on top of the swimmer: it is the force

= ⋅ = 62.4π(1.5 −0.1875x Δx ⋅ (x+9)Wslice Fslice dslice )2

x = 0

x = 4 Δx → 0

W = 62.4π(1.5 −0.1875x (x+9)dx∫ 4

0
)2

W = 10970.5π

3

3

3
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3
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that “column” of water exerts that determines the pressure the swimmer experiences. To get water pressure measured in its standard
units (pounds per square foot), we say that the total water pressure is found by computing the total weight of the column of water
that lies above a region of area 1 square foot at a fixed depth. Such a rectangular column with a 1 × 1 base and a depth of d feet has
volume V = 1 · 1 · d ft , and thus the corresponding weight of the water overhead is 62.4d. Since this is also the amount of force
being exerted on a 1 square foot region at a depth d feet underwater, we see that P = 62.4d (lbs/ft ) is the pressure exerted by water
at depth d.

The understanding that P = 62.4d will tell us the pressure exerted by water at a depth of d, along with the fact that F = PA, will now
enable us to compute the total force that water exerts on a dam, as we see in the following example.

Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90 feet wide at its top, and assume the dam is 25 feet tall
with water that rises to within 5 feet of the top of its face. Water weighs 62.5 pounds per cubic foot. How much force does the
water exert against the dam?

Solution

First, we sketch a picture of the dam, as shown in Figure 6.18. Note that, as in problems involving the work to pump out a tank,
we let the positive x-axis point down. 
It is essential to use the fact that pressure is constant at a fixed depth. Hence, we consider a slice of water at constant depth on
the face, such as the one shown in the figure. First, the approximate area of this slice is the area of the pictured rectangle. Since
the width of that rectangle depends on the variable  (which represents the how far the slice lies from the top of the dam), we
find a formula for the function  that determines one side of the face of the dam. Since  is linear, it is straightforward

to find that . Hence, the approximate area of a representative slice is

.

At any point on this slice, the depth is approximately constant, and thus the pressure can be considered constant. In particular,
we note that since  measures the distance to the top of the dam, and because the water rises to within 5 feet of the top of the
dam, the depth of any point on the representative slice is approximately . Now, since pressure

Figure 6.18: A trapezoidal dam that is 25 feet tall, 60 feet wide at its base, 90 feet wide at its top, with the water line 5 feet
down from the top of its face.

is given by , we have that at any point on the representative slice

.

Knowing both the pressure and area, we can find the force the water exerts on the slice. Using , it follows that

.

Finally, we use a definite integral to sum the forces over the appropriate range of -values. Since the water rises to within 5
feet of the top of the dam, we start at  and slice all the way to the bottom of the dam, where . Hence,

3

2

Example 6.4.3

x

y = f(x) f

y = f(x) = 45 − x
3

5

= 2f(x)Δx = 2(45 − x)ΔxAslice
3

5

x

(x−5)

P = 62.4d

= 62.4(x−5)Pslice

F = PA

= ⋅ = 62.4(x−5) ⋅ 2(45 − x)ΔxFslice Pslice Aslice
3

5

x

x = 5 x = 30
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.

Using technology to evaluate the integral, we find F ≈ 1.248 × 10  pounds.

In each of the following problems, determine the total force exerted by water against the surface that is described.

a. Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose that water presses against the dam all the way
to the top.

b. Consider a semicircular dam with a radius of 30 feet. Suppose that the water rises to within 10 feet of the top of the dam.
c. Consider a trough with triangular ends, as pictured in Figure 6.17, where the tank is 10 feet long, the top is 5 feet wide, and

the tank is 4 feet deep. Say that the trough is full to within 1 foot of the top with water of weight density 62.4 pounds/ft .
How much force does the water exert against one of the triangular ends?

While there are many different formulas that we use in solving problems involving work, force, and pressure, it is important to
understand that the fundamental ideas behind these problems are similar to several others that we’ve encountered in applications of
the definite integral. In particular, the basic idea is to take a difficult problem and somehow slice it into more manageable pieces
that we understand, and then use a definite integral to add up these simpler pieces.

Summary

In this section, we encountered the following important ideas:

To measure the work accomplished by a varying force that moves an object, we subdivide the problem into pieces on which we
can use the formula W = F · d, and then use a definite integral to sum the work accomplished on each piece.
To find the total force exerted by water against a dam, we use the formula F = P · A to measure the force exerted on a slice that
lies at a fixed depth, and then use a definite integral to sum the forces across the appropriate range of depths.
Because work is computed as the product of force and distance (provided force is constant), and the force water exerts on a dam
can be computed as the product of pressure and area (provided pressure is constant), problems involving these concepts are
similar to earlier problems we did using definite integrals to find distance (via “distance equals rate times time”) and mass
(“mass equals density times volume”).

6.4: Work is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

6.4: Physics Applications - Work, Force, and Pressure by Matthew Boelkins, David Austin & Steven Schlicker is licensed CC BY-SA 4.0.
Original source: https://activecalculus.org/single.

F = 62.4(x−5) ⋅ 2(45 − x)dx∫ x=30
x=5

3

5
6

Activity 6.4.4

3

https://libretexts.org/
https://math.libretexts.org/@go/page/4480?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.04%3A_Work
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration/6.04%3A_Work?no-cache
https://math.libretexts.org/@go/page/4330
https://activecalculus.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://activecalculus.org/single


6.5.1 https://math.libretexts.org/@go/page/4481

6.5: Average Value of a Function
The average of some finite set of values is a familiar concept. If, for example, the class scores on a quiz are 10, 9, 10, 8, 7, 5, 7, 6,
3, 2, 7, 8, then the average score is the sum of these numbers divided by the size of the class:

Suppose that between  and  the speed of an object is . What is the average speed of the object over that time?
The question sounds as if it must make sense, yet we can't merely add up some number of speeds and divide, since the speed is
changing continuously over the time interval.

To make sense of "average'' in this context, we fall back on the idea of approximation. Consider the speed of the object at tenth of a
second intervals: , , , ,…, . The average speed "should'' be fairly close to the average of
these ten speeds:

Of course, if we compute more speeds at more times, the average of these speeds should be closer to the "real'' average. If we take
the average of  speeds at evenly spaced times, we get:

Here the individual times are , so rewriting slightly we have

This is almost the sort of sum that we know turns into an integral; what's apparently missing is ---but in fact, , the
length of each subinterval. So rewriting again:

Now this has exactly the right form, so that in the limit we get $$ \hbox{average speed} = \int_0^1 \sin(\pi t)\,dt= \left.-{\cos(\pi
t)\over\pi}\right|_0^1= -{\cos(\pi)\over \pi}+{\cos(0)\over\pi}={2\over\pi}\approx 0.6366\approx 0.64. \]

It's not entirely obvious from this one simple example how to compute such an average in general. Let's look at a somewhat more
complicated case. Suppose that the velocity of an object is  feet per second. What is the average velocity between 
and ? Again we set up an approximation to the average:

where the values  are evenly spaced times between 1 and 3. Once again we are "missing'' , and this time  is not the correct
value. What is  in general? It is the length of a subinterval; in this case we take the interval  and divide it into 
subintervals, so each has length . Now with the usual "multiply and divide by the same thing'' trick we can
rewrite the sum:

In the limit this becomes

average score = = ≈ 6.83.
10 +9 +10 +8 +7 +5 +7 +6 +3 +2 +7 +8

12

82

12
(6.5.1)

t = 0 t = 1 sin(πt)

sin0 sin(0.1π) sin(0.2π) sin(0.3π) sin(0.9π)

sin(πi/10) ≈ 6.3 = 0.63.
1

10
∑
i=0

9 1

10
(6.5.2)

n

sin(πi/n).
1

n
∑
i=0

n−1

(6.5.3)

= i/nti

sin(π ).
1

n
∑
i=0

n−1

ti (6.5.4)

Δt Δt = 1/n

sin(π ) = sin(π )Δt.∑
i=0

n−1

ti
1

n
∑
i=0

n−1
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16 +5t2 t = 1

t = 3

16 +5,
1

n
∑
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n−1

t2
i (6.5.6)

ti Δt 1/n

Δt [1, 3] n

(3 −1)/n = 2/n = Δt

16 +5 = (16 +5) = (16 +5) = (16 +5)Δt.
1

n
∑
i=0

n−1

t2
i

1

3 −1
∑
i=0

n−1

t2
i

3 −1

n

1

2
∑
i=0

n−1

t2
i

2

n

1

2
∑
i=0

n−1

t2
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Does this seem reasonable? Let's picture it: in figure 9.4.1 is the velocity function together with the horizontal line 
. Certainly the height of the horizontal line looks at least plausible for the average height of the curve.

 
Figure 9.4.1. Average velocity.

Here's another way to interpret "average'' that may make our computation appear even more reasonable. The object of our example
goes a certain distance between  and . If instead the object were to travel at the average speed over the same time, it
should go the same distance. At an average speed of  feet per second for two seconds the object would go  feet. How
far does it actually go? We know how to compute this:

So now we see that another interpretation of the calculation

is: total distance traveled divided by the time in transit, namely, the usual interpretation of average speed.

In the case of speed, or more properly velocity, we can always interpret "average'' as total (net) distance divided by time. But in the
case of a different sort of quantity this interpretation does not obviously apply, while the approximation approach always does. We
might interpret the same problem geometrically: what is the average height of  on the interval ? We approximate this
in exactly the same way, by adding up many sample heights and dividing by the number of samples. In the limit we get the same
result:

We can interpret this result in a slightly different way. The area under  above  is

The area under  over the same interval  is simply the area of a rectangle that is 2 by  with area . So the
average height of a function is the height of the horizontal line that produces the same area over the given interval.
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7.1: Integration by Parts

Recognize when to use integration by parts.
Use the integration-by-parts formula to solve integration problems.
Use the integration-by-parts formula for definite integrals.

By now we have a fairly thorough procedure for how to evaluate many basic integrals. However, although we can integrate 
 by using the substitution, , something as simple looking as  defies us. Many students want to

know whether there is a product rule for integration. There is not, but there is a technique based on the product rule for
differentiation that allows us to exchange one integral for another. We call this technique integration by parts.

The Integration-by-Parts Formula
If, , then by using the product rule, we obtain

Although at first it may seem counterproductive, let’s now integrate both sides of Equation :

This gives us

Now we solve for 

By making the substitutions  and , which in turn make  and , we have the more
compact form

Let  and  be functions with continuous derivatives. Then, the integration-by-parts formula for the integral
involving these two functions is:

The advantage of using the integration-by-parts formula is that we can use it to exchange one integral for another, possibly easier,
integral. The following example illustrates its use.

Use integration by parts with  and  to evaluate

Solution

By choosing , we have . Since , we get

 Learning Objectives

∫ x sin( )dxx2 u = x2 ∫ x sinx dx

h(x) = f(x)g(x)

h'(x) = f '(x)g(x) +g'(x)f(x). (7.1.1)

7.1.1

∫ h'(x) dx = ∫ (g(x)f '(x) +f(x)g'(x)) dx.

h(x) = f(x)g(x) = ∫ g(x)f '(x)dx+∫ f(x)g'(x) dx.

∫ f(x)g'(x) dx :

∫ f(x)g'(x)dx = f(x)g(x) −∫ g(x)f '(x) dx.

u = f(x) v= g(x) du = f '(x)dx dv= g'(x)dx

∫ u dv= uv−∫ vdu.

 Integration by Parts

u = f(x) v= g(x)

∫ u dv= uv−∫ vdu. (7.1.2)

 Example : Using Integration by Parts7.1.1

u = x dv= sinx dx

∫ x sinx dx.

u = x du = 1 dx dv= sinx dx
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It is handy to keep track of these values as follows:

Applying the integration-by-parts formula (Equation ) results in

Then use

to obtain

Analysis

At this point, there are probably a few items that need clarification. First of all, you may be curious about what would have

happened if we had chosen  and . If we had done so, then we would have  and . Thus,

after applying integration by parts (Equation ), we have

Unfortunately, with the new integral, we are in no better position than before. It is important to keep in mind that when we
apply integration by parts, we may need to try several choices for  and  before finding a choice that works.

Second, you may wonder why, when we find , we do not use  To see that it makes
no difference, we can rework the problem using :

As you can see, it makes no difference in the final solution.

Last, we can check to make sure that our antiderivative is correct by differentiating 

Therefore, the antiderivative checks out.

v= ∫ sinx dx = −cosx.

u = x

dv= sinx dx

du = 1 dx

v= ∫ sinx dx = −cosx.

7.1.2

∫ x sinx dx = (x)(−cosx) −∫ (−cosx)(1 dx)

= −x cosx+∫ cosx dx

(Substitute)

(Simplify)

∫ cosx dx = sinx+C.

∫ x sinx dx = −x cosx+sinx+C.

u = sinx dv= x du = cosx v=
1

2
x2

7.1.2

∫  x sinx dx = sinx−∫ cosx dx.
1

2
x2 1

2
x2

u dv

v= ∫  sinx dx = −cosx v= −cosx+K.

v= −cosx+K

∫ x sinx dx = (x)(−cosx+K) −∫ (−cosx+K)(1 dx)

= −x cosx+Kx+∫ cosx dx−∫ K dx

= −x cosx+Kx+sinx−Kx+C

= −x cosx+sinx+C.

−x cosx+sinx+C :

(−x cosx+sinx+C) = +(−x)(−sinx) +
d

dx
(−1) cosx cosx

= x sinx
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Evaluate  using the integration-by-parts formula (Equation ) with  and .

Hint

Find  and , and use the previous example as a guide.

Answer

The natural question to ask at this point is: How do we know how to choose  and ? Sometimes it is a matter of trial and error;
however, the acronym LIATE can often help to take some of the guesswork out of our choices. This acronym stands for
Logarithmic Functions, Inverse Trigonometric Functions, Algebraic Functions, Trigonometric Functions, and Exponential
Functions. This mnemonic serves as an aid in determining an appropriate choice for . The type of function in the integral that
appears first in the list should be our first choice of .

For example, if an integral contains a logarithmic function and an algebraic function, we should choose  to be the logarithmic
function, because L comes before A in LIATE. The integral in Example  has a trigonometric function ( ) and an algebraic
function ( ). Because A comes before T in LIATE, we chose  to be the algebraic function. When we have chosen ,  is selected
to be the remaining part of the function to be integrated, together with .

Why does this mnemonic work? Remember that whatever we pick to be  must be something we can integrate. Since we do not
have integration formulas that allow us to integrate simple logarithmic functions and inverse trigonometric functions, it makes
sense that they should not be chosen as values for . Consequently, they should be at the head of the list as choices for . Thus,
we put LI at the beginning of the mnemonic. (We could just as easily have started with IL, since these two types of functions won’t
appear together in an integration-by-parts problem.) The exponential and trigonometric functions are at the end of our list because
they are fairly easy to integrate and make good choices for . Thus, we have TE at the end of our mnemonic. (We could just as
easily have used ET at the end, since when these types of functions appear together it usually doesn’t really matter which one is 
and which one is .) Algebraic functions are generally easy both to integrate and to differentiate, and they come in the middle of
the mnemonic.

Evaluate

Solution

Begin by rewriting the integral:

Since this integral contains the algebraic function  and the logarithmic function , choose , since  comes
before A in LIATE. After we have chosen , we must choose .

Next, since  we have  Also,  Summarizing,

Substituting into the integration-by-parts formula (Equation ) gives

 Exercise 7.1.1

∫  x dxe2x 7.1.2 u = x dv= dxe2x

du v

∫  x dx = x − +Ce2x 1

2
e2x 1

4
e2x

u dv

u

u

u

7.1.1 sinx

x u u dv

dx

dv

dv u

dv

u

dv

 Example : Using Integration by Parts7.1.2

∫ dx.
lnx

x3

∫ dx = ∫  lnx dx.
lnx

x3
x−3

x−3 lnx u = lnx L

u = lnx dv= dxx−3

u = lnx, du = dx.
1

x
v= ∫  dx = − .x−3 1

2
x−2

u = lnx

du = dx
1

x
dv= dxx−3

v= ∫  dx = − .x−3 1

2
x−2

7.1.2
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Evaluate

Hint

Use  and .

Answer

In some cases, as in the next two examples, it may be necessary to apply integration by parts more than once.

Evaluate

Solution

Using LIATE, choose  and . Thus,  and . Therefore,

Substituting into Equation  produces

We still cannot integrate  directly, but the integral now has a lower power on . We can evaluate this new integral

by using integration by parts again. To do this, choose

and

Thus,

∫ dx
lnx

x3
= ∫  lnx dx = (lnx)(− ) −∫  (− )( dx)x−3 1

2
x−2 1

2
x−2 1

x

= − lnx+∫ dx
1

2
x−2 1

2
x−3

= − lnx− +C  
1

2
x−2 1

4
x−2

= − lnx− +C
1

2x2

1

4x2

 Exercise 7.1.2

∫  x lnx dx.

u = lnx dv= x dx

∫  x lnx dx = lnx− +C
1

2
x2 1

4
x2

 Example : Applying Integration by Parts More Than Once7.1.3A

∫  dx.x2e3x

u = x2 dv= dxe3x du = 2x dx v= ∫ dx =( )e3x
1

3
e3x

u = x2

du = 2x dx

dv= dxe3x

v= ∫ dx = .e3x 1

3
e3x

7.1.2

∫ dx = −∫ x dx.x2e3x 1

3
x2e3x 2

3
e3x (7.1.3)

∫ x dx
2

3
e3x x

u = x

dv= dx.
2

3
e3x
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and

Now we have

Substituting back into Equation  yields

After evaluating the last integral and simplifying, we obtain

Evaluate

Solution

If we use a strict interpretation of the mnemonic LIATE to make our choice of , we end up with  and .
Unfortunately, this choice won’t work because we are unable to evaluate . However, since we can evaluate ,
we can try choosing  and  With these choices we have

Thus, we obtain

Evaluate

Solution

du = dx

v= ∫ ( ) dx =( ) .
2

3
e3x 2

9
e3x

u = x

du = dx

dv= dx
2

3
e3x

v= ∫ dx = .
2

3
e3x 2

9
e3x

7.1.3

∫  dx = −( x −∫ dx) .x2e3x 1

3
x2e3x 2

9
e3x  2

9
e3x

∫ dx = − x + +C.x2e3x 1

3
x2e3x 2

9
e3x 2

27
e3x

 Example : Applying Integration by Parts When LIATE Does not Quite Work7.1.3B

∫  dt.t3et
2

u u = t3 dv= dtet
2

∫  dtet
2

∫  t dxet
2

u = t2 dv= t dt.et
2

u = t2

du = 2tdt

dv= t dtet
2

v= ∫  t dt = .et
2 1

2
et

2

∫ dt = −∫ 2t dtt3et
2 1

2
t2et

2 1

2
et

2

= − +C.
1

2
t2et

2 1

2
et

2

 Example : Applying Integration by Parts More Than Once7.1.3C

∫  sin(lnx)dx.
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This integral appears to have only one function—namely, —however, we can always use the constant function 1 as
the other function. In this example, let’s choose  and . (The decision to use  is easy. We
can’t choose  because if we could integrate it, we wouldn’t be using integration by parts in the first place!)
Consequently,  and  After applying integration by parts to the integral and
simplifying, we have

Unfortunately, this process leaves us with a new integral that is very similar to the original. However, let’s see what happens
when we apply integration by parts again. This time let’s choose  and  making 

 and 

Substituting, we have

After simplifying, we obtain

The last integral is now the same as the original. It may seem that we have simply gone in a circle, but now we can actually
evaluate the integral. To see how to do this more clearly, substitute  Thus, the equation becomes

First, add  to both sides of the equation to obtain

Next, divide by 2:

Substituting  again, we have

From this we see that  is an antiderivative of . For the most general
antiderivative, add :

Analysis

If this method feels a little strange at first, we can check the answer by differentiation:

sin(lnx)

u = sin(lnx) dv= 1 dx u = sin(lnx)

dv= sin(lnx)dx

du = (1/x) cos(lnx)dx v= ∫  1 dx = x.

∫ sin(lnx)dx = x sin(lnx) −∫ cos(lnx)dx.

u = cos(lnx) dv= 1 dx,

du = −(1/x) sin(lnx)dx v= ∫  1 dx = x.

∫ sin(lnx)dx = x sin(lnx) −(x cos(lnx) −∫  −sin(lnx)dx).

∫  sin(lnx)dx = x sin(lnx) −x cos(lnx) −∫  sin(lnx)dx.

I = ∫  sin(lnx)dx.

I = x sin(lnx) −x cos(lnx) −I.

I

2I = x sin(lnx) −x cos(lnx).

I = x sin(lnx) − x cos(lnx).
1

2

1

2

I = ∫  sin(lnx)dx

∫ sin(lnx)dx = x sin(lnx) − x cos(lnx).
1

2

1

2

(1/2)x sin(lnx) −(1/2)x cos(lnx) sin(lnx)dx

+C

∫ sin(lnx)dx = x sin(lnx) − x cos(lnx) +C.
1

2

1

2

( x sin(lnx) − x cos(lnx))
d

dx

1

2

1

2

= (sin(lnx)) +cos(lnx) ⋅ ⋅ x−( cos(lnx) −sin(lnx) ⋅ ⋅ x)
1

2

1

x

1

2

1

2

1

x

1

2

= sin(lnx).
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Evaluate

Hint

This is similar to Examples  - .

Answer

Integration by Parts for Definite Integrals

Now that we have used integration by parts successfully to evaluate indefinite integrals, we turn our attention to definite integrals.
The integration technique is really the same, only we add a step to evaluate the integral at the upper and lower limits of integration.

Let  and  be functions with continuous derivatives on [ ]. Then

Find the area of the region bounded above by the graph of  and below by the -axis over the interval [ ].

Solution

This region is shown in Figure . To find the area, we must evaluate

Figure : To find the area of the shaded region, we have to use integration by parts.

For this integral, let’s choose  and , thereby making  and . After applying the

integration-by-parts formula (Equation ) we obtain

 Exercise 7.1.3

∫ sinx dx.x2

7.1.3A 7.1.3C

∫ sinx dx = − cosx+2x sinx+2 cosx+Cx2 x2

 Integration by Parts for Definite Integrals

u = f(x) v= g(x) a, b

u dv= uv − vdu∫
b

a

∣
∣
b

a
∫

b

a

 Example : Finding the Area of a Region7.1.4A

y = xtan−1 x 0, 1

7.1.1

x dx.∫
1

0

tan−1

7.1.1

u = ta xn−1 dv= dx du = dx
1

+1x2
v= x

7.1.2

Area = − dx.x xtan−1 ∣∣
1

0
∫

1

0

x

+1x2
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Use -substitution to obtain

Thus,

At this point it might not be a bad idea to do a “reality check” on the reasonableness of our solution. Since 

 and from Figure  we expect our area to be slightly less than  this solution

appears to be reasonable.

Find the volume of the solid obtained by revolving the region bounded by the graph of  the -axis, the -axis, and
the line  about the -axis.

Solution

The best option to solving this problem is to use the shell method. Begin by sketching the region to be revolved, along with a
typical rectangle (Figure ).

Figure : We can use the shell method to find a volume of revolution.

To find the volume using shells, we must evaluate

To do this, let  and . These choices lead to  and  Using the Shell Method
formula, we obtain

Analysis

u

dx = .∫
1

0

x

+1x2
ln( +1)

1

2
x2 ∣

∣
∣

1

0

Area = x x − =( − ln2) .tan−1 ∣
∣
1

0
ln( +1)

1

2
x2 ∣

∣
∣

1

0

π

4

1

2
units2

− ln2 ≈ 0.4388 ,
π

4

1

2
units2 7.1.1 0.5 ,units2

 Example : Finding a Volume of Revolution7.1.4B

f(x) = ,e−x x y

x = 1 y

7.1.2

7.1.2

2π x dx.∫
1

0

e−x (7.1.4)

u = x dv= e−x du = dx v= ∫  dx = − .e−x e−x

Volume

= 2π(−x + dx)e−x ∣
∣
1

0
∫

1

0

e−x

= 2π x dx∫
1

0

e−x

= 2π (− +0 − )e−1 e−x ∣
∣
1

0

= 2π (− − +1)e−1 e−1

= 2π(1 − ) .
2

e
units3

(Use integration by parts)

(Evaluate and simplify)
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Again, it is a good idea to check the reasonableness of our solution. We observe that the solid has a volume slightly less than

that of a cylinder of radius  and height of  added to the volume of a cone of base radius  and height of 

Consequently, the solid should have a volume a bit less than

Since  we see that our calculated volume is reasonable.

Evaluate

Hint

Use Equation  with  and 

Answer

Key Concepts
The integration-by-parts formula (Equation ) allows the exchange of one integral for another, possibly easier, integral.
Integration by parts applies to both definite and indefinite integrals.

Key Equations
Integration by parts formula

Integration by parts for definite integrals

Glossary

integration by parts

a technique of integration that allows the exchange of one integral for another using the formula 

7.1: Integration by Parts is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

7.1: Integration by Parts by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

1 1/e 1 1 − .
1

e

π(1 +( ) (1 (1 − ) = + ≈ 1.8177 .)2 1

e

π

3
)2 1

e

2π

3e

π

3
units3

2π− ≈ 1.6603,
4π

e

 Exercise 7.1.4

x cosx dx.∫
π/2

0

7.1.2 u = x dv= cosx dx.

x cosx dx = −1∫
π/2

0

π

2

7.1.2

∫ u dv= uv−∫ vdu

u dv= uv − vdu∫
b

a

∣
∣
b

a
∫

b

a

∫  u dv= uv−∫  vdu
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7.2: Trigonometric Integrals

Solve integration problems involving products and powers of  and .
Solve integration problems involving products and powers of  and .
Use reduction formulas to solve trigonometric integrals.

In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are
an important part of the integration technique called trigonometric substitution, which is featured in Trigonometric Substitution. This technique allows us
to convert algebraic expressions that we may not be able to integrate into expressions involving trigonometric functions, which we may be able to
integrate using the techniques described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and
spherical coordinate systems later. Let’s begin our study with products of  and 

Integrating Products and Powers of sin x and cos x
A key idea behind the strategy used to integrate combinations of products and powers of  and  involves rewriting these expressions as sums and
differences of integrals of the form  or . After rewriting these integrals, we evaluate them using -substitution. Before
describing the general process in detail, let’s take a look at the following examples.

Evaluate 

Solution

Use -substitution and let . In this case, 

Thus,

Evaluate 

Hint

Let 

Answer

Evaluate 

Solution

To convert this integral to integrals of the form  rewrite  and make the substitution 

Thus,

 Learning Objectives

sinx cosx

tanx secx

sinx cosx.

sinx cosx

∫ x cosx dxsinj ∫ x sinx dxcosj u

 Example : Integrating 7.2.1 ∫ x sin x dxcosj

∫ x sinx dx.cos3

u u = cosx du = −sinx dx.

∫ x sinx dx = −∫ du = − +C = − x+C.cos3 u3 1

4
u4 1

4
cos4

 Exercise 7.2.1

∫ x cosx dx.sin4

u = sinx.

∫ x cosx dx = x+Csin4 1

5
sin5

 Example : A Preliminary Example: Integrating  where  is Odd7.2.2 ∫ x x dxcosj sink k

∫ x x dx.cos2 sin3

∫ x sinx dx,cosj x = x sinxsin3 sin2 x = 1 − x.sin2 cos2

https://libretexts.org/
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Evaluate 

Hint

Write  and let .

Answer

In the next example, we see the strategy that must be applied when there are only even powers of  and . For integrals of this type, the identities

and

are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the double-angle identity 
 and the Pythagorean identity 

Evaluate .

Solution

To evaluate this integral, let’s use the trigonometric identity  Thus,

Evaluate 

Hint

Answer

The general process for integrating products of powers of  and  is summarized in the following set of guidelines.

∫ x x dxcos2 sin3 = ∫ x(1 − x) sinx dxcos2 cos2

= −∫ (1 − )duu2 u2

= ∫ ( − )duu4 u2

= − +C
1

5
u5 1

3
u3

= x− x+C.
1

5
cos5 1

3
cos3

Let u = cosx; then du = −sinx dx.

 Exercise 7.2.2

∫ x x dx.cos3 sin2

x = x cosx = (1 − x) cosxcos3 cos2 sin2 u = sinx

∫ x x dx = x− x+Ccos3 sin2 1

3
sin3 1

5
sin5

sinx cosx

x = − cos(2x) =sin2 1

2

1

2

1 −cos(2x)

2

x = + cos(2x) =cos2 1

2

1

2

1 +cos(2x)

2

cos(2x) = x− xcos2 sin2 x+ x = 1.cos2 sin2

 Example : Integrating an Even Power of 7.2.3 sin x

∫ x dxsin2

x = − cos(2x).sin2 1
2

1
2

∫ x dx = ∫ ( − cos(2x)) dx = x− sin(2x) +C.sin2 1

2

1

2

1

2

1

4

 Exercise 7.2.3

∫ x dx.cos2

x = + cos(2x)cos2 1
2

1
2

∫ x dx = x+ sin(2x) +Ccos2 1

2

1

4

sinx cosx
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To integrate  use the following strategies:

1. If  is odd, rewrite  and use the identity  to rewrite  in terms of . Integrate using the
substitution . This substitution makes 

2. If  is odd, rewrite  and use the identity  to rewrite  in terms of . Integrate using the
substitution . This substitution makes  (Note: If both  and  are odd, either strategy 1 or strategy 2 may be used.)

3. If both  and  are even, use  and . After applying these formulas, simplify and reapply

strategies 1 through 3 as appropriate.

Evaluate 

Solution

Since the power on  is odd, use strategy 1. Thus,

Evaluate 

Solution: Since the power on  is even  and the power on  is even  we must use strategy 3. Thus,

Evaluate 

Hint

 Problem-Solving Strategy: Integrating Products and Powers of  and sin x cosx

∫ x x dxcosj sink

k x = x sinxsink sink−1 x = 1 − xsin2 cos2 xsink−1 cosx

u = cosx du = −sinx dx.

j x = x cosxcosj cosj−1 x = 1 − xcos2 sin2 xcosj−1 sinx

u = sinx du = cosx dx. j k

j k x =sin2
1 −cos(2x)

2
x =cos2

1 +cos(2x)

2

 Example : Integrating  where  is Odd7.2.4 ∫ x x dxcosj sink k

∫ x x dx.cos8 sin5

sinx

∫ x x dxcos8 sin5 = ∫ x x sinx dxcos8 sin4

= ∫ x( x sinx dxcos8 sin2 )2

= ∫ x(1 − x sinx dxcos8 cos2 )2

= ∫ (1 − (−du)u8 u2)2

= ∫ (− +2 − )duu8 u10 u12

= − + − +C
1

9
u9 2

11
u11 1

13
u13

= − x+ x− x+C
1

9
cos9 2

11
cos11 1

13
cos13

Break off  sinx.

Rewrite  x = ( x .sin4 sin2 )2

Substitute  x = 1 − x.sin2 cos2

Let u = cosx and du = −sinx dx.

Expand.

Evaluate the integral.

Substitute u = cosx.

 Example : Integrating  where  and  are Even7.2.5 ∫ x x dxcosj sink k j

∫ x dx.sin4

sinx (k = 4) cosx (j= 0),

∫ x dxsin4 = ∫ dx( x)sin2 2

= ∫ dx( − cos(2x))
1

2

1

2

2

= ∫ ( − cos(2x) + (2x)) dx
1

4

1

2

1

4
cos2

= ∫ ( − cos(2x) + ( + cos(4x))) dx
1

4

1

2

1

4

1

2

1

2

= ∫ ( − cos(2x) + cos(4x)) dx
3

8

1

2

1

8

= x− sin(2x) + sin(4x) +C
3

8

1

4

1

32

Rewrite  x = .sin4 ( x)sin2 2

Substitute  x = − cos(2x).sin2 1

2

1

2

Expand  .( − cos(2x))
1

2

1

2

2

Since  (2x) has an even power, substitute  (2x) = + cos(4x).cos2 cos2 1

2

1

2

Simplify.

Evaluate the integral.

 Exercise 7.2.4

∫ x dx.cos3
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Use strategy 2. Write  and substitute 

Answer

Evaluate 

Hint

Use strategy 3. Substitute 

Answer

In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often necessary to integrate products
that include  and  These integrals are evaluated by applying trigonometric identities, as outlined in the following rule.

To integrate products involving  and  use the substitutions

These formulas may be derived from the sum-of-angle formulas for sine and cosine.

Evaluate 

Solution: Apply the identity  Thus,

Evaluate 

Hint

Substitute 

Answer

Integrating Products and Powers of  and 
Before discussing the integration of products and powers of  and , it is useful to recall the integrals involving  and  we have already
learned:

1. 

2. 

x = x cosxcos3 cos2 x = 1 − x.cos2 sin2

∫ x dx = sinx− x+Ccos3 1

3
sin3

 Exercise 7.2.5

∫ (3x)dx.cos2

(3x) = + cos(6x)cos2 1
2

1
2

∫ (3x)dx = x+ sin(6x) +Ccos2 1

2

1

12

sin(ax), sin(bx), cos(ax), cos(bx).

 Rule: Integrating Products of Sines and Cosines of Different Angles

sin(ax), sin(bx), cos(ax), cos(bx),

sin(ax) sin(bx) = cos((a−b)x) − cos((a+b)x)
1

2

1

2

sin(ax) cos(bx) = sin((a−b)x) + sin((a+b)x)
1

2

1

2

cos(ax) cos(bx) = cos((a−b)x) + cos((a+b)x)
1

2

1

2

 Example : Evaluating 7.2.6 ∫ sin(ax) cos(bx)dx

∫ sin(5x) cos(3x)dx.

sin(5x) cos(3x) = sin(2x) + sin(8x).1
2

1
2

∫ sin(5x) cos(3x)dx = ∫ sin(2x) + sin(8x)dx = − cos(2x) − cos(8x) +C.
1

2

1

2

1

4

1

16

 Exercise 7.2.6

∫ cos(6x) cos(5x)dx.

cos(6x) cos(5x) = cosx+ cos(11x).1
2

1
2

∫ cos(6x) cos(5x)dx = sinx+ sin(11x) +C
1

2

1

22

tan x sec x

tanx secx tanx secx

∫ x dx = tanx+Csec2

∫ secx tanx dx = secx+C
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3. 

4. 

For most integrals of products and powers of  and , we rewrite the expression we wish to integrate as the sum or difference of integrals of the

form  or . As we see in the following example, we can evaluate these new integrals by using u-substitution.

Evaluate 

Solution: Start by rewriting  as 

You can read some interesting information at this website to learn about a common integral involving the secant.

Evaluate 

Hint

Let  and 

Answer

We now take a look at the various strategies for integrating products and powers of  and 

To integrate  use the following strategies:

1. If  is even and  rewrite  and use  to rewrite  in terms of . Let 
and 

2. If  is odd and , rewrite  and use  to rewrite  in terms of 
. Let  and  (Note: If  is even and  is odd, then either strategy 1 or strategy 2 may be used.)

3. If  is odd where  and , rewrite  It may be
necessary to repeat this process on the  term.

4. If  is even and  is odd, then use  to express  in terms of . Use integration by parts to integrate odd powers
of 

Evaluate 

Solution

Since the power on  is even, rewrite  and use  to rewrite the first  in terms of  Thus,

∫ tanx dx = ln| secx| +C

∫ secx dx = ln| secx+tanx| +C.

tanx secx

∫ x x dxtanj sec2 ∫ x tanx dxsecj

 Example : Evaluating 7.2.7 ∫ x tan x dxsecj

∫ x tanx dx.sec5

x tanxsec5 x secx tanx.sec4

∫ x tanx dxsec5 = ∫ x secx tanx dxsec4

= ∫ duu4

= +C1
5
u5

= x+C1
5

sec5

Let u = secx; then, du = secx tanx dx.

Evaluate the integral.

Substitute  secx = u.

 Exercise 7.2.7

∫ x x dx.tan5 sec2

u = tanx du = x.sec2

∫ x x dx = x+Ctan5 sec2 1
6

tan6

secx tanx.

 Problem-Solving Strategy: Integrating ∫ x x dxtank secj

∫ x x dx,tank secj

j j≥ 2, x = x xsecj secj−2 sec2 x = x+1sec2 tan2 xsecj−2 tanx u = tanx

du = x.sec2

k j≥ 1 x x = x x secx tanxtank secj tank−1 secj−1 x = x−1tan2 sec2 xtank−1

secx u = secx du = secx tanx dx. j k

k k ≥ 3 j= 0 x = x x = x( x−1) = x x− x.tank tank−2 tan2 tank−2 sec2 tank−2 sec2 tank−2

xtank−2

k j x = x−1tan2 sec2 xtank secx

secx.

 Example : Integrating  when  is Even7.2.8 ∫ x x dxtank secj j

∫ x x dx.tan6 sec4

secx x = x xsec4 sec2 sec2 x = x+1sec2 tan2 xsec2 tanx.
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Evaluate 

Solution

Since the power on  is odd, begin by rewriting  Thus,

Evaluate 

Solution

Begin by rewriting  Thus,

For the first integral, use the substitution  For the second integral, use the formula.

Integrate 

Solution

This integral requires integration by parts. To begin, let  and . These choices make  and . Thus,

∫ x x dxtan6 sec4 = ∫ x( x+1) x dxtan6 tan2 sec2

= ∫ ( +1)duu6 u2

= ∫ ( + )duu8 u6

= + +C
1

9
u9 1

7
u7

= x+ x+C.
1

9
tan9 1

7
tan7

Let u = tanx and du = x.sec2

Expand.

Evaluate the integral.

Substitute  tanx = u.

 Example : Integrating  when  is Odd7.2.9 ∫ x x dxtank secj k

∫ x x dx.tan5 sec3

tanx x x = x x secx tanx.tan5 sec3 tan4 sec2

∫ x x dxtan5 sec3 = x x secx tanx.tan4 sec2

= ∫ ( x x secx tanx dxtan2 )2 sec2

= ∫ ( x−1 x secx tanx dxsec2 )2 sec2

= ∫ ( −1 duu2 )2u2

= ∫ ( −2 + )duu6 u4 u2

= − + +C
1

7
u7 2

5
u5 1

3
u3

= x− x+ x+C
1

7
sec7 2

5
sec5 1

3
sec3

Write  x = ( x .tan4 tan2 )2

Use  x = x−1.tan2 sec2

Let u = secx and du = secx tanx dx

Expand.

Integrate.

Substitute  secx = u.

 Example : Integrating  where  is Odd and 7.2.10 ∫ x dxtank k k ≥ 3

∫ x dx.tan3

x = tanx x = tanx( x−1) = tanx x−tanx.tan3 tan2 sec2 sec2

∫ x dxtan3 = ∫ (tanx x−tanx)dxsec2

= ∫ tanx x dx−∫ tanx dxsec2

= x−ln| secx| +C.
1

2
tan2

u = tanx.

 Example : Integrating 7.2.11 ∫ x dxsec3

∫ x dx.sec3

u = secx dv= xsec2 du = secx tanx v= tanx

https://libretexts.org/
https://math.libretexts.org/@go/page/4484?pdf


7.2.7 https://math.libretexts.org/@go/page/4484

We now have

Since the integral  has reappeared on the right-hand side, we can solve for  by adding it to both sides. In doing so, we obtain

Dividing by 2, we arrive at

Evaluate 

Hint

Use Example  as a guide.

Answer

Reduction Formulas

Evaluating  for values of  where  is odd requires integration by parts. In addition, we must also know the value of  to

evaluate . The evaluation of  also requires being able to integrate . To make the process easier, we can derive and

apply the following power reduction formulas. These rules allow us to replace the integral of a power of  or  with the integral of a lower power
of  or 

The first power reduction rule may be verified by applying integration by parts. The second may be verified by following the strategy outlined for
integrating odd powers of 

Apply a reduction formula to evaluate 

Solution: By applying the first reduction formula, we obtain

∫ x dxsec3 = secx tanx−∫ tanx secx tanx dx

= secx tanx−∫ x secx dxtan2

= secx tanx−∫ ( x−1) secx dxsec2

= secx tanx+∫ secx dx−∫ x dxsec3

= secx tanx+ln| secx+tanx| −∫ x dx.sec3

Simplify.

Substitute  x = x−1.tan2 sec2

Rewrite.

Evaluate ∫ secx dx.

∫ x dx = secx tanx+ln| secx+tanx| −∫ x dx.sec3 sec3

∫ x dxsec3 ∫ x dxsec3

2 ∫ x dx = secx tanx+ln| secx+tanx|.sec3

∫ x dx = secx tanx+ ln| secx+tanx| +Csec3 1

2

1

2

 Exercise 7.2.8

∫ x x dx.tan3 sec7

7.2.9

∫ x x dx = x− x+Ctan3 sec7 1

9
sec9 1

7
sec7

∫ x dxsecn n n ∫ x dxsecn−2

∫ x dxsecn ∫ x dxtann ∫ x dxtann−2

secx tanx

secx tanx.

 Rule: Reduction Formulas for  and ∫ x dxsecn ∫ x dxtann

∫ x dx = x tanx+ ∫ x dxsecn
1

n−1
secn−2 n−2

n−1
secn−2

∫ x dx = x−∫ x dxtann 1

n−1
tann−1 tann−2

tanx.

 Example : Revisiting 7.2.12 ∫ x dxsec3

∫ x dx.sec3
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Evaluate 

Solution: Applying the reduction formula for  we have

Apply the reduction formula to 

Hint

Use reduction formula 1 and let 

Answer

Key Concepts

Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include

1. Applying trigonometric identities to rewrite the integral so that it may be evaluated by -substitution
2. Using integration by parts
3. Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the sum of individual sine and cosine functions
4. Applying reduction formulas

Key Equations

To integrate products involving  and  use the substitutions.

Sine Products

Sine and Cosine Products

Cosine Products

Power Reduction Formula

Power Reduction Formula

∫ x dxsec3 = secx tanx+ ∫ secx dx
1

2

1

2

= secx tanx+ ln| secx+tanx| +C.
1

2

1

2

 Example : Using a Reduction Formula7.2.13

∫ x dx.tan4

∫ x dxtan4

∫ x dxtan4 = x−∫ x dx
1

3
tan3 tan2

= x−(tanx−∫ x dx)
1

3
tan3 tan0

= x−tanx+∫ 1 dx
1

3
tan3

= x−tanx+x+C
1

3
tan3

Apply the reduction formula to ∫ x dx.tan2

Simplify.

Evaluate ∫ 1 dx

 Exercise 7.2.9

∫ x dx.sec5

n = 5.

∫ x dx = x tanx+ ∫ xsec5 1

4
sec3 3

4
sec3

u

sin(ax), sin(bx), cos(ax), cos(bx),

sin(ax) sin(bx) = cos((a−b)x) − cos((a+b)x)1
2

1
2

sin(ax) cos(bx) = sin((a−b)x) + sin((a+b)x)1
2

1
2

cos(ax) cos(bx) = cos((a−b)x) + cos((a+b)x)1
2

1
2

∫ x dx = x tanx+ ∫ x dxsecn
1

n−1
secn−2 n−2

n−1
secn−2

∫ x dx = x−∫ x dxtann 1

n−1
tann−1 tann−2
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Glossary

power reduction formula
a rule that allows an integral of a power of a trigonometric function to be exchanged for an integral involving a lower power

trigonometric integral
an integral involving powers and products of trigonometric functions
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7.3: Trigonometric Substitution

Solve integration problems involving the square root of a sum or difference of two squares.

In this section, we explore integrals containing expressions of the form , , and , where the values of 
 are positive. We have already encountered and evaluated integrals containing some expressions of this type, but many still remain

inaccessible. The technique of trigonometric substitution comes in very handy when evaluating these integrals. This technique uses
substitution to rewrite these integrals as trigonometric integrals.

Integrals Involving 

Before developing a general strategy for integrals containing , consider the integral  This integral cannot

be evaluated using any of the techniques we have discussed so far. However, if we make the substitution , we have 
 After substituting into the integral, we have

After simplifying, we have

Letting  we now have

Assuming that , we have

At this point, we can evaluate the integral using the techniques developed for integrating powers and products of trigonometric
functions. Before completing this example, let’s take a look at the general theory behind this idea.

To evaluate integrals involving , we make the substitution  and . To see that this actually makes
sense, consider the following argument: The domain of  is . Thus,

Consequently,

Since the range of  over  is , there is a unique angle  satisfying  so that ,
or equivalently, so that . If we substitute  into , we get

 Learning Objectives

−a2 x2
− −−−−−

√ +a2 x2
− −−−−−

√ −x2 a2
− −−−−−

√

a

−a
2

x
2

− −−−−−−√

−a2 x2
− −−−−−

√ ∫ dx.9 −x2
− −−−−

√

x = 3 sinθ
dx = 3 cosθ dθ.

∫ dx = ∫ ⋅ 3 cosθ dθ.9 −x2− −−−−
√ 9 −(3 sinθ)2− −−−−−−−−−

√

∫ dx = ∫ 9 ⋅ cosθ dθ.9 −x2− −−−−
√ 1 − θsin2

− −−−−−−−
√

1 − θ = θ,sin2 cos2

∫ dx = ∫ 9 cosθ dθ.9 −x2− −−−−√ θcos2− −−−−
√

cosθ ≥ 0

∫ dx = ∫ 9 θ dθ.9 −x2
− −−−−

√ cos2

−a2 x2
− −−−−−

√ x = a sinθ dx = a cosθ

−a2 x2
− −−−−−

√ [−a, a]

−a ≤ x ≤ a.

−1 ≤ ≤ 1.
x

a

sinx [−(π/2), π/2] [−1, 1] θ −(π/2) ≤ θ ≤ π/2 sinθ = x/a

x = a sinθ x = a sinθ −a2 x2
− −−−−−

√
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Since  on  and  We can see, from this discussion, that by making the substitution

, we are able to convert an integral involving a radical into an integral involving trigonometric functions. After we
evaluate the integral, we can convert the solution back to an expression involving . To see how to do this, let’s begin by assuming

that . In this case, . Since , we can draw the reference triangle in Figure  to assist in

expressing the values of  and the remaining trigonometric functions in terms of x. It can be shown that this triangle
actually produces the correct values of the trigonometric functions evaluated at  for all  satisfying . It is useful to

observe that the expression  actually appears as the length of one side of the triangle. Last, should  appear by itself, we

use 

Figure : A reference triangle can help express the trigonometric functions evaluated at  in terms of .

The essential part of this discussion is summarized in the following problem-solving strategy.

1. It is a good idea to make sure the integral cannot be evaluated easily in another way. For example, although this method can

be applied to integrals of the form ,  and  they can each be integrated

directly either by formula or by a simple -substitution.
2. Make the substitution  and  Note: This substitution yields 
3. Simplify the expression.
4. Evaluate the integral using techniques from the section on trigonometric integrals.
5. Use the reference triangle from Figure 1 to rewrite the result in terms of . You may also need to use some trigonometric

identities and the relationship 

The following example demonstrates the application of this problem-solving strategy.

Evaluate

Solution

−a2 x2− −−−−−
√ = −(a sinθa2 )2

− −−−−−−−−−−
√

= − θa2 a2 sin2− −−−−−−−−−√

= (1 − θ)a2 sin2
− −−−−−−−−−−

√

= θa2 cos2
− −−−−−−

√

= |a cosθ|

= a cosθ

Let x = a sinθ where  − ≤ θ ≤ .
π

2

π

2

Simplify.

Factor out  .a2

Substitute 1 − x = x.sin2 cos2

Take the square root.

cosx ≥ 0 − ≤ θ ≤
π

2

π

2
a > 0, |a cosθ| = a cosθ.

x = a sinθ
x

0 < x < a 0 < θ <
π

2
sinθ =

x

a
7.3.1

cosθ, tanθ,

θ θ − ≤ θ ≤
π

2

π

2
−a2 x2

− −−−−−
√ θ

θ = ( ).sin−1 x

a

7.3.1 θ x

 Problem-Solving Strategy: Integrating Expressions Involving −a2 x2− −−−−−√

∫ dx
1

−a2 x2
− −−−−−

√
∫ dx,

x

−a2 x2
− −−−−−

√
∫ x dx,−a2 x2− −−−−−

√

u

x = a sinθ dx = a cosθ dθ. = a cosθ.−a2 x2
− −−−−−

√

x

θ = ( ).sin−1 x

a

 Example : Integrating an Expression Involving 7.3.1 −a2 x2− −−−−−√

∫ dx.9 −x2− −−−−
√
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Begin by making the substitutions  and  Since , we can construct the reference triangle

shown in Figure 2.

Figure : A reference triangle can be constructed for Example .

Thus,

Substitute  and .

 Simplify.

 Substitute .

 Take the square root.

 Simplify. Since  and 

 Use the strategy for integrating an even power of .

 Evaluate the integral.

Substitute .

 Substitute  and . Use the reference triangle to

see that and make this substitution. Simplify.

 Simplify.

Evaluate

Solution

First make the substitutions  and . Since , we can construct the reference triangle shown

in Figure .

x = 3 sinθ dx = 3 cosθ dθ. sinθ =
x

3

7.3.2 7.3.1

∫ dx = ∫ 3 cosθ dθ9 −x2− −−−−
√ 9 −(3 sinθ)2

− −−−−−−−−−
√

x = 3 sinθ dx = 3 cosθ dθ

= ∫ ⋅ 3 cosθ dθ9(1 − θ)sin2
− −−−−−−−−−

√

= ∫ ⋅ 3 cosθ dθ9 θcos2
− −−−−−

√ θ = 1 − θcos2 sin2

= ∫ 3| cosθ|3 cosθ dθ

= ∫ 9 θ dθcos2 − ≤ θ ≤ , cosθ ≥ 0
π

2

π

2
| cosθ| = cosθ.

= ∫ 9( + cos(2θ)) dθ
1

2

1

2
cosθ

= θ+ sin(2θ) +C
9

2

9

4

= θ+ (2 sinθcosθ) +C
9

2

9

4

sin(2θ) = 2 sinθcosθ

= ( )+ ⋅ ⋅ +C
9

2
sin−1 x

3

9

2

x

3

9 −x2
− −−−−

√

3
( ) = θsin−1 x

3
sinθ = x

3

cosθ =
9 −x2
− −−−−

√

3

= ( )+ +C.
9

2
sin−1 x

3

x 9 −x2
− −−−−

√

2

 Example : Integrating an Expression Involving 7.3.2 −a2 x2− −−−−−√

∫ dx.
4 −x2
− −−−−

√

x

x = 2 sinθ dx = 2 cosθ dθ sinθ =
x

2
7.3.3
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Figure : A reference triangle can be constructed for Example .

Thus,

 Substitute  and 

 Substitute  and simplify.

 Substitute .

 Separate the numerator, simplify, and use .

 Evaluate the integral.

 Use the reference triangle to rewrite the expression in terms of  and simplify.

In the next example, we see that we sometimes have a choice of methods.

Evaluate  two ways: first by using the substitution  and then by using a trigonometric substitution.

Method 1

Let  and hence . Thus,  In this case, the integral becomes

 Make the substitution.

 Expand the expression.

 Evaluate the integral.

 Rewrite in terms of x.

Method 2

Let . In this case,  Using this substitution, we have

 Let .Thus,

 Substitute 

 Use a reference triangle to see that 

7.3.3 7.3.2

∫ dx = ∫ 2 cosθ dθ
4 −x2
− −−−−

√

x

4 −(2 sinθ)2− −−−−−−−−−
√

2 sinθ
x = 2 sinθ dx = 2 cosθ dθ.

= ∫ dθ
2 θcos2

sinθ
θ = 1 − θcos2 sin2

= ∫ dθ
2(1 − θ)sin2

sinθ
θ = 1 − θcos2 sin2

= ∫(2 csc θ−2 sinθ)dθ csc θ =
1

sinθ

= 2 ln | csc θ−cotθ| +2 cosθ+C

= 2 ln − + +C.
∣

∣
∣
2

x

4 −x2
− −−−−

√

x

∣

∣
∣ 4 −x2

− −−−−
√ x

 Example : Integrating an Expression Involving  Two Ways7.3.3 −a2 x2− −−−−−
√

∫ dxx3 1 −x2
− −−−−

√ u = 1 −x2

u = 1 −x2 = 1 −ux2 du = −2x dx.

∫ dx = − ∫ (−2x dx)x3 1 −x2
− −−−−

√
1

2
x2 1 −x2

− −−−−
√

= − ∫(1 −u) du
1

2
u
−−

√

= − ∫( − )du
1

2
u1/2 u3/2

= − ( − ) +C
1

2

2

3
u3/2 2

5
u5/2

= − (1 − + (1 − +C.
1

3
x2)3/2

1

5
x2)5/2

x = sinθ dx = cosθ dθ.

∫ dx = ∫ θ θ dθx3 1 −x2
− −−−−

√ sin3 cos2

= ∫(1 − θ) θ sinθ dθcos2 cos2 u = cosθ du = −sinθ dθ.

= ∫( − )duu4 u2

= − +C
1

5
u5 1

3
u3 cosθ = u.

= θ− θ+C
1

5
cos5 1

3
cos3 cosθ = .1 −x2

− −−−−
√
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Rewrite the integral  using the appropriate trigonometric substitution (do not evaluate the integral).

Hint

Substitute  and 

Answer

Integrating Expressions Involving 

For integrals containing ,let’s first consider the domain of this expression. Since  is defined for all real values
of , we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our choice is restricted to
selecting either  or . Either of these substitutions would actually work, but the standard substitution is 

 or, equivalently, . With this substitution, we make the assumption that , so that we
also have  The procedure for using this substitution is outlined in the following problem-solving strategy.

1. Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more convenient to
use an alternative method.

2. Substitute  and  This substitution yields 

 (Since  and 

 over this interval, .)
3. Simplify the expression.
4. Evaluate the integral using techniques from the section on trigonometric integrals.
5. Use the reference triangle from Figure  to rewrite the result in terms of . You may also need to use some

trigonometric identities and the relationship . (Note: The reference triangle is based on the assumption that 

; however, the trigonometric ratios produced from the reference triangle are the same as the ratios for which .)

Figure : A reference triangle can be constructed to express the trigonometric functions evaluated at  in terms of .

Evaluate  and check the solution by differentiating.

Solution

Begin with the substitution  and . Since , draw the reference triangle in Figure .

= (1 − − (1 − +C.
1

5
x2)5/2 1

3
x2)3/2

 Exercise 7.3.1

∫ dx
x3

25 −x2
− −−−−−

√

x = 5 sinθ dx = 5 cosθ dθ.

∫ 125 θ dθsin3

+a2 x2
− −−−−−−

√

+a2 x2
− −−−−−

√ +a2 x2
− −−−−−

√

x

x = a tanθ x = a cotθ
x = a tanθ tanθ = x/a −(π/2) < θ < π/2

θ = (x/a).tan−1

 Problem-Solving Strategy: Integrating Expressions Involving +a2 x2− −−−−−√

x = a tanθ dx = a θdθ.sec2

= = = = |a sec θ| = a sec θ.+a2 x2
− −−−−−

√ +(a tanθa2 )2
− −−−−−−−−−−

√ (1 + θ)a2 tan2
− −−−−−−−−−−

√ se θa2 c2
− −−−−−

√ − < θ <
π

2

π

2
sec θ > 0 |a sec θ| = a sec θ

7.3.4 x

θ = ( )tan−1
x

a
x > 0 x ≤ 0

7.3.4 θ x

 Example : Integrating an Expression Involving 7.3.4 +a2 x2− −−−−−
√

∫
dx

1 +x2
− −−−−

√

x = tanθ dx = se θ dθc2 tanθ = x 7.3.5
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Figure : The reference triangle for Example .

Thus,

To check the solution, differentiate:

Since  for all values of , we could rewrite , if desired.

Use the substitution  to evaluate 

Solution

Because  has a range of all real numbers, and , we may also use the substitution  to
evaluate this integral. In this case,  Consequently,

Analysis

This answer looks quite different from the answer obtained using the substitution  To see that the solutions are the
same, set . Thus,  From this equation we obtain:

7.3.5 7.3.4

∫
dx

1 +x2
− −−−−

√
= ∫ dθ

θsec2

sec θ

= ∫ sec θ dθ

= ln| sec θ+tanθ| +C

= ln| +x| +C1 +x2− −−−−√

Substitute x = tanθ and dx = θ dθ.sec2

This substitution makes  = sec θ.  Simplify.1 +x2− −−−−
√

Evaluate the integral.

Use the reference triangle to express the result in terms of x.

( ln | +x|) = ⋅( +1) = ⋅ = .
d

dx
1 +x2
− −−−−

√
1

+x1 +x2
− −−−−

√

x

1 +x2
− −−−−

√

1

+x1 +x2
− −−−−

√

x+ 1 +x2
− −−−−

√

1 +x2
− −−−−

√

1

1 +x2
− −−−−

√

+x > 01 +x2
− −−−−

√ x ln | +x| +C = ln( +x) +C1 +x2
− −−−−

√ 1 +x2
− −−−−

√

 Example : Evaluating  Using a Different Substitution7.3.5 ∫
dx

1 + x2− −−−−√

x = sinhθ ∫ .
dx

1 +x2
− −−−−

√

sinhθ 1 + θ = θsinh2 cosh2 x = sinhθ
dx = coshθ dθ.

∫
dx

1 +x2
− −−−−

√
= ∫ dθ

coshθ

1 + θsinh2− −−−−−−−−
√

= ∫ dθ
coshθ

θcosh2
− −−−−−

√

= ∫ dθ
coshθ

| coshθ|

= ∫ dθ
coshθ

coshθ

= ∫ 1 dθ

= θ+C

= x+C.sinh−1

Substitute x = sinhθ and dx = coshθ dθ.

Substitute 1 + θ = θ.sinh2 cosh2

Since  = | coshθ|θcosh2− −−−−−
√

| coshθ| = coshθ since  coshθ > 0 for all θ.

Simplify.

Evaluate the integral.

Since x = sinhθ,  we know θ = x.sinh−1

x = tanθ.
y = xsinh−1 sinhy = x.
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After multiplying both sides by  and rewriting, this equation becomes:

Use the quadratic equation to solve for :

Simplifying, we have:

Since , it must be the case that . Thus,

Last, we obtain

After we make the final observation that, since 

we see that the two different methods produced equivalent solutions.

Find the length of the curve  over the interval .

Solution

Because , the arc length is given by

To evaluate this integral, use the substitution  and . We also need to change the limits of

integration. If , then  and if , then  Thus,

 After substitution, . (Substitute 
and simplify.)

 We derived this integral in the previous section.

 Evaluate and simplify.

Rewrite  by using a substitution involving .

Hint

= x.
−ey e−y

2

2ey

−2x −1 = 0.e2y ey

ey

= .ey
2x± 4 +4x2

− −−−−−
√

2

= x± .ey +1x2− −−−−
√

x− < 0+1x2
− −−−−

√ = x+ey +1x2
− −−−−

√

y = ln(x+ ).+1x2− −−−−
√

x = ln(x+ ).sinh−1 +1x2− −−−−
√

x+ > 0,+1x2
− −−−−

√

ln(x+ ) = ln ∣ +x ∣,+1x2− −−−−
√ 1 +x2− −−−−

√

 Example : Finding an Arc Length7.3.6

y = x2 [0, ]
1

2

= 2x
dy

dx

dx = dx.∫
1/2

0
1 +(2x)2
− −−−−−−−

√ ∫
1/2

0
1 +4x2− −−−−−√

x = tanθ
1

2
dx = θ dθ1

2
sec2

x = 0 θ = 0 x =
1

2
θ = .

π

4

dx = ⋅ θ dθ∫ 1/2
0

1 +4x2
− −−−−−

√ ∫ π/4
0

1 + θtan2− −−−−−−−√ 1
2

sec2 = sec θ1 +4x2
− −−−−−

√ 1 + θ = θtan2 sec2

= θ dθ1
2
∫ π/4

0
sec3

= ( sec θ tanθ+ ln| sec θ+tanθ|)1
2

1

2

1

2

∣
∣
∣
π/4

0

= ( +ln( +1)).1
4

2
–

√ 2
–

√

 Exercise 7.3.2

∫ dxx3 +4x2− −−−−
√ tanθ
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Use  and 

Answer

Integrating Expressions Involving 

The domain of the expression  is . Thus, either  or  Hence,  or .

Since these intervals correspond to the range of  on the set , it makes sense to use the substitution 

or, equivalently, , where  or . The corresponding substitution for  is .

The procedure for using this substitution is outlined in the following problem-solving strategy.

1. Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider applying an
alternative technique.

2. Substitute  and . This substitution yields

For  and for 
3. Simplify the expression.
4. Evaluate the integral using techniques from the section on trigonometric integrals.
5. Use the reference triangles from Figure  to rewrite the result in terms of .

6. You may also need to use some trigonometric identities and the relationship . (Note: We need both

reference triangles, since the values of some of the trigonometric ratios are different depending on whether  or 
.)

Figure : Use the appropriate reference triangle to express the trigonometric functions evaluated at  in terms of .

Find the area of the region between the graph of  and the x-axis over the interval 

Solution

First, sketch a rough graph of the region described in the problem, as shown in the following figure.

x = 2 tanθ dx = 2 θ dθ.sec2

∫ 32 θ θ dθtan3 sec3

−x
2

a
2

− −−−−−−√

−x2 a2
− −−−−−

√ (−∞, −a] ∪ [a, +∞) x ≤ −a x ≥ a. ≤ −1
x

a
≥ 1

x

a

sec θ [0, ) ∪ ( , π]
π

2

π

2
sec θ =

x

a

x = a sec θ 0 ≤ θ <
π

2
< θ ≤ π

π

2
dx dx = a sec θ tanθ dθ

 Problem-Solving Strategy: Integrals Involving −x2 a2− −−−−−√

x = a sec θ dx = a sec θ tanθ dθ

= = = = |a tanθ|.−x2 a2− −−−−−
√ (a sec θ −)2 a2

− −−−−−−−−−−
√ ( θ−1)a2 sec2

− −−−−−−−−−−
√ θa2 tan2

− −−−−−−
√

x ≥ a, |a tanθ| = a tanθ x ≤ −a, |a tanθ| = −a tanθ.

7.3.6 x

θ = ( )sec−1 x

a
x > a

x < −a

7.3.6 θ x

 Example : Finding the Area of a Region7.3.7

f(x) = −9x2
− −−−−

√ [3, 5].
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Figure : Calculating the area of the shaded region requires evaluating an integral with a trigonometric substitution.

We can see that the area is . To evaluate this definite integral, substitute  and 
. We must also change the limits of integration. If , then  and hence . If ,

then . After making these substitutions and simplifying, we have

Area

 Use 

 Expand.

 Evaluate the integral.

 Simplify.

 Evaluate. Use  and 

Evaluate

Assume that 

Hint

Substitute  and 

Answer

Key Concepts
For integrals involving , use the substitution  and 
For integrals involving , use the substitution  and .
For integrals involving , substitute  and .

7.3.7

A = dx∫ 5
3

−9x2− −−−−
√ x = 3 sec θ

dx = 3 sec θ tanθ dθ x = 3 3 = 3 sec θ θ = 0 x = 5

θ = ( )sec−1
5

3

= dx∫ 5
3

−9x2
− −−−−

√

= 9 θ sec θ dθ∫
(5/3)sec−1

0 tan2 θ = θ−1.tan2 sec2

= 9( θ−1) sec θ dθ∫ (5/3)sec−1

0
sec2

= 9( θ−sec θ)dθ∫
(5/3)sec−1

0 sec3

= ( ln | sec θ+tanθ| + sec θ tanθ) −9 ln | sec θ+tanθ|
9

2

9

2
∣
∣
∣

(5/3)sec−1

0

= sec θ tanθ− ln| sec θ+tanθ|
9

2

9

2
∣
∣
∣

(5/3)sec−1

0
sec( ) =sec−1 5

3

5

3
tan( ) = .sec−1 5

3

4

3

= ⋅ ⋅ − ln ∣ + ∣ −( ⋅ 1 ⋅ 0 − ln |1 +0|)
9

2

5

3

4

3

9

2

5

3

4

3

9

2

9

2

= 10 − ln3
9

2

 Exercise 7.3.3

∫ .
dx

−4x2
− −−−−

√

x > 2.

x = 2 sec θ dx = 2 sec θ tanθ dθ.

ln | + | +C
x

2

−4x2
− −−−−

√

2

−a2 x2
− −−−−−

√ x = a sinθ dx = a cosθ dθ.

+a2 x2
− −−−−−

√ x = a tanθ dx = a θdθsec2

−x2 a2− −−−−−
√ x = a sec θ dx = a sec θ tanθ dθ
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Glossary

trigonometric substitution
an integration technique that converts an algebraic integral containing expressions of the form , , or 

 into a trigonometric integral

7.3: Trigonometric Substitution is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

7.3: Trigonometric Substitution by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

−a2 x2
− −−−−−√ +a2 x2

− −−−−−√

−x2 a2
− −−−−−

√
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7.4: Integration of Rational Functions by Partial Fractions

Integrate a rational function using the method of partial fractions.
Recognize simple linear factors in a rational function.
Recognize repeated linear factors in a rational function.
Recognize quadratic factors in a rational function.

We have seen some techniques that allow us to integrate specific rational functions. For example, we know that

and

However, we do not yet have a technique that allows us to tackle arbitrary quotients of this type. Thus, it is not immediately
obvious how to go about evaluating

However, we know from material previously developed that

In fact, by getting a common denominator, we see that

Consequently,

In this section, we examine the method of partial fraction decomposition, which allows us to decompose rational functions into
sums of simpler, more easily integrated rational functions. Using this method, we can rewrite an expression such as:

as an expression such as

The key to the method of partial fraction decomposition is being able to anticipate the form that the decomposition of a rational
function will take. As we shall see, this form is both predictable and highly dependent on the factorization of the denominator of
the rational function. It is also extremely important to keep in mind that partial fraction decomposition can be applied to a rational

function  only if . In the case when , we must first perform long division

to rewrite the quotient  in the form , where . We then do a partial fraction

 Learning Objectives

∫ = ln|u| +C
du

u

∫ = ( )+C.
du

+u2 a2

1

a
tan−1 u

a

∫ dx.
3x

−x−2x2

∫ ( + ) dx = ln|x+1| +2 ln |x−2| +C.
1

x+1

2

x−2

+ = .
1

x+1

2

x−2

3x

−x−2x2

∫ dx = ∫ ( + ) dx.
3x

−x−2x2

1

x+1

2

x−2

3x

−x−2x2

+ .
1

x+1

2

x−2

P (x)

Q(x)
deg(P (x)) < deg(Q(x)) deg(P (x)) ≥ deg(Q(x))

P (x)

Q(x)
A(x) +

R(x)

Q(x)
deg(R(x)) < deg(Q(x))
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decomposition on . The following example, although not requiring partial fraction decomposition, illustrates our approach to

integrals of rational functions of the form , where 

Evaluate

Solution

Since  we perform long division to obtain

Thus,

Visit this website for a review of long division of polynomials.

Evaluate

Hint

Use long division to obtain 

Answer

To integrate , where , we must begin by factoring .

Nonrepeated Linear Factors

If  can be factored as , where each linear factor is distinct, then it is possible to find
constants  satisfying

The proof that such constants exist is beyond the scope of this course.

In this next example, we see how to use partial fractions to integrate a rational function of this type.

R(x)

Q(x)

∫ dx
P (x)

Q(x)
deg(P (x)) ≥ deg(Q(x)).

 Example : Integrating , where 7.4.1 ∫ dx
P (x)

Q(x)
deg(P (x)) ≥ deg(Q(x))

∫ dx.
+3x+5x2

x+1

deg( +3x+5) ≥ deg(x+1),x2

= x+2 + .
+3x+5x2

x+1

3

x+1

∫ dx = ∫ (x+2 + ) dx = +2x+3 ln |x+1| +C.
+3x+5x2

x+1

3

x+1

1

2
x2

 Exercise 7.4.1

∫ dx.
x−3

x+2

= 1 − .
x−3

x+2

5

x+2

x−5 ln |x+2| +C

∫ dx
P (x)

Q(x)
deg(P (x)) < deg(Q(x)) Q(x)

Q(x) ( x+ )( x+ ) … ( x+ )a1 b1 a2 b2 an bn
, , …A1 A2 An

= + +⋯ + .
P (x)

Q(x)

A1

x+a1 b1

A2

x+a2 b2

An

x+an bn
(7.4.1)
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Evaluate 

Solution

Since , we begin by factoring the denominator of . We can see that 

. Thus, there are constants , , and  satisfying Equation  such that

We must now find these constants. To do so, we begin by getting a common denominator on the right. Thus,

Now, we set the numerators equal to each other, obtaining

There are two different strategies for finding the coefficients , , and . We refer to these as the method of equating
coefficients and the method of strategic substitution.

Strategy one: Method of Equating Coefficients

Rewrite Equation  in the form

Equating coefficients produces the system of equations

To solve this system, we first observe that  Substituting this value into the first two equations gives us
the system

.

Multiplying the second equation by  and adding the resulting equation to the first produces

which in turn implies that . Substituting this value into the equation  yields . Thus, solving these

equations yields , and .

It is important to note that the system produced by this method is consistent if and only if we have set up the decomposition
correctly. If the system is inconsistent, there is an error in our decomposition.

Strategy two: Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set up the decomposition correctly. If the
decomposition is set up correctly, then there must be values of  and  that satisfy Equation  for all values of . That
is, this equation must be true for any value of  we care to substitute into it. Therefore, by choosing values of  carefully and
substituting them into the equation, we may find , and  easily. For example, if we substitute , the equation reduces
to . Solving for  yields . Next, by substituting , the equation reduces to , or

 Example : Partial Fractions with Nonrepeated Linear Factors7.4.2

∫ dx.
3x+2

− −2xx3 x2

deg(3x+2) < deg( − −2x)x3 x2 3x+2

− −2xx3 x2

− −2x = x(x−2)(x+1)x3 x2 A B C 7.4.1

= + + .
3x+2

x(x−2)(x+1)

A

x

B

x−2

C

x+1

= .
3x+2

x(x−2)(x+1)

A(x−2)(x+1) +Bx(x+1) +Cx(x−2)

x(x−2)(x+1)

3x+2 = A(x−2)(x+1) +Bx(x+1) +Cx(x−2). (7.4.2)

A B C

7.4.2

3x+2 = (A+B+C) +(−A+B−2C)x+(−2A).x2

A+B+C

−A+B−2C

−2A

= 0

= 3

= 2.

−2A = 2 ⇒ A = −1.

B+C = 1

B−2C = 2

−1

−3C = 1,

C = −
1

3
B+C = 1 B =

4

3

A = −1,B =
4

3
C = −

1

3

A,B, C 7.4.2 x

x x

A,B C x = 0
2 = A(−2)(1) A A = −1 x = 2 8 = B(2)(3)
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equivalently . Last, we substitute  into the equation and obtain  Solving, we have 

.

It is important to keep in mind that if we attempt to use this method with a decomposition that has not been set up correctly, we
are still able to find values for the constants, but these constants are meaningless. If we do opt to use the method of strategic
substitution, then it is a good idea to check the result by recombining the terms algebraically.

Now that we have the values of  and  we rewrite the original integral:

Evaluating the integral gives us

In the next example, we integrate a rational function in which the degree of the numerator is not less than the degree of the
denominator.

Evaluate 

Solution

Since  we must perform long division of polynomials. This results in

Next, we perform partial fraction decomposition on . We have

Thus,

Solving for  and  using either method, we obtain  and 

Rewriting the original integral, we have

Evaluating the integral produces

As we see in the next example, it may be possible to apply the technique of partial fraction decomposition to a nonrational function.
The trick is to convert the nonrational function to a rational function through a substitution.

Evaluate 

B = 4/3 x = −1 −1 = C(−1)(−3).

C = −
1

3

A,B, C,

∫ dx = ∫ (− + ⋅ − ⋅ ) dx.
3x+2

− −2xx3 x2

1

x

4

3

1

x−2

1

3

1

x+1

∫ dx = −ln|x| + ln |x−2| − ln |x+1| +C.
3x+2

− −2xx3 x2

4

3

1

3

 Example : Dividing before Applying Partial Fractions7.4.3

∫ dx.
+3x+1x2

−4x2

deg( +3x+1) ≥ deg( −4),x2 x2

= 1 +
+3x+1x2

−4x2

3x+5

−4x2

=
3x+5

−4x2

3x+5

(x+2)(x−2)

= + .
3x+5

(x−2)(x+2)

A

x−2

B

x+2

3x+5 = A(x+2) +B(x−2).

A B A = 11/4 B = 1/4.

∫ dx = ∫ (1 + ⋅ + ⋅ ) dx.
+3x+1x2

−4x2

11

4

1

x−2

1

4

1

x+2

∫ dx = x+ ln|x−2| + ln |x+2| +C.
+3x+1x2

−4x2

11

4

1

4

 Example : Applying Partial Fractions after a Substitution7.4.4

∫ dx.
cosx

x−sinxsin2
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Solution

Let’s begin by letting  Consequently,  After making these substitutions, we have

Applying partial fraction decomposition to  gives 

Thus,

Evaluate 

Hint

Answer

Repeated Linear Factors
For some applications, we need to integrate rational expressions that have denominators with repeated linear factors—that is,
rational functions with at least one factor of the form  where  is a positive integer greater than or equal to . If the
denominator contains the repeated linear factor , then the decomposition must contain

As we see in our next example, the basic technique used for solving for the coefficients is the same, but it requires more algebra to
determine the numerators of the partial fractions.

Evaluate 

Solution

We have  so we can proceed with the decomposition. Since  is a repeated
linear factor, include

in the decomposition in Equation . Thus,

After getting a common denominator and equating the numerators, we have

u = sinx. du = cosx dx.

∫ dx = ∫ = ∫ .
cosx

x−sinxsin2

du

−uu2

du

u(u−1)

1

u(u−1)
= − + .

1

u(u−1)

1

u

1

u−1

∫ dx = −ln|u| + ln |u−1| +C = −ln| sinx| + ln | sinx−1| +C.
cosx

x−sinxsin2

 Exercise 7.4.2

∫ dx.
x+1

(x+3)(x−2)

= +
x+1

(x+3)(x−2)

A

x+3

B

x−2

ln |x+3| + ln |x−2| +C
2

5

3

5

(ax+b ,)n n 2
(ax+b)n

+ +⋯ + .
A1

ax+b

A2

(ax+b)2

An

(ax+b)n
(7.4.3)

 Example : Partial Fractions with Repeated Linear Factors7.4.5

∫ dx.
x−2

(2x−1 (x−1))2

deg(x−2) < deg((2x−1 (x−1)),)2 (2x−1)2

+
A

2x−1

B

(2x−1)2

7.4.3

= + + .
x−2

(2x−1 (x−1))2

A

2x−1

B

(2x−1)2

C

x−1

x−2 = A(2x−1)(x−1) +B(x−1) +C(2x−1 .)2 (7.4.4)
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We then use the method of equating coefficients to find the values of  and .

Equating coefficients yields , , and . Solving this system yields 
 and 

Alternatively, we can use the method of strategic substitution. In this case, substituting  and  into Equation 
easily produces the values  and . At this point, it may seem that we have run out of good choices for ,
however, since we already have values for  and , we can substitute in these values and choose any value for  not
previously used. The value  is a good option. In this case, we obtain the equation 

 or, equivalently, 

Now that we have the values for  and , we rewrite the original integral and evaluate it:

Set up the partial fraction decomposition for

(Do not solve for the coefficients or complete the integration.)

Hint

Use the problem-solving method of Example  for guidance.

Answer

The General Method
Now that we are beginning to get the idea of how the technique of partial fraction decomposition works, let’s outline the basic
method in the following problem-solving strategy.

To decompose the rational function , use the following steps:

1. Make sure that  If not, perform long division of polynomials.
2. Factor  into the product of linear and irreducible quadratic factors. An irreducible quadratic is a quadratic that has no

real zeros.
3. Assuming that , the factors of  determine the form of the decomposition of 

a. If  can be factored as , where each linear factor is distinct, then it is possible
to find constants  satisfying

b. If  contains the repeated linear factor , then the decomposition must contain

A,B, C

x−2 = (2A+4C) +(−3A+B−4C)x+(A−B+C).x2

2A+4C = 0 −3A+B−4C = 1 A−B+C = −2
A = 2,B = 3, C = −1.

x = 1 x = 1/2 7.4.4
B = 3 C = −1 x

B C x

x = 0
−2 = A(−1)(−1) +3(−1) +(−1)(−1)2 A = 2.

A,B, C

∫ dx
x−2

(2x−1 (x−1))2
= ∫ ( + − ) dx

2

2x−1

3

(2x−1)2

1

x−1

= ln|2x−1| − −ln |x−1| +C.
3

2(2x−1)

 Exercise 7.4.3

∫ dx.
x+2

(x+3 (x−4)3 )2

7.4.5

= + + + +
x+2

(x+3 (x−4)3 )2

A

x+3

B

(x+3)2

C

(x+3)3

D

(x−4)

E

(x−4)2

 Problem-Solving Strategy: Partial Fraction Decomposition

P (x)/Q(x)

deg(P (x)) < deg(Q(x)).
Q(x)

deg(P (x)) < deg(Q(x) Q(x) P (x)/Q(x).

Q(x) ( x+ )( x+ ) … ( x+ )a1 b1 a2 b2 an bn
, , . . .A1 A2 An

= + +⋯ + .
P (x)

Q(x)

A1

x+a1 b1

A2

x+a2 b2

An

x+an bn

Q(x) (ax+b)n
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c. For each irreducible quadratic factor  that  contains, the decomposition must include

d. For each repeated irreducible quadratic factor  the decomposition must include

e. After the appropriate decomposition is determined, solve for the constants.
f. Last, rewrite the integral in its decomposed form and evaluate it using previously developed techniques or integration

formulas.

Simple Quadratic Factors

Now let’s look at integrating a rational expression in which the denominator contains an irreducible quadratic factor. Recall that the
quadratic  is irreducible if  has no real zeros—that is, if 

Evaluate

Solution

Since  factor the denominator and proceed with partial fraction decomposition. Since 

 contains the irreducible quadratic factor , include  as part of the decomposition, along

with  for the linear term . Thus, the decomposition has the form

After getting a common denominator and equating the numerators, we obtain the equation

Solving for  and  we get  and 

Thus,

Substituting back into the integral, we obtain

Note: We may rewrite , if we wish to do so, since 

+ +⋯ + .
A1

ax+b

A2

(ax+b)2

An

(ax+b)n

a +bx+cx2 Q(x)

.
Ax+B

a +bx+cx2

(a +bx+c ,x2 )n

+ +⋯ + .
x+A1 B1

a +bx+cx2

x+A2 B2

(a +bx+cx2 )2

x+An Bn

(a +bx+cx2 )n

a +bx+cx2 a +bx+c = 0x2 −4ac < 0.b2

 Example : Rational Expressions with an Irreducible Quadratic Factor7.4.6

∫ dx.
2x−3

+xx3

deg(2x−3) < deg( +x),x3

+x = x( +1)x3 x2 +1x2 Ax+B

+1x2

C

x
x

= + .
2x−3

x( +1)x2

Ax+B

+1x2

C

x

2x−3 = (Ax+B)x+C( +1).x2

A,B, C, A = 3,B = 2, C = −3.

= − .
2x−3

+xx3

3x+2

+1x2

3

x

∫ dx
2x−3

+xx3
= ∫ ( − ) dx

3x+2

+1x2

3

x

= 3 ∫ dx+2 ∫ dx−3 ∫ dx
x

+1x2

1

+1x2

1

x

= ln ∣ +1 ∣ +2 x−3 ln |x| +C.
3

2
x2 tan−1

Split up the integral

Evaluate each integral

ln ∣ +1 ∣= ln( +1)x2 x2 +1 > 0.x2
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Evaluate 

Solution: We can start by factoring  We see that the quadratic factor  is
irreducible since  Using the decomposition described in the problem-solving strategy, we get

After obtaining a common denominator and equating the numerators, this becomes

Applying either method, we get  and 

Rewriting  we have

We can see that

but

requires a bit more effort. Let’s begin by completing the square on  to obtain

By letting  and consequently  we see that

Substituting back into the original integral and simplifying gives

Here again, we can drop the absolute value if we wish to do so, since  for all .

 Example : Partial Fractions with an Irreducible Quadratic Factor7.4.7

∫ .
dx

−8x3

−8 = (x−2)( +2x+4).x3 x2 +2x+4x2

−4(1)(4) = −12 < 0.22

= + .
1

(x−2)( +2x+4)x2

A

x−2

Bx+C

+2x+4x2

1 = A( +2x+4) +(Bx+C)(x−2).x2

A = ,B = − ,
1

12

1

12
C = − .

1

3

∫ ,
dx

−8x3

∫ = ∫ dx− ∫ dx.
dx

−8x3

1

12

1

x−2

1

12

x+4

+2x+4x2

∫ dx = ln|x−2| +C,
1

x−2

∫ dx
x+4

+2x+4x2

+2x+4x2

+2x+4 = (x+1 +3.x2 )2

u = x+1 du = dx,

∫ dx
x+4

+2x+4x2
= ∫ dx

x+4

(x+1 +3)2

= ∫ du
u+3

+3u2

= ∫ du+∫ du
u

+3u2

3

+3u2

= ln ∣ +3 ∣ + +C
1

2
u2 3

3
–

√
tan−1 u

3
–

√

= ln ∣ +2x+4 ∣ + ( )+C
1

2
x2 3

–
√ tan−1 x+1

3
–

√

Complete the square on the denominator

Substitute u = x+1, x = u−1,  and du = dx

Split the numerator apart

Evaluate each integral

Rewrite in terms of x and simplify

∫ = ln|x−2| − ln | +2x+4| − ( )+C.
dx

−8x3

1

12

1

24
x2 3

–
√

12
tan−1 x+1

3
–

√

+2x+4 > 0x2 x
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Find the volume of the solid of revolution obtained by revolving the region enclosed by the graph of  and

the x-axis over the interval  about the y-axis.

Solution

Let’s begin by sketching the region to be revolved (see Figure ). From the sketch, we see that the shell method is a good
choice for solving this problem.

Figure : We can use the shell method to find the volume of revolution obtained by revolving the region shown about the 
-axis.

The volume is given by

Since  we can proceed with partial fraction decomposition. Note that  is a
repeated irreducible quadratic. Using the decomposition described in the problem-solving strategy, we get

Finding a common denominator and equating the numerators gives

Solving, we obtain  and  Substituting back into the integral, we have

Set up the partial fraction decomposition for

Hint

Use the problem-solving strategy.

Answer

 Example : Finding a Volume7.4.8

f(x) =
x2

( +1x2 )2

[0, 1]

7.4.1

7.4.1
y

V = 2π x ⋅ dx = 2π dx.∫
1

0

x2

( +1x2 )2
∫

1

0

x3

( +1x2 )2

deg(( +1 ) = 4 > 3 = deg( ),x2 )2 x3 ( +1x2 )2

= + .
x3

( +1x2 )2

Ax+B

+1x2

Cx+D

( +1x2 )2

= (Ax+B)( +1) +Cx+D.x3 x2

A = 1,B = 0,C = −1, D = 0.

V = 2π dx = 2π ( − ) dx = 2π( ln( +1) + ⋅ ) =∫
1

0

x3

( +1x2 )2
∫

1

0

x

+1x2

x

( +1x2 )2

1

2
x2 1

2

1

+1x2
∣
∣
1

0

π (ln2 − ) .1
2

 Exercise 7.4.4

∫ dx.
+3x+1x2

(x+2)(x−3 ( +4)2 x2 )2
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Key Concepts
Partial fraction decomposition is a technique used to break down a rational function into a sum of simple rational functions that
can be integrated using previously learned techniques.
When applying partial fraction decomposition, we must make sure that the degree of the numerator is less than the degree of the
denominator. If not, we need to perform long division before attempting partial fraction decomposition.
The form the decomposition takes depends on the type of factors in the denominator. The types of factors include nonrepeated
linear factors, repeated linear factors, nonrepeated irreducible quadratic factors, and repeated irreducible quadratic factors.

Glossary

partial fraction decomposition
a technique used to break down a rational function into the sum of simple rational functions

7.4: Integration of Rational Functions by Partial Fractions is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.

7.4: Partial Fractions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

= + + + +
+3x+1x2

(x+2)(x−3 ( +4)2 x2 )2

A

x+2

B

x−3

C

(x−3)2

Dx+E

+4x2

Fx+G

( +4x2 )2

https://libretexts.org/
https://math.libretexts.org/@go/page/4486?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/07%3A_Techniques_of_Integration/7.04%3A_Integration_of_Rational_Functions_by_Partial_Fractions
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/07%3A_Techniques_of_Integration/7.04%3A_Integration_of_Rational_Functions_by_Partial_Fractions?no-cache
https://math.libretexts.org/@go/page/2551
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


7.5.1 https://math.libretexts.org/@go/page/4487

7.5: Strategy for Integration

Use a table of integrals to solve integration problems.
Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the process
of integration. Among these tools are integration tables, which are readily available in many books, including the appendices to
this one. Also widely available are computer algebra systems (CAS), which are found on calculators and in many campus
computer labs, and are free online.

Tables of Integrals
Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in mind that
when using a table to check an answer, it is possible for two completely correct solutions to look very different. For example, in
Trigonometric Substitution, we found that, by using the substitution  we can arrive at

However, using , we obtained a different solution—namely,

We later showed algebraically that the two solutions are equivalent. That is, we showed that . In this
case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the difference in the
two antiderivatives is a constant, they are equivalent.

Use the table formula

to evaluate 

Solution

If we look at integration tables, we see that several formulas contain expressions of the form  This expression is
actually similar to  where  and . Keep in mind that we must also have . Multiplying the
numerator and the denominator of the given integral by  should help to put this integral in a useful form. Thus, we now have

Substituting  and  produces  From the integration table (#88 in Appendix A),

Thus,

 Substitute  and 

 Apply the formula using .

 Learning Objectives

x = tanθ,

∫ = ln x+ +C.
dx

1 +x2
− −−−−

√
∣
∣ +1x2− −−−−

√ ∣
∣

x = sinhθ

∫ = x+C.
dx

1 +x2
− −−−−

√
sinh−1

x = ln x+sinh−1 ∣
∣ +1x2− −−−−

√ ∣
∣

 Example : Using a Formula from a Table to Evaluate an Integral7.5.1

∫ du = − − +C
−a2 u2

− −−−−−
√

u2

−a2 u2
− −−−−−

√

u
sin−1 u

a

∫ dx.
16 −e2x
− −−−−−−

√

ex

.−a2 u2− −−−−−
√

,16 −e2x− −−−−−−
√ a = 4 u = ex du = ex

ex

∫ dx = ∫ dx.
16 −e2x
− −−−−−−

√

ex
16 −e2x
− −−−−−−

√

e2x
ex

u = ex du = dxex ∫ du.
−a2 u2

− −−−−−
√

u2

∫ du = − − +C.
−a2 u2

− −−−−−
√

u2

−a2 u2
− −−−−−

√

u
sin−1 u

a

∫ dx = ∫ dx
16 −e2x
− −−−−−−

√

ex
16 −e2x
− −−−−−−

√

e2x
ex u = ex du = dx.ex

= ∫ du
−42 u2

− −−−−−
√

u2
a = 4
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 Substitute .

Computer Algebra Systems

If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely available and
are, in general, quite easy to use.

Use a computer algebra system to evaluate  Compare this result with  a result we might

have obtained if we had used trigonometric substitution.

Solution

Using Wolfram Alpha, we obtain

Notice that

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also demonstrated that
each of these antiderivatives is correct by differentiating them.

You can access an integral calculator for more examples.

Evaluate  using a CAS. Compare the result to , the result we might have obtained using the

technique for integrating odd powers of  discussed earlier in this chapter.

Solution

Using Wolfram Alpha, we obtain

This looks quite different from  To see that these antiderivatives are equivalent, we can make use of a

few trigonometric identities:

= − − +C
−42 u2

− −−−−−
√

u
sin−1 u

4
u = ex

= − − ( ) +C
16 −e2x
− −−−−−−

√

ex
sin−1 ex

4

 Example : Using a Computer Algebra System to Evaluate an Integral7.5.2

∫ .
dx

−4x2
− −−−−

√
ln + +C,

∣

∣
∣

−4x2− −−−−
√

2

x

2

∣

∣
∣

∫ = ln +x +C.
dx

−4x2
− −−−−

√
∣∣ −4x2− −−−−
√ ∣∣

ln + +C = ln +C = ln +x −ln2 +C.
∣

∣
∣

−4x2
− −−−−

√

2

x

2

∣

∣
∣

∣

∣
∣

+x−4x2
− −−−−

√

2

∣

∣
∣ ∣∣ −4x2− −−−−

√ ∣∣

 Example : Using a CAS to Evaluate an Integral7.5.3

∫ x dxsin3 x−cosx+C
1

3
cos3

sinx

∫ x dx = (cos(3x) −9 cosx) +C.sin3 1

12

x−cosx+C.
1

3
cos3

(cos(3x) −9 cosx) = (cos(x+2x) −9 cosx)
1

12

1

12

= (cos(x) cos(2x) −sin(x) sin(2x) −9 cosx)
1

12

= (cosx(2 x−1) −sinx(2 sinx cosx) −9 cosx)
1

12
cos2

= (2 x−cosx−2 cosx(1 − x) −9 cosx)
1

12
cos3 cos2

= (4 x−12 cosx)
1

12
cos3
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Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Figure : The graphs of  and  are identical.

Use a CAS to evaluate .

Hint

Answers may vary.

Answer

Possible solutions include  and 

Key Concepts
An integration table may be used to evaluate indefinite integrals.
A CAS (or computer algebra system) may be used to evaluate indefinite integrals.
It may require some effort to reconcile equivalent solutions obtained using different methods.

Glossary

computer algebra system (CAS)
technology used to perform many mathematical tasks, including integration

integration table
a table that lists integration formulas

7.5: Strategy for Integration is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

7.5: Other Strategies for Integration by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

= x−cosx.
1

3
cos3

7.5.1 y = x− cos x
1

3
cos3 y = (cos(3x) − 9 cos x)

1

12

 Exercise 7.5.1

∫
dx

+4x2
− −−−−

√

( )+Csinh−1 x

2
ln +x +C.∣

∣ +4x2− −−−−
√ ∣

∣
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7.6: Integration Using Tables and Computer Algebra Systems

7.6: Integration Using Tables and Computer Algebra Systems is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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7.7: Approximate Integration

Approximate the value of a definite integral by using the midpoint and trapezoidal rules.
Determine the absolute and relative error in using a numerical integration technique.
Estimate the absolute and relative error using an error-bound formula.
Recognize when the midpoint and trapezoidal rules over- or underestimate the true value of an integral.
Use Simpson’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is, in terms of known functions). Consequently, rather than evaluate
definite integrals of these functions directly, we resort to various techniques of numerical integration to approximate their values. In this section, we explore several of these
techniques. In addition, we examine the process of estimating the error in using these techniques.

The Midpoint Rule
Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums. In general, any Riemann sum of a function  over an interval 

may be viewed as an estimate of . Recall that a Riemann sum of a function  over an interval  is obtained by selecting a partition

where 

and a set

where 

The Riemann sum corresponding to the partition  and the set  is given by , where  the length of the  subinterval.

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints, , of each subinterval in place of . Formally, we state a
theorem regarding the convergence of the midpoint rule as follows.

Assume that  is continuous on . Let  be a positive integer and . If  is divided into  subintervals, each of length , and  is the midpoint of the 

subinterval, set

Then 

As we can see in Figure , if  over , then  corresponds to the sum of the areas of rectangles approximating the area between the graph of  and the 

-axis over . The graph shows the rectangles corresponding to  for a nonnegative function over a closed interval 

Figure : The midpoint rule approximates the area between the graph of  and the -axis by summing the areas of rectangles with midpoints that are points on .

Use the midpoint rule to estimate  using four subintervals. Compare the result with the actual value of this integral.

Solution: Each subinterval has length  Therefore, the subintervals consist of

The midpoints of these subintervals are  Thus,

 Learning Objectives

f(x) [a, b]

f(x)dx∫
b

a

f(x) [a, b]

P = { , , , … , }x0 x1 x2 xn

a = < < < ⋯ < = bx0 x1 x2 xn

S = { , , … , }x∗
1 x∗

2 x∗
n

≤ ≤ for all i.xi−1 x∗
i xi

P S f( )Δ∑
i=1

n

x∗
i xi Δ = − ,xi xi xi−1 ith

mi x∗
i

 The Midpoint Rule

f(x) [a, b] n Δx =
b−a

n
[a, b] n Δx mi ith

= f( )Δx.Mn ∑
i=1

n

mi

= f(x)dx.lim
n→∞

Mn ∫
b

a

7.7.1 f(x) ≥ 0 [a, b] f( )Δx∑
i=1

n

mi f(x)

x [a, b] M4 [a, b].

7.7.1 f(x) x f(x)

 Example : Using the Midpoint Rule with 7.7.1 M4

dx∫
1

0
x2

Δx = = .
1 −0

4

1

4

[0, ] , [ , ] , [ , ] , and [ , 1] .1
4

1
4

1
2

1
2

3
4

3
4

{ , , , } .1
8

3
8

5
8

7
8
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Since

the absolute error in this approximation is:

and we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite integral.

Use  to estimate the length of the curve  on .

Solution: The length of  on  is

Since , this integral becomes 

If  is divided into six subintervals, then each subinterval has length  and the midpoints of the subintervals are . If we set 

,

Use the midpoint rule with  to estimate 

Hint

Answer

The Trapezoidal Rule
We can also approximate the value of a definite integral by using trapezoids rather than rectangles. In Figure , the area beneath the curve is approximated by trapezoids rather than
by rectangles.

Figure : Trapezoids may be used to approximate the area under a curve, hence approximating the definite integral.

The trapezoidal rule for estimating definite integrals uses trapezoids rather than rectangles to approximate the area under a curve. To gain insight into the final form of the rule,
consider the trapezoids shown in Figure . We assume that the length of each subinterval is given by . First, recall that the area of a trapezoid with a height of  and bases of
length  and  is given by . We see that the first trapezoid has a height  and parallel bases of length  and . Thus, the area of the first trapezoid in
Figure  is

The areas of the remaining three trapezoids are

 and 

M4 = ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )
1

4

1

8

1

4

3

8

1

4

5

8

1

4

7

8

= ⋅ + ⋅ + ⋅ + ⋅
1

4

1

64

1

4

9

64

1

4

25

64

1

4

49

64

= = 0.328125.
21

64

dx = ,∫
1

0
x2 1

3

− = ≈ 0.0052,
∣
∣
∣
1

3

21

64
∣
∣
∣

1

192

 Example : Using the Midpoint Rule with 7.7.2 M6

M6 y = 1
2
x2 [1, 4]

y = 1
2
x2 [1, 4]

s = dx.∫
4

1
1 +( )

dy

dx

2
− −−−−−−−−

√

= x
dy

dx
dx.∫

4

1
1 +x2− −−−−

√

[1, 4] Δx = =
4 −1

6

1

2
{ , , , , , }5

4
7
4

9
4

11
4

13
4

15
4

f(x) = 1 +x2
− −−−−

√

M6 = ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )+ ⋅ f ( )1
2

5

4
1
2

7

4

1

2

9

4

1

2

11

4

1

2

13

4

1

2

15

4

≈ (1.6008 +2.0156 +2.4622 +2.9262 +3.4004 +3.8810) = 8.1431  units.
1

2

 Exercise 7.7.1

n = 2 dx.∫
2

1

1

x

Δx = , = , and = .1
2

m1
5
4

m2
7
4

≈ 0.685714
24

35

7.7.2

7.7.2

7.7.2 Δx h

b1 b2 Area = h( + )1
2

b1 b2 Δx f( )x0 f( )x1

7.7.2

Δx(f( ) +f( )).
1

2
x0 x1

Δx(f( ) +f( )), Δx(f( ) +f( )),
1

2
x1 x2

1

2
x2 x3 Δx(f( ) +f( )).

1

2
x3 x4
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Consequently,

After taking out a common factor of  and combining like terms, we have

Generalizing, we formally state the following rule.

Assume that  is continuous over . Let  be a positive integer and . Let  be divided into  subintervals, each of length , with endpoints at 

Set

Then, 

Before continuing, let’s make a few observations about the trapezoidal rule. First of all, it is useful to note that

 where  and 

That is,  and  approximate the integral using the left-hand and right-hand endpoints of each subinterval, respectively. In addition, a careful examination of Figure  leads us
to make the following observations about using the trapezoidal rules and midpoint rules to estimate the definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals where the function is concave up and to underestimate the value of a definite integral systematically over
intervals where the function is concave down. On the other hand, the midpoint rule tends to average out these errors somewhat by partially overestimating and partially underestimating
the value of the definite integral over these same types of intervals. This leads us to hypothesize that, in general, the midpoint rule tends to be more accurate than the trapezoidal rule.

Figure :The trapezoidal rule tends to be less accurate than the midpoint rule.

Use the trapezoidal rule to estimate  using four subintervals.

Solution

The endpoints of the subintervals consist of elements of the set  and  Thus,

Use the trapezoidal rule with  to estimate 

Hint

Set  The endpoints of the subintervals are the elements of the set 

Answer

Absolute and Relative Error
An important aspect of using these numerical approximation rules consists of calculating the error in using them for estimating the value of a definite integral. We first need to define
absolute error and relative error.

f(x)dx ≈ Δx(f( ) +f( ))+ Δx(f( ) +f( ))+ Δx(f( ) +f( ))+ Δx(f( ) +f( )).∫
b

a

1

2
x0 x1

1

2
x1 x2

1

2
x2 x3

1

2
x3 x4

Δx1
2

f(x)dx ≈ [f( ) +2 f( ) +2 f( ) +2 f( ) +f( )].∫
b

a

Δx

2
x0 x1 x2 x3 x4

 The Trapezoidal Rule

f(x) [a, b] n Δx =
b−a

n
[a, b] n Δx

P = { , , … , }.x0 x1 x2 xn

= [f( ) +2 f( ) +2 f( ) +⋯ +2 f( ) +f( )].Tn
Δx

2
x0 x1 x2 xn−1 xn

= f(x)dx.lim
n→+∞

Tn ∫
b

a

= ( + )Tn
1

2
Ln Rn = f( )ΔxLn ∑

i=1

n

xi−1 = f( )Δx.Rn ∑
i=1

n

xi

Ln Rn 7.7.3

7.7.3

 Example : Using the Trapezoidal Rule7.7.3

dx∫
1

0
x2

P = {0, , , , 1}1
4

1
2

3
4

Δx = = .
1−0

4
1
4

dx∫
1

0
x2 ≈ ⋅ [f(0) +2 f ( )+2 f ( )+2 f ( )+f(1)]

1

2

1

4
1
4

1
2

3
4

= (0 +2 ⋅ +2 ⋅ +2 ⋅ +1)1
8

1
16

1
4

9
16

= = 0.34375
11

32

 Exercise 7.7.2

n = 2 dx.∫
2

1

1

x

Δx = .
1

2
P = {1, , 2} .3

2

≈ 0.708333
17

24
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If  is our estimate of some quantity having an actual value of , then the absolute error is given by .

The relative error is the error as a percentage of the actual value and is given by

Calculate the absolute and relative error in the estimate of  using the midpoint rule, found in Example .

Solution: The calculated value is  and our estimate from the example is . Thus, the absolute error is given by 

The relative error is

Calculate the absolute and relative error in the estimate of  using the trapezoidal rule, found in Example .

Solution: The calculated value is  and our estimate from the example is . Thus, the absolute error is given by 

The relative error is given by

In an earlier checkpoint, we estimated  to be  using . The actual value of this integral is . Using  and  calculate the absolute error

and the relative error.

Hint

Use the previous examples as a guide.

Answer

absolute error  and relative error 

Error Bounds on the Midpoint and Trapezoidal Rules
In the two previous examples, we were able to compare our estimate of an integral with the actual value of the integral; however, we do not typically have this luxury. In general, if we
are approximating an integral, we are doing so because we cannot compute the exact value of the integral itself easily. Therefore, it is often helpful to be able to determine an upper
bound for the error in an approximation of an integral. The following theorem provides error bounds for the midpoint and trapezoidal rules. The theorem is stated without proof.

Let  be a continuous function over , having a second derivative  over this interval. If  is the maximum value of  over , then the upper bounds for the

error in using  and  to estimate  are

and

.

We can use these bounds to determine the value of  necessary to guarantee that the error in an estimate is less than a specified value.

What value of  should be used to guarantee that an estimate of  is accurate to within  if we use the midpoint rule?

Solution

We begin by determining the value of , the maximum value of  over  for . Since  we have

 Definition: absolute and relative error

B A |A−B|

⋅ 100%.
∣

∣
∣
A−B

A

∣

∣
∣

 Example : Calculating Error in the Midpoint Rule7.7.4

dx∫
1

0
x2 7.7.1

dx =∫
1

0
x2 1

3
=M4

21
64

− = ≈ 0.0052.∣∣
1
3

21
64

∣∣
1

192

= ≈ 0.015625 ≈ 1.6%.
1/192

1/3

1

64

 Example : Calculating Error in the Trapezoidal Rule7.7.5

dx∫
1

0
x2 7.7.3

dx =∫
1

0
x2 1

3
=T4

11
32

− = ≈ 0.0104.∣∣
1
3

11
32

∣∣
1

96

= 0.03125 ≈ 3.1%.
1/96

1/3

 Exercise 7.7.3

dx∫
2

1

1

x
24
35

M2 ln2 ≈ 0.685724
35

ln2 ≈ 0.6931,

≈ 0.0074, ≈ 1.1%

 Error Bounds for the Midpoint and Trapezoidal Rules

f(x) [a, b] (x)f ′′ M | (x)|f ′′ [a, b]

Mn Tn f(x)dx∫
b

a

Error in ≤Mn

M(b−a)3

24n2
(7.7.1)

Error in ≤Tn
M(b−a)3

12n2

n

 Example : Determining the Number of Intervals to Use7.7.6

n dx∫
1

0
ex

2

0.01

M | (x)|f ′′ [0, 1] f(x) = ex
2

f '(x) = 2x ,ex
2

(x) = 2 +4 .f ′′ ex
2

x2ex
2
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Thus,

From the error-bound Equation , we have

Now we solve the following inequality for :

Thus,  Since  must be an integer satisfying this inequality, a choice of  would guarantee that

Analysis

We might have been tempted to round  down and choose , but this would be incorrect because we must have an integer greater than or equal to . We need to keep in
mind that the error estimates provide an upper bound only for the error. The actual estimate may, in fact, be a much better approximation than is indicated by the error bound.

Use Equation  to find an upper bound for the error in using  to estimate 

Hint

 so 

Answer

Simpson’s Rule
With the midpoint rule, we estimated areas of regions under curves by using rectangles. In a sense, we approximated the curve with piecewise constant functions. With the trapezoidal
rule, we approximated the curve by using piecewise linear functions. What if we were, instead, to approximate a curve using piecewise quadratic functions? With Simpson’s rule, we

do just this. We partition the interval into an even number of subintervals, each of equal width. Over the first pair of subintervals we approximate  with ,

where  is the quadratic function passing through  and  (Figure ). Over the next pair of subintervals we approximate 

 with the integral of another quadratic function passing through  and  This process is continued with each successive pair of

subintervals.

Figure : With Simpson’s rule, we approximate a definite integral by integrating a piecewise quadratic function.

To understand the formula that we obtain for Simpson’s rule, we begin by deriving a formula for this approximation over the first two subintervals. As we go through the derivation, we
need to keep in mind the following relationships:

, where  is the length of a subinterval.

 since .

Thus,

| (x)| = 2 (1 +2 ) ≤ 2 ⋅ e ⋅ 3 = 6e.f ′′ ex
2

x2

7.7.1

Error in ≤ ≤ = .Mn

M(b−a)3

24n2

6e(1 −0)3

24n2

6e

24n2

n

≤ 0.01.
6e

24n2

n ≥ ≈ 8.24.600e
24

− −−−
√ n n = 9

dx− < 0.01.
∣

∣
∣∫

1

0
ex

2

Mn

∣

∣
∣

8.24 n = 8 8.24

 Exercise 7.7.4

7.7.1 M4 dx.∫
1

0
x2

(x) = 2,f ′′ M = 2.

1

192

f(x)dx∫
x2

x0

p(x)dx∫
x2

x0

p(x) = A +Bx+Cx2 ( , f( )), ( , f( )),x0 x0 x1 x1 ( , f( ))x2 x2 7.7.4

f(x)dx∫
x4

x2

( , f( )), ( , f( )),x2 x2 x3 x3 ( , f( )).x4 x4

7.7.4

f( ) = p( ) = A +B +Cx0 x0 x2
0 x0

f( ) = p( ) = A +B +Cx1 x1 x2
1 x1

f( ) = p( ) = A +B +Cx2 x2 x2
2 x2

− = 2Δxx2 x0 Δx

+ = 2 ,x2 x0 x1 =x1
( + )x2 x0

2

https://libretexts.org/
https://math.libretexts.org/@go/page/4489?pdf


7.7.6 https://math.libretexts.org/@go/page/4489

If we approximate  using the same method, we see that we have

Combining these two approximations, we get

The pattern continues as we add pairs of subintervals to our approximation. The general rule may be stated as follows.

Assume that  is continuous over . Let  be a positive even integer and . Let  be divided into  subintervals, each of length , with endpoints at 

 Set

Then,

Just as the trapezoidal rule is the average of the left-hand and right-hand rules for estimating definite integrals, Simpson’s rule may be obtained from the midpoint and trapezoidal rules
by using a weighted average. It can be shown that .

It is also possible to put a bound on the error when using Simpson’s rule to approximate a definite integral. The bound in the error is given by the following rule:

Let  be a continuous function over  having a fourth derivative, , over this interval. If  is the maximum value of  over , then the upper bound for

the error in using  to estimate  is given by

Use  to approximate . Estimate a bound for the error in .

Solution

Since  is divided into two intervals, each subinterval has length . The endpoints of these subintervals are . If we set  then

Since  and consequently  we see that

f(x)dx∫
x2

x0

≈ p(x)dx∫
x2

x0

= (A +Bx+C)dx∫
x2

x0

x2

=( + +Cx)
A

3
x3 B

2
x2 ∣

∣
∣
x2

x0

= ( − ) + ( − ) +C( − )
A

3
x3

2
x3

0

B

2
x2

2
x2

0
x2 x0

= ( − )( + + ) + ( − )( + ) +C( − )
A

3
x2 x0 x2

2 x2x0 x2
0

B

2
x2 x0 x2 x0 x2 x0

= (2A( + + ) +3B( + ) +6C)
−x2 x0

6
x2

2 x2x0 x2
0 x2 x0

= ((A +B +C) +(A +B +C) +A( +2 + ) +2B( + ) +4C)
Δx

3
x2

2 x2 x2
0 x0 x2

2 x2x0 x2
0 x2 x0

= (f( ) +f( ) +A( + +2B( + ) +4C)
Δx

3
x2 x0 x2 x0)2 x2 x0

= (f( ) +f( ) +A(2 +2B(2 ) +4C)
Δx

3
x2 x0 x1)2 x1

= (f( ) +4f( ) +f( )).
Δx

3
x2 x1 x0

Find the antiderivative.

Evaluate the antiderivative.

Factor out .
−x2 x0

6

Rearrange the terms. Note: Δx =
−x2 x0

2

Factor and substitute:

f( ) = A +B +C and f( ) = A +B +C.x2 x2
2 x2 x0 x2

0 x0

Substitute + = 2 .x2 x0 x1

Note: = is the midpoint.x1
+x2 x0

2

Expand and substitute f( ) = A +B +C.x1 x2
1 x1

f(x)dx∫
x4

x2

f(x)dx ≈ (f( ) +4 f( ) +f( )).∫
x4

x2

Δx

3
x4 x3 x2

f(x)dx ≈ (f( ) +4 f( ) +2 f( ) +4 f( ) +f( )).∫
x4

x0

Δx

3
x0 x1 x2 x3 x4

 Simpson’s Rule

f(x) [a, b] n Δx =
b−a

n
[a, b] n Δx

P = { , , , … , }.x0 x1 x2 xn

= [f( ) +4 f( ) +2 f( ) +4 f( ) +2 f( ) +⋯ +2 f( ) +4 f( ) +f( )].Sn

Δx

3
x0 x1 x2 x3 x4 xn−2 xn−1 xn

= f(x)dx.lim
n→+∞

Sn ∫
b

a

= ( ) +( )S2n
2
3

Mn
1
3

Tn

 Rule: Error Bound for Simpson’s Rule

f(x) [a, b] (x)f (4) M (x)∣∣f
(4) ∣∣ [a, b]

Sn f(x)dx∫
b

a

Error in ≤ .Sn

M(b−a)5

180n4

 Example : Applying Simpson’s Rule 17.7.7

S2 dx∫
1

0
x3 S2

[0, 1] Δx = =
1−0

2
1
2

{0, , 1}1
2

f(x) = ,x3

= ⋅ (f(0) +4 f( ) +f(1)) = (0 +4 ⋅ +1) = .S2
1

3

1

2

1

2

1

6

1

8

1

4

(x) = 0f (4) M = 0,
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Error in 

This bound indicates that the value obtained through Simpson’s rule is exact. A quick check will verify that, in fact, 

Use  to estimate the length of the curve  over 

Solution

The length of  over  is . If we divide  into six subintervals, then each subinterval has length , and the endpoints of the

subintervals are  Setting ,

After substituting, we have

Use  to estimate 

Hint

Answer

Key Concepts
We can use numerical integration to estimate the values of definite integrals when a closed form of the integral is difficult to find or when an approximate value only of the definite
integral is needed.
The most commonly used techniques for numerical integration are the midpoint rule, trapezoidal rule, and Simpson’s rule.
The midpoint rule approximates the definite integral using rectangular regions whereas the trapezoidal rule approximates the definite integral using trapezoidal approximations.
Simpson’s rule approximates the definite integral by first approximating the original function using piecewise quadratic functions.

Key Equations
Midpoint rule

Trapezoidal rule

Simpson’s rule

Error bound for midpoint rule

Error in , where  is the maximum value of  over .

Error bound for trapezoidal rule

Error in , where  is the maximum value of  over .

Error bound for Simpson’s rule

Error in , where  is the maximum value of  over .

Glossary

absolute error
if  is an estimate of some quantity having an actual value of , then the absolute error is given by 

midpoint rule

a rule that uses a Riemann sum of the form , where  is the midpoint of the  subinterval to approximate 

numerical integration

≤ = 0.S2
0(1)

5

180⋅24

dx = .∫
1

0
x3 1

4

 Example : Applying Simpson’s Rule 27.7.8

S6 y = 1
2
x2 [1, 4].

y = 1
2
x2 [1, 4] dx∫

4

1
1 +x2− −−−−

√ [1, 4] Δx = =4−1
6

1
2

{1, , 2, , 3, , 4} .3
2

5
2

7
2

f(x) = 1 +x2
− −−−−

√

= ⋅ (f(1) +4f( ) +2f(2) +4f( ) +2f(3) +4f( ) +f(4)).S6
1

3

1

2

3

2

5

2

7

2

= (1.4142 +4 ⋅ 1.80278 +2 ⋅ 2.23607 +4 ⋅ 2.69258 +2 ⋅ 3.16228 +4 ⋅ 3.64005 +4.12311) ≈ 8.14594 units.S6
1

6

 Exercise 7.7.5

S2 dx.∫
2

1

1

x

= Δx (f( ) +4f( ) +f( ))S2
1

3
x0 x1 x2

≈ 0.69444425
36

= f( )ΔxMn ∑
i=1

n

mi

= [f( ) +2 f( ) +2 f( ) +⋯ +2 f( ) +f( )]Tn
Δx
2

x0 x1 x2 xn−1 xn

= [f( ) +4 f( ) +2 f( ) +4 f( ) +2 f( ) +4 f( ) +⋯ +2 f( ) +4 f( ) +f( )]Sn
Δx

3
x0 x1 x2 x3 x4 x5 xn−2 xn−1 xn

≤Mn

M(b−a)3

24n2
M | (x)|f ′′ [a, b]

≤Tn
M(b−a)3

12n2
M | (x)|f ′′ [a, b]

≤Sn

M(b−a)5

180n4
M (x)∣∣f

(4) ∣∣ [a, b]

B A |A−B|

= f( )ΔxMn ∑
i=1

n

mi mi ith f(x)dx∫
b

a
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the variety of numerical methods used to estimate the value of a definite integral, including the midpoint rule, trapezoidal rule, and Simpson’s rule

relative error
error as a percentage of the actual value, given by

Simpson’s rule

a rule that approximates  using the area under a piecewise quadratic function. 

The approximation  to  is given by

trapezoidal rule

a rule that approximates  using the area of trapezoids. 

The approximation  to  is given by
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relative error = ⋅ 100%
∣
∣
∣
A−B

A

∣
∣
∣

f(x)dx∫
b

a

Sn f(x)dx∫
b

a

= (f( ) +4 f( ) +2 f( ) +4 f( ) +2 f( ) +⋯ +2 f( ) +4 f( ) +f( )).Sn

Δx

3
x0 x1 x2 x3 x4 xn−2 xn−1 xn

f(x)dx∫
b

a

Tn f(x)dx∫
b

a

= (f( ) +2 f( ) +2 f( ) +⋯ +2 f( ) +f( )).Tn
Δx

2
x0 x1 x2 xn−1 xn
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7.8: Improper Integrals

Evaluate an integral over an infinite interval.
Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
Use the comparison theorem to determine whether a definite integral is convergent.

Is the area between the graph of  and the -axis over the interval  finite or infinite? If this same region is

revolved about the -axis, is the volume finite or infinite? Surprisingly, the area of the region described is infinite, but the volume
of the solid obtained by revolving this region about the -axis is finite.

In this section, we define integrals over an infinite interval as well as integrals of functions containing a discontinuity on the
interval. Integrals of these types are called improper integrals. We examine several techniques for evaluating improper integrals, all
of which involve taking limits.

Integrating over an Infinite Interval

How should we go about defining an integral of the type  We can integrate  for any value of , so it is

reasonable to look at the behavior of this integral as we substitute larger values of . Figure  shows that  may be

interpreted as area for various values of . In other words, we may define an improper integral as a limit, taken as one of the limits
of integration increases or decreases without bound.

Figure : To integrate a function over an infinite interval, we consider the limit of the integral as the upper limit increases
without bound.

1. Let  be continuous over an interval of the form . Then

provided this limit exists.
2. Let  be continuous over an interval of the form . Then

provided this limit exists.

In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then the improper
integral is said to diverge.

3. Let  be continuous over . Then

 Learning Objectives

f(x) =
1

x
x [1, +∞)

x

x

f(x)dx?∫
+∞

a

f(x)dx∫
t

a

t

t 7.8.1 f(x)dx∫
t

a

t

7.8.1

 Definition: improper integral

f(x) [a, +∞)

f(x)dx = f(x)dx,∫
+∞

a

lim
t→+∞

∫
t

a

(7.8.1)

f(x) (−∞, b]

f(x)dx = f(x)dx,∫
b

−∞
lim

t→−∞
∫

b

t

(7.8.2)

f(x) (−∞, +∞)

f(x)dx = f(x)dx+ f(x)dx,∫
+∞

−∞
∫

0

−∞
∫

+∞

0
(7.8.3)
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provided that  and  both converge. If either of these two integrals diverge, then 

diverges. (It can be shown that, in fact,  for any value of a.).

In our first example, we return to the question we posed at the start of this section: Is the area between the graph of  and
the -axis over the interval  finite or infinite?

Determine whether the area between the graph of  and the -axis over the interval  is finite or infinite.

Solution

We first do a quick sketch of the region in question, as shown in Figure .

Figure : We can find the area between the curve  and the -axis on an infinite interval.

We can see that the area of this region is given by

which can be evaluated using Equation :

Since the improper integral diverges to  the area of the region is infinite.

Find the volume of the solid obtained by revolving the region bounded by the graph of  and the -axis over the

interval  about the -axis.

Solution

f(x)dx∫
0

−∞
f(x)dx∫

+∞

0
f(x)dx∫

+∞

−∞

f(x)dx = f(x)dx+ f(x)dx∫
+∞

−∞
∫

a

−∞
∫

+∞

a

f(x) = 1
x

x [1, +∞)

 Example : Finding an Area7.8.1

f(x) =
1

x
x [1, +∞)

7.8.2

7.8.2 f(x) = 1/x x

A = dx.∫
∞

1

1

x

7.8.1

A = dx∫
∞

1

1

x

= dxlim
t→+∞

∫
t

1

1

x

= ln|x|lim
t→+∞

∣
∣
∣
t

1

= (ln |t| − ln1)lim
t→+∞

= +∞.

(Rewrite the improper integral as a limit)

(Find the antiderivative)

(Evaluate the antiderivative)

(Evaluate the limit.)

+∞,

 Example : Finding a Volume7.8.2

f(x) =
1

x
x

[1, +∞) x
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The solid is shown in Figure . Using the disk method, we see that the volume  is

Figure : The solid of revolution can be generated by rotating an infinite area about the -axis.

Then we have

The improper integral converges to . Therefore, the volume of the solid of revolution is .

In conclusion, although the area of the region between the -axis and the graph of  over the interval  is
infinite, the volume of the solid generated by revolving this region about the -axis is finite. The solid generated is known as
Gabriel’s Horn.

Note: Gabriel's horn (also called Torricelli's trumpet) is a geometric figure which has infinite surface area, but finite volume.
The name refers to the tradition identifying the Archangel Gabriel as the angel who blows the horn to announce Judgment Day,
associating the divine, or infinite, with the finite. The properties of this figure were first studied by Italian physicist and
mathematician Evangelista Torricelli in the 17th century.

Suppose that at a busy intersection, traffic accidents occur at an average rate of one every three months. After residents
complained, changes were made to the traffic lights at the intersection. It has now been eight months since the changes were
made and there have been no accidents. Were the changes effective or is the 8-month interval without an accident a result of
chance?

7.8.3 V

V = π dx.∫
+∞

1

1

x2

7.8.3 x

V = π dx∫
+∞

1

1

x2

= π dx Rewrite as a limit.lim
t→+∞

∫
t

1

1

x2

= π − Find the antiderivative.lim
t→+∞

1

x

∣
∣
∣
t

1

= π (− +1) Evaluate the antiderivative.lim
t→+∞

1

t

= π

π π

x f(x) = 1/x [1, +∞)
x

 Example : Traffic Accidents in a City7.8.3
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Figure : Modification of work by David McKelvey, Flickr.

Probability theory tells us that if the average time between events is , the probability that , the time between events, is
between  and  is given by

where

Thus, if accidents are occurring at a rate of one every 3 months, then the probability that , the time between accidents, is
between  and  is given by

where

To answer the question, we must compute  and decide whether it is likely that 8 months could

have passed without an accident if there had been no improvement in the traffic situation.

Solution

We need to calculate the probability as an improper integral:

The value  represents the probability of no accidents in 8 months under the initial conditions. Since this value is
very, very small, it is reasonable to conclude the changes were effective.

Evaluate  State whether the improper integral converges or diverges.

Solution

7.8.4

k X

a b

(P (a ≤ x ≤ b) = f(x)dx∫
b

a

f(x) ={ .
0, if x < 0
k , if x ≥ 0e−kx

X

a b

P (a ≤ x ≤ b) = f(x)dx∫
b

a

f(x) ={ .
0, if x < 0
3 , if x ≥ 0e−3x

P (X ≥ 8) = 3 dx∫
+∞

8
e−3x

P (X ≥ 8) = 3 dx∫
+∞

8
e−3x

= 3 dxlim
t→+∞

∫
t

8
e−3x

= −lim
t→+∞

e−3x∣
∣
∣
t

8

= (− + )lim
t→+∞

e−3t e−24

≈ 3.8 × .10−11

3.8 ×10−11

 Example : Evaluating an Improper Integral over an Infinite Interval7.8.4

dx.∫
0

−∞

1

+4x2
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Begin by rewriting  as a limit using Equation  from the definition. Thus,

The improper integral converges to 

Evaluate  State whether the improper integral converges or diverges.

Solution

Start by splitting up the integral:

If either  or  diverges, then  diverges. Compute each integral separately. For the first

integral,

 Rewrite as a limit.

 Use integration by parts to find the antiderivative. (Here  and .)

 Evaluate the antiderivative.

Evaluate the limit. Note:  is indeterminate of the form .Thus, 

 by L’Hôpital’s Rule.

The first improper integral converges. For the second integral,

 Rewrite as a limit.

 Find the antiderivative.

 Evaluate the antiderivative.

 Rewrite. (  is indeterminate.)

 Evaluate the limit.

Thus,  diverges. Since this integral diverges,  diverges as well.

dx∫
0

−∞

1

+4x2
7.8.2

dx∫
0

−∞

1

+4x2
= dx Rewrite as a limit.lim

t→−∞
∫

0

t

1

+4x2

= Find the antiderivative.lim
t→−∞

1

2
tan−1 x

2
∣
∣
∣
0

t

= ( 0 − ) Evaluate the antiderivative.lim
t→−∞

1

2
tan−1 1

2
tan−1 t

2

= . Evaluate the limit and simplify.
π

4

.
π

4

 Example : Evaluating an Improper Integral on 7.8.5 (−∞, +∞)

x dx.∫
+∞

−∞
ex

x dx = x dx+ x dx.∫
+∞

−∞
ex ∫

0

−∞
ex ∫

+∞

0
ex

x dx∫
0

−∞
ex x dx∫

+∞

0
ex x dx∫

+∞

−∞
ex

x dx = x dx∫
0

−∞
ex lim

t→−∞
∫

0

t

ex

= (x − )limt→−∞ ex ex ∣
0
t u = x dv= ex

= (−1 − t + )limt→−∞ et et

= −1.

tlim
t→−∞

et 0 ⋅ ∞

t = = = − = 0lim
t→−∞

et lim
t→−∞

t

e−t
lim

t→−∞

−1

e−t
lim

t→−∞
et

x dx = x dx∫
+∞

0
ex lim

t→+∞
∫

t

0
ex

= (x − )limt→+∞ ex ex ∣
t
0

= (t − +1)limt→+∞ et et

= ((t−1) +1)limt→+∞ et t −et et

= +∞.

x dx∫
+∞

0
ex x dx∫

+∞

−∞
ex

https://libretexts.org/
https://math.libretexts.org/@go/page/4490?pdf


7.8.6 https://math.libretexts.org/@go/page/4490

Evaluate  State whether the improper integral converges or diverges.

Hint

Answer

It converges to 

Integrating a Discontinuous Integrand
Now let’s examine integrals of functions containing an infinite discontinuity in the interval over which the integration occurs.

Consider an integral of the form  where  is continuous over  and discontinuous at . Since the function 

is continuous over  for all values of  satisfying , the integral  is defined for all such values of . Thus, it

makes sense to consider the values of  as  approaches  for . That is, we define 

, provided this limit exists. Figure  illustrates  as areas of regions for values of 

approaching .

Figure : As t approaches b from the left, the value of the area from a to t approaches the area from a to b.

We use a similar approach to define , where  is continuous over  and discontinuous at . We now proceed

with a formal definition.

1. Let  be continuous over . Then,

2. Let  be continuous over . Then,

In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then the improper
integral is said to diverge.

3. If  is continuous over  except at a point  in , then

 Exercise 7.8.1

dx.∫
+∞

−3
e−x

dx = dx∫
+∞

−3
e−x lim

t→+∞
∫

t

−3
e−x

.e3

f(x)dx,∫
b

a

f(x) [a, b) b f(x)

[a, t] t a ≤ t < b f(x)dx∫
t

a

t

f(x)dx∫
t

a

t b a ≤ t < b

f(x)dx = f(x)dx∫
b

a

lim
t→b−

∫
t

a

7.8.5 f(x)dx∫
t

a

t

b

7.8.5

f(x)dx∫
b

a

f(x) (a, b] a

 Definition: Converging and Diverging Improper Integral

f(x) [a, b)

f(x)dx = f(x)dx.∫
b

a

lim
t→b−

∫
t

a

(7.8.4)

f(x) (a, b]

f(x)dx = f(x)dx.∫
b

a

lim
t→a+

∫
b

t

(7.8.5)

f(x) [a, b] c (a, b)
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provided both  and  converge. If either of these integrals diverges, then  diverges.

The following examples demonstrate the application of this definition.

Evaluate  if possible. State whether the integral converges or diverges.

Solution

The function  is continuous over  and discontinuous at 4. Using Equation  from the definition,

rewrite  as a limit:

The improper integral converges.

Evaluate  State whether the integral converges or diverges.

Solution

Since  is continuous over  and is discontinuous at zero, we can rewrite the integral in limit form using
Equation :

Therefore

To evaluate it, rewrite as a quotient and apply L’Hôpital’s rule.

The improper integral converges.

f(x)dx = f(x)dx+ f(x)dx,∫
b

a

∫
c

a

∫
b

c

(7.8.6)

f(x)dx∫
c

a

f(x)dx∫
b

c

f(x)dx∫
b

a

 Example : Integrating a Discontinuous Integrand7.8.6

dx,∫
4

0

1

4 −x
− −−−−

√

f(x) =
1

4 −x
− −−−−

√
[0, 4) 7.8.4

dx∫
4

0

1

4 −x
− −−−−

√

dx∫
4

0

1

4 −x
− −−−−

√
= dx Rewrite as a limit.lim

t→4−
∫

t

0

1

4 −x
− −−−−

√

= (−2 ) Find the antiderivative.lim
t→4−

4 −x− −−−−
√

∣
∣
∣
t

0

= (−2 +4) Evaluate the antiderivative.lim
t→4−

4 − t− −−−
√

= 4. Evaluate the limit.

 Example : Integrating a Discontinuous Integrand7.8.7

x lnx dx.∫
2

0

f(x) = x lnx (0, 2]
7.8.5

x lnx dx∫
2

0
= x lnx dx Rewrite as a limit.lim

t→0+
∫

2

t

= ( lnx− ) Evaluate ∫ x lnx dx using integration by parts with u = lnx and dv= x.lim
t→0+

1

2
x2 1

4
x2 ∣2t

= (2 ln2 −1 − ln t+ ). Evaluate the antiderivative.lim
t→0+

1

2
t2 1

4
t2

= 2 ln2 −1. Evaluate the limit.

ln t is indeterminate.lim
t→0+

t2
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Evaluate  State whether the improper integral converges or diverges.

Solution

Since  is discontinuous at zero, using Equation , we can write

If either of the two integrals diverges, then the original integral diverges. Begin with :

 Rewrite as a limit.

 Find the antiderivative.

 Evaluate the antiderivative.

 Evaluate the limit.

Therefore,  diverges. Since  diverges,  diverges.

Evaluate  State whether the integral converges or diverges.

Hint

Write  in limit form using Equation .

Answer

, It diverges.

A Comparison Theorem

It is not always easy or even possible to evaluate an improper integral directly; however, by comparing it with another carefully
chosen integral, it may be possible to determine its convergence or divergence. To see this, consider two continuous functions 
and  satisfying  for  (Figure ). In this case, we may view integrals of these functions over intervals
of the form  as areas, so we have the relationship

for .

 Example : Integrating a Discontinuous Integrand7.8.8

dx.∫
1

−1

1

x3

f(x) = 1/x3 7.8.6

dx = dx+ dx.∫
1

−1

1

x3
∫

0

−1

1

x3
∫

1

0

1

x3

dx∫
0

−1

1

x3

dx = dx∫
0

−1

1

x3
lim
t→0−

∫
t

−1

1

x3

= (− )limt→0−
1

2x2
∣∣
t

−1

= (− + )limt→0−
1

2t2
1
2

= +∞.

dx∫
0

−1

1

x3
dx∫

0

−1

1

x3
dx∫

1

−1

1

x3

 Exercise 7.8.2

dx.∫
2

0

1

x

dx∫
2

0

1

x
7.8.5

+∞

f(x)
g(x) 0 ≤ f(x) ≤ g(x) x ≥ a 7.8.6

[a, t]

0 ≤ f(x)dx ≤ g(x)dx∫
t

a

∫
t

a

t ≥ a
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Figure : If  for , then for , 

Thus, if

then

as well. That is, if the area of the region between the graph of  and the -axis over  is infinite, then the area of the
region between the graph of  and the -axis over  is infinite too.

On the other hand, if

for some real number , then

must converge to some value less than or equal to , since  increases as  increases and  for all 

If the area of the region between the graph of  and the -axis over  is finite, then the area of the region between the
graph of  and the -axis over  is also finite.

These conclusions are summarized in the following theorem.

Let  and  be continuous over  Assume that  for 

i. If

then

ii. If

7.8.6 0 ≤ f(x) ≤ g(x) x ≥ a t ≥ a f(x) dx ≤ g(x) dx.∫
t

a

∫
t

a

f(x)dx = f(x)dx = +∞,∫
+∞

a

lim
t→+∞

∫
t

a

g(x)dx = g(x)dx = +∞∫
+∞

a

lim
t→+∞

∫
t

a

f(x) x [a, +∞)
g(x) x [a, +∞)

g(x)dx = g(x)dx = L∫
+∞

a

lim
t→+∞

∫
t

a

L

f(x)dx = f(x)dx∫
+∞

a

lim
t→+∞

∫
t

a

L f(x)dx∫
t

a

t f(x)dx ≤ L∫
t

a

t ≥ a.

g(x) x [a, +∞)
f(x) x [a, +∞)

 A Comparison Theorem

f(x) g(x) [a, +∞). 0 ≤ f(x) ≤ g(x) x ≥ a.

f(x)dx = f(x)dx = +∞,∫
+∞

a

lim
t→+∞

∫
t

a

g(x)dx = g(x)dx = +∞.∫
+∞

a

lim
t→+∞

∫
t

a

g(x)dx = g(x)dx = L,∫
+∞

a

lim
t→+∞

∫
t

a

https://libretexts.org/
https://math.libretexts.org/@go/page/4490?pdf


7.8.10 https://math.libretexts.org/@go/page/4490

where  is a real number, then

for some real number 

Use a comparison to show that

converges.

Solution

We can see that

so if  converges, then so does . To evaluate  first rewrite it as a limit:

Since  converges, so does 

Use the comparison theorem to show that  diverges for all .

Solution

For  over  In Example , we showed that  Therefore, 

diverges for all .

Use a comparison to show that  diverges.

Hint

 on 

Answer

Since   diverges.

L

f(x)dx = f(x)dx = M∫
+∞

a

lim
t→+∞

∫
t

a

M ≤ L.

 Example : Applying the Comparison Theorem7.8.9

dx∫
+∞

1

1

xex

0 ≤ ≤ = ,
1

xex
1

ex
e−x

dx∫
+∞

1
e−x dx∫

+∞

1

1

xex
dx,∫

+∞

1
e−x

dx = dx∫
+∞

1
e−x lim

t→+∞
∫

t

1
e−x

= (− )limt→+∞ e−x ∣t1

= (− + )limt→+∞ e−t e−1

= .e−1

dx∫
+∞

1
e−x dx.∫

+∞

1

1

xex

 Example : Applying the Comparison Theorem7.8.10

dx∫
+∞

1

1

xp
p < 1

p < 1, 1/x ≤ 1/( )xp [1, +∞). 7.8.1 dx = +∞.∫
+∞

1

1

x
dx∫

+∞

1

1

xp

p < 1

 Exercise 7.8.3

dx∫
+∞

e

lnx

x

≤1
x

ln x

x
[e, +∞)

dx = +∞,∫
+∞

e

1

x
dx∫

+∞

e

lnx

x
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In the last few chapters, we have looked at several ways to use integration for solving real-world problems. For this next
project, we are going to explore a more advanced application of integration: integral transforms. Specifically, we describe the
Laplace transform and some of its properties. The Laplace transform is used in engineering and physics to simplify the
computations needed to solve some problems. It takes functions expressed in terms of time and transforms them to functions
expressed in terms of frequency. It turns out that, in many cases, the computations needed to solve problems in the frequency
domain are much simpler than those required in the time domain.

The Laplace transform is defined in terms of an integral as

Note that the input to a Laplace transform is a function of time,  and the output is a function of frequency, . Although
many real-world examples require the use of complex numbers (involving the imaginary number  in this project we
limit ourselves to functions of real numbers.

Let’s start with a simple example. Here we calculate the Laplace transform of . We have

This is an improper integral, so we express it in terms of a limit, which gives

Now we use integration by parts to evaluate the integral. Note that we are integrating with respect to t, so we treat the variable
s as a constant. We have

   .

Then we obtain

1. Calculate the Laplace transform of 
2. Calculate the Laplace transform of 
3. Calculate the Laplace transform of . (Note, you will have to integrate by parts twice.)

Laplace transforms are often used to solve differential equations. Differential equations are not covered in detail until later in
this book; but, for now, let’s look at the relationship between the Laplace transform of a function and the Laplace transform of
its derivative.

Let’s start with the definition of the Laplace transform. We have

 Laplace Transforms

Lf(t) = F (s) = f(t)dt.∫
∞

0
e−st

f(t), F (s)
i = ),−1

−−−
√

f(t) = t

Lt = t dt.∫
∞

0
e−st

Lt = t dt = t dt.∫
∞

0
e−st lim

z→∞
∫

z

0
e−st

u = t du = dt dv= dte−st v= − 1
s
e−st

t dt = [[− ] + dt]lim
z→∞

∫
z

0
e−st lim

z→∞

t

s
e−st ∣z0

1

s
∫

z

0
e−st

  = [[− + ] + dt]lim
z→∞

z

s
e−sz 0

s
e−0s 1

s
∫

z

0
e−st

  = [[− +0] − [ ] ]lim
z→∞

z

s
e−sz 1

s

e−st

s
∣z0

  = [[− ] − [ −1]]lim
z→∞

z

s
e−sz 1

s2
e−sz

  = [− ] − [ ] +lim
z→∞

z

sesz
lim
z→∞

1

s2esz
lim
z→∞

1

s2

  = 0 −0 +
1

s2

  = .
1

s2

f(t) = 1.
f(t) = .e−3t

f(t) = t2
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Use integration by parts to evaluate . (Let  and .)

After integrating by parts and evaluating the limit, you should see that

Then,

Thus, differentiation in the time domain simplifies to multiplication by s in the frequency domain.

The final thing we look at in this project is how the Laplace transforms of  and its antiderivative are related. Let 
 Then,

Use integration by parts to evaluate  (Let  and . Note, by the way that we have

defined )

As you might expect, you should see that

Integration in the time domain simplifies to division by  in the frequency domain.

Key Concepts
Integrals of functions over infinite intervals are defined in terms of limits.
Integrals of functions over an interval for which the function has a discontinuity at an endpoint may be defined in terms of
limits.
The convergence or divergence of an improper integral may be determined by comparing it with the value of an improper
integral for which the convergence or divergence is known.

Key Equations
Improper integrals

Glossary

improper integral
an integral over an infinite interval or an integral of a function containing an infinite discontinuity on the interval; an improper
integral is defined in terms of a limit. The improper integral converges if this limit is a finite real number; otherwise, the
improper integral diverges

7.8: Improper Integrals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Lf(t) = f(t)dt = f(t)dt.∫
∞

0
e−st lim

z→∞
∫

z

0
e−st

f(t)dtlim
z→∞

∫
z

0
e−st u = f(t) dv= dte−st

Lf(t) = + [Lf '(t)].
f(0)

s

1

s

Lf '(t) = sLf(t) −f(0).

f(t)

g(t) = f(u)du.∫ t

0

Lg(t) = g(t)dt = g(t)dt.∫
∞

0
e−st lim

z→∞
∫

z

0
e−st

g(t)dt.lim
z→∞

∫
z

0
e−st u = g(t) dv= dte−st

g(t), du = f(t)dt.

Lg(t) = ⋅Lf(t).
1

s

s

f(x)dx = f(x)dx∫
+∞

a

lim
t→+∞

∫
t

a

f(x)dx = f(x)dx∫
b

−∞
lim

t→−∞
∫

b

t

f(x)dx = f(x)dx+ f(x)dx∫
+∞

−∞
∫

0

−∞
∫

+∞

0
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8.1: Arc Length

Determine the length of a curve, , between two points.
Determine the length of a curve, , between two points.
Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you would
travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket is launched
along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a road, we might want
to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of , then we examine the same process for curves defined as
functions of . (The process is identical, with the roles of  and  reversed.) The techniques we use to find arc length can be
extended to find the surface area of a surface of revolution, and we close the section with an examination of this concept.

Arc Length of the Curve y = f(x)

In previous applications of integration, we required the function  to be integrable, or at most continuous. However, for
calculating arc length we have a more stringent requirement for . Here, we require  to be differentiable, and furthermore
we require its derivative,  to be continuous. Functions like this, which have continuous derivatives, are called smooth. (This
property comes up again in later chapters.)

Let  be a smooth function defined over . We want to calculate the length of the curve from the point  to the point
. We start by using line segments to approximate the length of the curve. For , let  be a regular

partition of . Then, for , construct a line segment from the point  to the point .
Although it might seem logical to use either horizontal or vertical line segments, we want our line segments to approximate the
curve as closely as possible. Figure  depicts this construct for .

Figure : We can approximate the length of a curve by adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is given
by . The change in vertical distance varies from interval to interval, though, so we use  to represent the
change in vertical distance over the interval , as shown in Figure . Note that some (or all)  may be negative.

 Learning Objectives

y = f(x)
x = g(y)

x

y x y

f(x)
f(x) f(x)

f '(x),

f(x) [a, b] (a, f(a))
(b, f(b)) i = 0, 1, 2, … ,n P = xi

[a, b] i = 1, 2, … ,n ( , f( ))xi−1 xi−1 ( , f( ))xi xi

8.1.1 n = 5

8.1.1

Δx Δ = f( ) −f( )yi xi xi−1

[ , ]xi−1 xi 8.1.2 Δyi
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Figure : A representative line segment approximates the curve over the interval 

By the Pythagorean theorem, the length of the line segment is

We can also write this as

Now, by the Mean Value Theorem, there is a point  such that . Then the length of the line
segment is given by

Adding up the lengths of all the line segments, we get

This is a Riemann sum. Taking the limit as  we have

We summarize these findings in the following theorem.

Let  be a smooth function over the interval . Then the arc length of the portion of the graph of  from the point 
 to the point  is given by

Note that we are integrating an expression involving , so we need to be sure  is integrable. This is why we require 
to be smooth. The following example shows how to apply the theorem.

Let . Calculate the arc length of the graph of  over the interval . Round the answer to three decimal
places.

Solution

8.1.2 [ , ].xi−1 xi

.(Δx +(Δ)2 yi)
2

− −−−−−−−−−−−
√

Δx .1 +((Δ )/(Δx)yi )2
− −−−−−−−−−−−−−−

√

∈ [ , ]x∗
i xi−1 xi f '( ) = (Δ )/(Δx)x∗

i yi

Δx .1 +[f '( )x∗
i ]2

− −−−−−−−−−
√

Arc Length ≈ Δx.∑
i=1

n

1 +[f '( )x∗
i ]2

− −−−−−−−−−
√

n → ∞,

Arc Length = Δxlim
n→∞

∑
i=1

n

1 +[f '( )x∗
i ]2

− −−−−−−−−−
√

= dx.∫
b

a

1 +[f '(x)]2
− −−−−−−−−

√

 Arc Length for y = f(x)

f(x) [a, b] f(x)
(a, f(a)) (b, f(b))

Arc Length = dx.∫
b

a

1 +[f '(x)]2
− −−−−−−−−

√

f '(x) f '(x) f(x)

 Example : Calculating the Arc Length of a Function of x8.1.1

f(x) = 2x3/2 f(x) [0, 1]
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We have  so  Then, the arc length is

Substitute  Then,  When , then , and when , then . Thus,

Let . Calculate the arc length of the graph of  over the interval . Round the answer to three decimal
places.

Hint

Use the process from the previous example. Don’t forget to change the limits of integration.

Answer

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are difficult to
integrate. We study some techniques for integration in Introduction to Techniques of Integration. In some cases, we may have to
use a computer or calculator to approximate the value of the integral.

Let . Calculate the arc length of the graph of  over the interval .

Solution

We have  so  Then the arc length is given by

Using a computer to approximate the value of this integral, we get

f '(x) = 3 ,x1/2 [f '(x) = 9x.]2

Arc Length = dx∫
b

a

1 +[f '(x)]2
− −−−−−−−−

√

= dx.∫
1

0
1 +9x− −−−−

√

u = 1 +9x. du = 9dx. x = 0 u = 1 x = 1 u = 10

Arc Length

= 9dx
1

9
∫

1

0
1 +9x
− −−−−

√

= dx∫
1

0
1 +9x
− −−−−

√

= du
1

9
∫

10

1
u−−√

= ⋅ = [10 −1]
1

9

2

3
u3/2 ∣10

1

2

27
10
−−

√

≈ 2.268units.

 Exercise 8.1.1

f(x) = (4/3)x3/2 f(x) [0, 1]

(5 −1) ≈ 1.697
1

6
5
–

√

 Example : Using a Computer or Calculator to Determine the Arc Length of a Function of x8.1.2

f(x) = x2 f(x) [1, 3]

f '(x) = 2x, [f '(x) = 4 .]2 x2

Arc Length = dx∫
b

a

1 +[f '(x)]2
− −−−−−−−−

√

= dx.∫
3

1
1 +4x2− −−−−−

√

dx ≈ 8.26815.∫
3

1
1 +4x2− −−−−−

√
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Let . Calculate the arc length of the graph of  over the interval . Use a computer or calculator to
approximate the value of the integral.

Hint

Use the process from the previous example.

Answer

Arc Length of the Curve 

We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the graph of a
function of , we can repeat the same process, except we partition the y-axis instead of the x-axis. Figure  shows a
representative line segment.

Figure : A representative line segment over the interval 

Then the length of the line segment is

which can also be written as

If we now follow the same development we did earlier, we get a formula for arc length of a function .

Let  be a smooth function over an interval . Then, the arc length of the graph of  from the point  to the
point  is given by

Let  Calculate the arc length of the graph of  over the interval .

Solution

We have  so  Then the arc length is

 Exercise 8.1.2

f(x) = sinx f(x) [0, π]

Arc Length ≈ 3.8202

x = g(y)

y 8.1.3

8.1.3 [ , ].yi−1 yi

,(Δy +(Δ)2 xi)
2

− −−−−−−−−−−−
√

Δy .1 +( )
Δxi

Δy

2
− −−−−−−−−−−

√

x = g(y)

 Arc Length for x = g(y)

g(y) [c, d] g(y) (c, g(c))
(d, g(d))

Arc Length = dy.∫
d

c

1 +[g'(y)]2
− −−−−−−−−

√

 Example : Calculating the Arc Length of a Function of 8.1.3 y

g(y) = 3 .y3 g(y) [1, 2]

g'(y) = 9 ,y2 [g'(y) = 81 .]2 y4
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Using a computer to approximate the value of this integral, we obtain

Let . Calculate the arc length of the graph of  over the interval . Use a computer or calculator to
approximate the value of the integral.

Hint

Use the process from the previous example.

Answer

Area of a Surface of Revolution
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution. Surface
area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the object is the sum of
the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let  be a nonnegative smooth function
over the interval . We wish to find the surface area of the surface of revolution created by revolving the graph of 
around the -axis as shown in the following figure.

Figure : (a) A curve representing the function . (b) The surface of revolution formed by revolving the graph of 
around the .

As we have done many times before, we are going to partition the interval  and approximate the surface area by calculating
the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier in this section. For 

, let  be a regular partition of . Then, for  construct a line segment from the point 
 to the point . Now, revolve these line segments around the -axis to generate an approximation of the

surface of revolution as shown in the following figure.

Arc Length = dy∫
d

c

1 +[g'(y)]2
− −−−−−−−−

√

= dy.∫
2

1
1 +81y4
− −−−−−−

√

dy ≈ 21.0277.∫
2

1
1 +81y4
− −−−−−−

√

 Exercise 8.1.3

g(y) = 1/y g(y) [1, 4]

Arc Length = 3.15018

f(x)
[a, b] y = f(x)

x

8.1.4 f(x) f(x)
x−axis

[a, b]
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Figure : (a) Approximating  with line segments. (b) The surface of revolution formed by revolving the line segments
around the .

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones (think
of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, , of the frustum (the area of just the slanted outside
surface of the frustum, not including the areas of the top or bottom faces). Let  and  be the radii of the wide end and the narrow
end of the frustum, respectively, and let  be the slant height of the frustum as shown in the following figure.

Figure : A frustum of a cone can approximate a small part of surface area.

We know the lateral surface area of a cone is given by

where  is the radius of the base of the cone and  is the slant height (Figure ).

Figure : The lateral surface area of the cone is given by .

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface area of
the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (Figure ).

8.1.5 f(x)
x−axis

S

r1 r2

l

8.1.6

Lateral Surface Area  = πrs,

r s 8.1.7

8.1.7 πrs

8.1.8
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Figure : Calculating the lateral surface area of a frustum of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

Solving for , we get =s−ls

Then the lateral surface area (SA) of the frustum is

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around the 
. A representative band is shown in the following figure.

8.1.8
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= s− sr1 r2

= ( − )sr1 r2
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= π s−π (s− l)r1 r2

= π ( ) −π ( )r1
lr1
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− − lr1 r2
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r2
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π lr2

1
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π rr1 2l
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πr2

1

l −r1 r2
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1 r2
2

−r1 r2

π( −r+2)(r1 +r2)lr1

−r1 r2

= π( + )l.r1 r2

x−axis

https://libretexts.org/
https://math.libretexts.org/@go/page/4492?pdf


8.1.8 https://math.libretexts.org/@go/page/4492

Figure : A representative band used for determining surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface area
formula, we have

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select  such that
 This gives us

Furthermore, since  is continuous, by the Intermediate Value Theorem, there is a point  such that \
(f(x^{**}_i)=(1/2)[f(xi−1)+f(xi)],

so we get

Then the approximate surface area of the whole surface of revolution is given by

This almost looks like a Riemann sum, except we have functions evaluated at two different points,  and , over the interval 
. Although we do not examine the details here, it turns out that because  is smooth, if we let n , the limit works

the same as a Riemann sum even with the two different evaluation points. This makes sense intuitively. Both  and x^{**}_i\) are
in the interval , so it makes sense that as , both  and  approach  Those of you who are interested in the
details should consult an advanced calculus text.

Taking the limit as  we get

As with arc length, we can conduct a similar development for functions of  to get a formula for the surface area of surfaces of
revolution about the . These findings are summarized in the following theorem.

8.1.9
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i yi

S = π(f( ) +f( ))Δxxi−1 xi 1 +(f '( )x∗
i )2

− −−−−−−−−−
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i x∗∗

i x
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Let  be a nonnegative smooth function over the interval . Then, the surface area of the surface of revolution formed
by revolving the graph of  around the x-axis is given by

Similarly, let  be a nonnegative smooth function over the interval . Then, the surface area of the surface of revolution
formed by revolving the graph of  around the  is given by

Let  over the interval . Find the surface area of the surface generated by revolving the graph of  around
the -axis. Round the answer to three decimal places.

Solution

The graph of  and the surface of rotation are shown in Figure .

Figure : (a) The graph of . (b) The surface of revolution.

We have . Then,  and  Then,

Let  Then, . When , and when  This gives us

 Surface Area of a Surface of Revolution

f(x) [a, b]
f(x)
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 Example : Calculating the Surface Area of a Surface of Revolution 1.8.1.4
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Let  over the interval . Find the surface area of the surface generated by revolving the graph of 
around the -axis. Round the answer to three decimal places.

Hint

Use the process from the previous example.

Answer

Let . Consider the portion of the curve where . Find the surface area of the surface generated by

revolving the graph of  around the -axis.

Solution

Notice that we are revolving the curve around the -axis, and the interval is in terms of , so we want to rewrite the function as
a function of . We get . The graph of  and the surface of rotation are shown in the following figure.

Figure : (a) The graph of . (b) The surface of revolution.

We have , so  and . Then

Let  Then . When , and when  Then

 Exercise 8.1.4
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Let  over the interval . Find the surface area of the surface generated by revolving the graph of 
around the -axis.

Hint

Use the process from the previous example.

Answer

Key Concepts
The arc length of a curve can be calculated using a definite integral.
The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives us the
definite integral formula. The same process can be applied to functions of .
The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.
The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be necessary to
use a computer or calculator to approximate the values of the integrals.

Key Equations
Arc Length of a Function of x

Arc Length 

Arc Length of a Function of y

Arc Length 

Surface Area of a Function of x

Surface Area 

Glossary

arc length
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

frustum
a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base

surface area
the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or bricks, the surface area of
the object is the sum of the areas of all of its faces

8.1: Arc Length is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

6.4: Arc Length of a Curve and Surface Area by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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8.2: Area of a Surface of Revolution
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution. Surface
area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the object is the sum of
the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let  be a nonnegative smooth function
over the interval . We wish to find the surface area of the surface of revolution created by revolving the graph of 
around the -axis as shown in the following figure.

Figure : (a) A curve representing the function . (b) The surface of revolution formed by revolving the graph of 
around the .

As we have done many times before, we are going to partition the interval  and approximate the surface area by calculating
the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier in this section. For 

, let  be a regular partition of . Then, for  construct a line segment from the point 
 to the point . Now, revolve these line segments around the -axis to generate an approximation of the

surface of revolution as shown in the following figure.

Figure : (a) Approximating  with line segments. (b) The surface of revolution formed by revolving the line segments
around the .

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones (think
of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, , of the frustum (the area of just the slanted outside
surface of the frustum, not including the areas of the top or bottom faces). Let  and  be the radii of the wide end and the narrow
end of the frustum, respectively, and let  be the slant height of the frustum as shown in the following figure.

f(x)
[a, b] y = f(x)

x

8.2.4 f(x) f(x)
x−axis

[a, b]

i = 0, 1, 2, … ,n P = xi [a, b] i = 1, 2, … ,n,
( , f( ))xi−1 xi−1 ( , f( ))xi xi x

8.2.5 f(x)
x−axis

S

r1 r2

l
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Figure : A frustum of a cone can approximate a small part of surface area.

We know the lateral surface area of a cone is given by

where  is the radius of the base of the cone and  is the slant height (Figure ).

Figure : The lateral surface area of the cone is given by .

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface area of
the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (Figure ).

Figure : Calculating the lateral surface area of a frustum of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

Solving for , we get =s−ls

8.2.6

Lateral Surface Area  = πrs,

r s 8.2.7

8.2.7 πrs

8.2.8

8.2.8

=
r2

r1

s− l

s

s
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Then the lateral surface area (SA) of the frustum is

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around the 
. A representative band is shown in the following figure.

Figure : A representative band used for determining surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface area
formula, we have

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select  such that
 This gives us

r2
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Furthermore, since  is continuous, by the Intermediate Value Theorem, there is a point  such that \
(f(x^{**}_i)=(1/2)[f(xi−1)+f(xi)],

so we get

Then the approximate surface area of the whole surface of revolution is given by

This almost looks like a Riemann sum, except we have functions evaluated at two different points,  and , over the interval 
. Although we do not examine the details here, it turns out that because  is smooth, if we let n , the limit works

the same as a Riemann sum even with the two different evaluation points. This makes sense intuitively. Both  and x^{**}_i\) are
in the interval , so it makes sense that as , both  and  approach  Those of you who are interested in the
details should consult an advanced calculus text.

Taking the limit as  we get

As with arc length, we can conduct a similar development for functions of  to get a formula for the surface area of surfaces of
revolution about the . These findings are summarized in the following theorem.

Let  be a nonnegative smooth function over the interval . Then, the surface area of the surface of revolution formed
by revolving the graph of  around the x-axis is given by

Similarly, let  be a nonnegative smooth function over the interval . Then, the surface area of the surface of revolution
formed by revolving the graph of  around the  is given by

Let  over the interval . Find the surface area of the surface generated by revolving the graph of  around
the -axis. Round the answer to three decimal places.

Solution

The graph of  and the surface of rotation are shown in Figure .
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Figure : (a) The graph of . (b) The surface of revolution.

We have . Then,  and  Then,

Let  Then, . When , and when  This gives us

Let  over the interval . Find the surface area of the surface generated by revolving the graph of 
around the -axis. Round the answer to three decimal places.

Hint

Use the process from the previous example.

Answer

Let . Consider the portion of the curve where . Find the surface area of the surface generated by

revolving the graph of  around the -axis.

Solution
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Notice that we are revolving the curve around the -axis, and the interval is in terms of , so we want to rewrite the function as
a function of . We get . The graph of  and the surface of rotation are shown in the following figure.

Figure : (a) The graph of . (b) The surface of revolution.

We have , so  and . Then

Let  Then . When , and when  Then

Let  over the interval . Find the surface area of the surface generated by revolving the graph of 
around the -axis.

Hint

Use the process from the previous example.

Answer

8.2: Area of a Surface of Revolution is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

6.4: Arc Length of a Curve and Surface Area by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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8.3: Applications to Physics and Engineering

In this section, we strive to understand the ideas generated by the following important questions:

How do we measure the work accomplished by a varying force that moves an object a certain distance?
What is the total force exerted by water against a dam?
How are both of the above concepts and their corresponding use of definite integrals similar to problems we have
encountered in the past involving formulas such as “distance equals rate times time” and “mass equals density times
volume”?

In our work to date with the definite integral, we have seen several different circumstances where the integral enables us to measure
the accumulation of a quantity that varies, provided the quantity is approximately constant over small intervals. For instance, based
on the fact that the area of a rectangle is  if we wish to find the area bounded by a nonnegative curve  and the 

-axis on an interval , a representative slice of width  has area , and thus as we let the width of the
representative slice tend to zero, we find that the exact area of the region is

In a similar way, if we know that the velocity of a moving object is given by the function , and we wish to know the
distance the object travels on an interval  where  is nonnegative, we can use a definite integral to generalize the fact that 

 when the rate, , is constant. More specifically, on a short time interval ,  is roughly constant, and hence for a
small slice of time, , and so as the width of the time interval  tends to zero, the exact distance traveled is given
by the definite integral

Finally, when we recently learned about the mass of an object of non-constant density, we saw that since  (mass equals
density times volume, provided that density is constant), if we can consider a small slice of an object on which the density is
approximately constant, a definite integral may be used to determine the exact mass of the object. For instance, if we have a thin
rod whose cross sections have constant density, but whose density is distributed along the  axis according to the function 

, it follows that for a small slice of the rod that is  thick, . In the limit as , we then find that
the total mass is given by

Note that all three of these situations are similar in that we have a basic rule ( ) where one of the
two quantities being multiplied is no longer constant; in each, we consider a small interval for the other variable in the formula,
calculate the approximate value of the desired quantity (area, distance, or mass) over the small interval, and then use a definite
integral to sum the results as the length of the small intervals is allowed to approach zero. It should be apparent that this approach
will work effectively for other situations where we have a quantity of interest that varies. We next turn to the notion of work: from
physics, a basic principal is that work is the product of force and distance. For example, if a person exerts a force of 20 pounds to
lift a 20-pound weight 4 feet off the ground, the total work accomplished is

If force and distance are measured in English units (pounds and feet), then the units on work are foot-pounds. If instead we work in
metric units, where forces are measured in Newtons and distances in meters, the units on work are Newton-meters.

Learning Objectives

A = l ⋅w, y = f(x)

x [a, b] Δx = f(x)ΔxAslice

A = f(x)dx.∫
b

a

(8.3.1)
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y = ρ(x) Δx = ρ(x)ΔxMslice Δx → 0
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Figure 6.14: Three settings where we compute the accumulation of a varying quantity: the area under , the distance
traveled by an object with velocity , and the mass of a bar with density function .

Of course, the formula  only applies when the force is constant while it is exerted over the distance . In Preview
Activity 6.4, we explore one way that we can use a definite integral to compute the total work accomplished when the force exerted
varies.

A bucket is being lifted from the bottom of a 50-foot deep well; its weight (including the water), , in pounds at a height 
feet above the water is given by the function . When the bucket leaves the water, the bucket and water together weigh 

 pounds, and when the bucket reaches the top of the well,  pounds. Assume that the bucket loses water
at a constant rate (as a function of height, ) throughout its journey from the bottom to the top of the well.

a. Find a formula for .
b. Compute the value of the product , where  feet. Include units on your answer. Explain why this product

represents the approximate work it took to move the bucket of water from  to .
c. Is the value in (b) an over- or under-estimate of the actual amount of work it took to move the bucket from  to ?

Why?
d. Compute the value of the product , where  feet. Include units on your answer. What is the meaning of

the value you found?
e. More generally, what does the quantity  measure for a given value of  and a small positive value of 

?
f. Evaluate the definite integral . What is the meaning of the value you find? Why?

Work
Because work is calculated by the rule , whenever the force  is constant, it follows that we can use a definite integral
to compute the work accomplished by a varying force. For example, suppose that in a setting similar to the problem posed in
Preview Activity 6.4, we have a bucket being lifted in a 50-foot well whose weight at height h is given by

In contrast to the problem in the preview activity, this bucket is not leaking at a constant rate; but because the weight of the bucket
and water is not constant, we have to use a definite integral to determine the total work that results from lifting the bucket. Observe
that at a height  above the water, the approximate work to move the bucket a small distance  is

Hence, if we let  tend to 0 and take the sum of all of the slices of work accomplished on these small intervals, it follows that the
total work is given by

y = f(x)

y = v(t) y = ρ(x)

W = F ⋅ d d
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B h
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h Δh
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While is a straightforward exercise to evaluate this integral exactly using the First Fundamental Theorem of Calculus, in applied
settings such as this one we will typically use computing technology to find accurate approximations of integrals that are of interest
to us. Here, it turns out that

Our work in Preview Activity 6.1 and in the most recent example above employs the following important general principle.

For an object being moved in the positive direction along an axis, , by a force , the total work to move the object from  to 
is given by

Consider the following situations in which a varying force accomplishes work.

a. Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet long and weighs 0.3 pounds per foot; initially
the rope is fully extended. How much work is required to haul in the entire length of the rope? (Hint: set up a function 

 whose value is the weight of the rope remaining over the cliff after h feet have been hauled in.)
b. A leaky bucket is being hauled up from a 100 foot deep well. When lifted from the water, the bucket and water together

weigh 40 pounds. As the bucket is being hauled upward at a constant rate, the bucket leaks water at a constant rate so that it
is losing weight at a rate of 0.1 pounds per foot. What function  tells the weight of the bucket after the bucket has been
lifted  feet? What is the total amount of work accomplished in lifting the bucket to the top of the well?

c. Now suppose that the bucket in (b) does not leak at a constant rate, but rather that its weight at a height  feet above the
water is given by . What is the total work required to lift the bucket 100 feet? What is the average
force exerted on the bucket on the interval  to ?

d. From physics, Hooke’s Law for springs states that the amount of force required to hold a spring that is compressed (or
extended) to a particular length is proportionate to the distance the spring is compressed (or extended) from its natural
length. That is, the force to compress (or extend) a spring  units from its natural length is  for some constant 
(which is called the spring constant.) For springs, we choose to measure the force in pounds and the distance the spring is
compressed in feet. Suppose that a force of 5 pounds extends a particular spring 4 inches (1/3 foot) beyond its natural
length.

i. Use the given fact that  to find the spring constant .
ii. Find the work done to extend the spring from its natural length to 1 foot beyond its natural length.

iii. Find the work required to extend the spring from 1 foot beyond its natural length to 1.5 feet beyond its natural length.

Work: Pumping Liquid from a Tank
In certain geographic locations where the water table is high, residential homes with basements have a peculiar feature: in the
basement, one finds a large hole in the floor, and in the hole, there is water. For example, in Figure 6.15 where we see a sump
crock.

W = (12 +8 )dh ≈ 679.461 foot-pounds.∫
50

0

e−0.1h (8.3.10)

x F (x) a b

W = F (x)dx.∫
b

a

(8.3.11)
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Figure 6.15: A sump crock. Image credit to www.warreninspect.com/basement-moisture.

Essentially, a sump crock provides an outlet for water that may build up beneath the basement floor; of course, as that water rises, it
is imperative that the water not flood the basement. Hence, in the crock we see the presence of a floating pump that sits on the
surface of the water: this pump is activated by elevation, so when the water level reaches a particular height, the pump turns on and
pumps a certain portion of the water out of the crock, hence relieving the water buildup beneath the foundation. One of the
questions we’d like to answer is: how much work does a sump pump accomplish? To that end, let’s suppose that we have a sump
crock that has the shape of a frustum of a cone, as pictured in Figure 6.16. Assume that the crock has a diameter of 3 feet at its
surface, a diameter of 1.5 feet at its base, and a depth of 4 feet. In addition, suppose that the sump pump is set up so that it pumps
the water vertically up a pipe to a drain that is located at ground level just outside a basement window. To accomplish this, the
pump must send the water to a location 9 feet above the surface of the sump crock.

Figure 6.16: A sump crock with approximately cylindrical cross-sections that is 4 feet deep, 1.5 feet in diameter at its base, and 3
feet in diameter at its top.

It turns out to be advantageous to think of the depth below the surface of the crock as being the independent variable, so, in
problems such as this one we typically let the positive -axis point down, and the positive -axis to the right, as pictured in the
figure. As we think about the work that the pump does, we first realize that the pump sits on the surface of the water, so it makes
sense to think about the pump moving the water one “slice” at a time, where it takes a thin slice from the surface, pumps it out of
the tank, and then proceeds to pump the next slice below. For the sump crock described in this example, each slice of water is
cylindrical in shape. We see that the radius of each approximately cylindrical slice varies according to the linear function 
that passes through the points (0, 1.5) and (4, 0.75), where  is the depth of the particular slice in the tank; it is a straightforward
exercise to find that . Now we are prepared to think about the overall problem in several steps:

a. determining the volume of a typical slice;
b. finding the weight (We assume that the weight density of water is 62.4 pounds per cubic foot) of a typical slice (and thus the

force that must be exerted on it)
c. deciding the distance that a typical slice moves; and
d. computing the work to move a representative slice. Once we know the work it takes to move one slice, we use a definite

integral over an appropriate interval to find the total work.

Consider a representative cylindrical slice that sits on the surface of the water at a depth of  feet below the top of the crock. It
follows that the approximate volume of that slice is given by

.

Since water weighs 62.4 lb/ft3 , it follows that the approximate weight of a representative slice, which is also the approximate force
the pump must exert to move the slice, is

.

Because the slice is located at a depth of  feet below the top of the crock, the slice being moved by the pump must move  feet to
get to the level of the basement floor, and then, as stated in the problem description, be moved another 9 feet to reach the drain at
ground level outside a basement window. Hence, the total distance a representative slice travels is

.

x y

y = f(x)

x

f(x) = 1.5 −0.1875x

x

= πf(x Δx = π(1.5 −0.1875x ΔxVslice )2 )2

= 62.4  ⋅   = 62.4π(1.5 −0.1875x ΔxFslice Vslice )2

x x

= x+9dslice
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Finally, we note that the work to move a representative slice is given by

,

since the force to move a particular slice is constant. We sum the work required to move slices throughout the tank (from  to 
), let , and hence

,

which, when evaluated using appropriate technology, shows that the total work is  foot-pounds.

The preceding example demonstrates the standard approach to finding the work required to empty a tank filled with liquid. The
main task in each such problem is to determine the volume of a representative slice, followed by the force exerted on the slice, as
well as the distance such a slice moves. In the case where the units are metric, there is one key difference: in the metric setting,
rather than weight, we normally first find the mass of a slice. For instance, if distance is measured in meters, the mass density of
water is 1000 kg/m  . In that setting, we can find the mass of a typical slice (in kg). To determine the force required to move it, we
use F = ma, where m is the object’s mass and a is the gravitational constant 9.81 N/kg  . That is, in metric units, the weight density
of water is 9810 N/m  .

In each of the following problems, determine the total work required to accomplish the described task. In parts (b) and (c), a
key step is to find a formula for a function that describes the curve that forms the side boundary of the tank.

Figure 6.17: A trough with triangular ends, as described in Activity 6.11, part (c).

a. Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters. Suppose the tank is filled with 4 meters of water
of mass density 1000 kg/m  , and the top 1 meter of water is pumped over the top of the tank.

b. Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank is full to a depth of 7 feet with water of weight
density 62.4 pounds/ft , and the top 5 feet of water are pumped out of the tank to a tanker truck whose height is 5 feet
above the top of the tank.

c. Consider a trough with triangular ends, as pictured in Figure 6.17, where the tank is 10 feet long, the top is 5 feet wide, and
the tank is 4 feet deep. Say that the trough is full to within 1 foot of the top with water of weight density 62.4 pounds/ft ,
and a pump is used to empty the tank until the water remaining in the tank is 1 foot deep.

Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to understand how much force water will exert against the face of the dam.
The first thing we realize is the force exerted by the fluid is related to the natural concept of pressure. The pressure a force exerts on
a region is measured in units of force per unit of area: for example, the air pressure in a tire is often measured in pounds per square
inch (PSI). Hence, we see that the general relationship is given by

, or ,

where P represents pressure, F represents force, and A the area of the region being considered. Of course, in the equation F = PA,
we assume that the pressure is constant over the entire region A.

Most people know from experience that the deeper one dives underwater while swimming, the greater the pressure that is exerted
by the water. This is due to the fact that the deeper one dives, the more water there is right on top of the swimmer: it is the force

= ⋅ = 62.4π(1.5 −0.1875x Δx ⋅ (x+9)Wslice Fslice dslice )2

x = 0

x = 4 Δx → 0

W = 62.4π(1.5 −0.1875x (x+9)dx∫ 4

0
)2

W = 10970.5π

3

3

3

Activity 8.3.2

3

3

3

P =
F

A
F = P ⋅A
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that “column” of water exerts that determines the pressure the swimmer experiences. To get water pressure measured in its standard
units (pounds per square foot), we say that the total water pressure is found by computing the total weight of the column of water
that lies above a region of area 1 square foot at a fixed depth. Such a rectangular column with a 1 × 1 base and a depth of d feet has
volume V = 1 · 1 · d ft , and thus the corresponding weight of the water overhead is 62.4d. Since this is also the amount of force
being exerted on a 1 square foot region at a depth d feet underwater, we see that P = 62.4d (lbs/ft ) is the pressure exerted by water
at depth d.

The understanding that P = 62.4d will tell us the pressure exerted by water at a depth of d, along with the fact that F = PA, will now
enable us to compute the total force that water exerts on a dam, as we see in the following example.

Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90 feet wide at its top, and assume the dam is 25 feet tall
with water that rises to within 5 feet of the top of its face. Water weighs 62.5 pounds per cubic foot. How much force does the
water exert against the dam?

Solution

First, we sketch a picture of the dam, as shown in Figure 6.18. Note that, as in problems involving the work to pump out a tank,
we let the positive x-axis point down. 
It is essential to use the fact that pressure is constant at a fixed depth. Hence, we consider a slice of water at constant depth on
the face, such as the one shown in the figure. First, the approximate area of this slice is the area of the pictured rectangle. Since
the width of that rectangle depends on the variable  (which represents the how far the slice lies from the top of the dam), we
find a formula for the function  that determines one side of the face of the dam. Since  is linear, it is straightforward

to find that . Hence, the approximate area of a representative slice is

.

At any point on this slice, the depth is approximately constant, and thus the pressure can be considered constant. In particular,
we note that since  measures the distance to the top of the dam, and because the water rises to within 5 feet of the top of the
dam, the depth of any point on the representative slice is approximately . Now, since pressure

Figure 6.18: A trapezoidal dam that is 25 feet tall, 60 feet wide at its base, 90 feet wide at its top, with the water line 5 feet
down from the top of its face.

is given by , we have that at any point on the representative slice

.

Knowing both the pressure and area, we can find the force the water exerts on the slice. Using , it follows that

.

Finally, we use a definite integral to sum the forces over the appropriate range of -values. Since the water rises to within 5
feet of the top of the dam, we start at  and slice all the way to the bottom of the dam, where . Hence,

3

2

Example 8.3.3
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3
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.

Using technology to evaluate the integral, we find F ≈ 1.248 × 10  pounds.

In each of the following problems, determine the total force exerted by water against the surface that is described.

a. Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose that water presses against the dam all the way
to the top.

b. Consider a semicircular dam with a radius of 30 feet. Suppose that the water rises to within 10 feet of the top of the dam.
c. Consider a trough with triangular ends, as pictured in Figure 6.17, where the tank is 10 feet long, the top is 5 feet wide, and

the tank is 4 feet deep. Say that the trough is full to within 1 foot of the top with water of weight density 62.4 pounds/ft .
How much force does the water exert against one of the triangular ends?

While there are many different formulas that we use in solving problems involving work, force, and pressure, it is important to
understand that the fundamental ideas behind these problems are similar to several others that we’ve encountered in applications of
the definite integral. In particular, the basic idea is to take a difficult problem and somehow slice it into more manageable pieces
that we understand, and then use a definite integral to add up these simpler pieces.

Summary

In this section, we encountered the following important ideas:

To measure the work accomplished by a varying force that moves an object, we subdivide the problem into pieces on which we
can use the formula W = F · d, and then use a definite integral to sum the work accomplished on each piece.
To find the total force exerted by water against a dam, we use the formula F = P · A to measure the force exerted on a slice that
lies at a fixed depth, and then use a definite integral to sum the forces across the appropriate range of depths.
Because work is computed as the product of force and distance (provided force is constant), and the force water exerts on a dam
can be computed as the product of pressure and area (provided pressure is constant), problems involving these concepts are
similar to earlier problems we did using definite integrals to find distance (via “distance equals rate times time”) and mass
(“mass equals density times volume”).

8.3: Applications to Physics and Engineering is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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8.4: Applications to Economics and Biology

Use the exponential growth model in applications, including population growth and compound interest.
Explain the concept of doubling time.
Use the exponential decay model in applications, including radioactive decay and Newton’s law of cooling.
Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth and decay
show up in a host of natural applications. From population growth and continuously compounded interest to radioactive decay and
Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine exponential growth and decay
in the context of some of these applications.

Exponential Growth Model
Many systems exhibit exponential growth. These systems follow a model of the form  where  represents the initial
state of the system and  is a positive constant, called the growth constant. Notice that in an exponential growth model, we have

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth. Equation 
involves derivatives and is called a differential equation.

Systems that exhibit exponential growth increase according to the mathematical model

where  represents the initial state of the system and  is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems plausible
that the rate of population growth would be proportional to the size of the population. After all, the more bacteria there are to
reproduce, the faster the population grows. Figure  and Table  represent the growth of a population of bacteria with an
initial population of 200 bacteria and a growth constant of 0.02. Notice that after only 2 hours (120 minutes), the population is 10
times its original size!

Figure : An example of exponential growth for bacteria.
Table : Exponential Growth of a Bacterial Population

Time(min) Population Size (no. of bacteria)

10 244

20 298

 Learning Objectives

y = ,y0ekt y0
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Time(min) Population Size (no. of bacteria)

30 364

40 445

50 544

60 664

70 811

80 991

90 1210

100 1478

110 1805

120 2205

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential growth
models, we must always be careful to interpret the function values in the context of the phenomenon we are modeling.

Consider the population of bacteria described earlier. This population grows according to the function  where
t is measured in minutes. How many bacteria are present in the population after  hours (  minutes)? When does the
population reach  bacteria?

Solution

We have  Then

There are  bacteria in the population after  hours.

To find when the population reaches  bacteria, we solve the equation

The population reaches  bacteria after  minutes.

Consider a population of bacteria that grows according to the function , where  is measured in minutes. How
many bacteria are present in the population after 4 hours? When does the population reach  million bacteria?

Answer

Use the process from the previous example.

Answer

There are  bacteria in the population after  hours. The population reaches  million bacteria after 
minutes.

 Example : Population Growth8.4.1

f(t) = 200 ,e0.02t

5 300
100, 000

f(t) = 200 .e0.02t

f(300) = 200 ≈ 80, 686.e0.02(300)

80, 686 5

100, 000

100, 000

500

ln500

t

= 200e0.02t

= e0.02t

= 0.02t

= ≈ 310.73.
ln500

0.02

100, 000 310.73

 Exercise 8.4.1

f(t) = 500e0.05t t
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Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually  year). So, if we put  in a savings
account earning  simple interest per year, then at the end of the year we have

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank compounds the
interest every  months, it credits half of the year’s interest to the account after  months. During the second half of the year, the
account earns interest not only on the initial , but also on the interest earned during the first half of the year. Mathematically
speaking, at the end of the year, we have

Similarly, if the interest is compounded every  months, we have

and if the interest is compounded daily (  times per year), we have . If we extend this concept, so that the interest is
compounded continuously, after  years we have

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number  can be expressed as
a limit:

Based on this, we want the expression inside the parentheses to have the form . Let . Note that as 
 as well. Then we get

We recognize the limit inside the brackets as the number . So, the balance in our bank account after  years is given by .
Generalizing this concept, we see that if a bank account with an initial balance of  earns interest at a rate of , compounded
continuously, then the balance of the account after  years is

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays  annual interest
compounded continuously. How much does the student need to invest today to have  million when she retires at age ?
What if she could earn  annual interest compounded continuously instead?

Solution

We have

She must invest  at  interest.

If, instead, she is able to earn  then the equation becomes

1 $1000
2

1000(1 +0.02) = $1020.

6 6
$1000

1000 = $1020.10.(1 + )
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2

2
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0.02

3

3

365 $1020.20
t
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(1 + )
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n

nt

e
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1

m

m
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(1 + )
0.02

n

nt

lim
m→∞

(1 + )
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0.02mt
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(1 + )
1

m

m 0.02t

e t 1000e0.02t
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 Example : Compound Interest8.4.2
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In this case, she needs to invest only  This is roughly two-thirds the amount she needs to invest at . The fact that
the interest is compounded continuously greatly magnifies the effect of the  increase in interest rate.

Suppose instead of investing at age , the student waits until age . How much would she have to invest at ? At 
?

Hint

Use the process from the previous example.

Answer

At  interest, she must invest . At  interest, she must invest 

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the same
amount of time for a population of bacteria to grow from  to  bacteria as it does to grow from  to  bacteria.
This time is called the doubling time. To calculate the doubling time, we want to know when the quantity reaches twice its original
size. So we have

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given by

Assume a population of fish grows exponentially. A pond is stocked initially with  fish. After  months, there are  fish
in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish population reaches . When
will the owner’s friends be allowed to fish?

Solution

We know it takes the population of fish  months to double in size. So, if  represents time in months, by the doubling-time
formula, we have . Then, . Thus, the population is given by . To figure out when
the population reaches  fish, we must solve the following equation:

P = 90, 717.95.

$90, 717.95. 5
1

 Exercise 8.4.2

25 −4acb2
− −−−−−−

√ 35 5
6
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 Definition: Doubling Time
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 Example : Using the Doubling Time8.4.3
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The owner’s friends have to wait  months (a little more than  years) to fish in the pond.

Suppose it takes  months for the fish population in Example  to reach  fish. Under these circumstances, how long
do the owner’s friends have to wait?

Hint

Use the process from the previous example.

Answer

 months

Exponential Decay Model

Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical compounds that
break down over time. We say that such systems exhibit exponential decay, rather than exponential growth. The model is nearly the
same, except there is a negative sign in the exponent. Thus, for some positive constant , we have

As with exponential growth, there is a differential equation associated with exponential decay. We have

Systems that exhibit exponential decay behave according to the model

where  represents the initial state of the system and  is a constant, called the decay constant.

Figure  shows a graph of a representative exponential decay function.

Figure : An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate proportional to
the difference between the temperature of the object and the temperature of the surroundings. In other words, if  represents the
temperature of the object and  represents the ambient temperature in a room, then

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function, and this
expression has the additional  term. Fortunately, we can make a change of variables that resolves this issue. Let 

25.93 2

 Exercise 8.4.3
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. Then , and our equation becomes

From our previous work, we know this relationship between  and its derivative leads to exponential decay. Thus,

and we see that

where  represents the initial temperature. Let’s apply this formula in the following example.

According to experienced baristas, the optimal temperature to serve coffee is between  and . Suppose coffee is
poured at a temperature of , and after  minutes in a  room it has cooled to . When is the coffee first cool
enough to serve? When is the coffee too cold to serve? Round answers to the nearest half minute.

Solution

We have

Then, the model is

The coffee reaches  when

The coffee can be served about  minutes after it is poured. The coffee reaches  at

y(t) = T (t) −Ta y'(t) = T '(t) −0 = T '(t)

y' = −ky.

y

y = ,y0e−kt

T − = ( − )Ta T0 Ta e−kt

T = ( − ) +T0 Ta e−kt Ta

T0

 Example : Newton’s Law of Cooling8.4.4

155°F 175°F

200°F 2 70°F 180°F

T

180

110

11

13

ln
11

13

ln11 −ln13

k

= ( − ) +T0 Ta e−kt Ta

= (200 −70) +70e−k(2)

= 130e−2k

= e−2k

= −2k

= −2k

=
ln13 −ln11

2

T = 130 +70.e(ln 11−ln 13/2)t

175°F

175

105

21

26

ln
21

26

ln21 −ln26

t

= 130 +70e(ln 11−ln 13/2)t

= 130e(ln 11−ln 13/2)t

= e(ln 11−ln 13/2)t

= t
ln11 −ln13

2

=( ) t
ln11 −ln13

2

=
2(ln21 −ln26)

ln11 −ln13

≈ 2.56.

2.5 155°F
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The coffee is too cold to be served about  minutes after it is poured.

Suppose the room is warmer  and, after  minutes, the coffee has cooled only to  When is the coffee first cool
enough to serve? When is the coffee be too cold to serve? Round answers to the nearest half minute.

Hint

Use the process from the previous example.

Answer

The coffee is first cool enough to serve about  minutes after it is poured. The coffee is too cold to serve about  minutes
after it is poured.

Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a constant
half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we have

.

Note: This is the same expression we came up with for doubling time.

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is given by

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits a radioactive
particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon-14 was originally present in an
object and how much carbon-14 remains, we can determine the age of the object. The half-life of carbon-14 is approximately
5730 years—meaning, after that many years, half the material has converted from the original carbon-14 to the new
nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how much is left in 50 years? If an artifact that originally
contained 100 g of carbon-14 now contains 10 g of carbon-14, how old is it? Round the answer to the nearest hundred years.

Solution

155

85

17

26

ln17 −ln26

t

= 130 +70e(ln 11−ln 13/2)t

= 130e(ln 11−ln 13)t

= e(ln 11−ln 13)t

=( ) t
ln11 −ln13

2

=
2(ln17 −ln26)

ln11 −ln13

≈ 5.09.

5

 Exercise 8.4.4

(75°F ) 2 185°F .

3.5 7

=
y0

2
y0e−kt

=
1

2
e−kt

−ln2 = −kt

t =
ln2

k

 Definition: Half-Life

Half-life = .
ln2

k

 Example : Radiocarbon Dating8.4.5
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We have

So, the model says

In  years, we have

Therefore, in  years,  g of carbon-14 remains.

To determine the age of the artifact, we must solve

The artifact is about  years old.

If we have 100 g of carbon-14 , how much is left after 500 years? If an artifact that originally contained 100 g of carbon-14
now contains 20 g of carbon-14, how old is it? Round the answer to the nearest hundred years.

Hint

Use the process from the previous example.

Answer

A total of 94.13 g of carbon-14 remains after 500 years. The artifact is approximately 13,300 years old.

Key Concepts
Exponential growth and exponential decay are two of the most common applications of exponential functions.
Systems that exhibit exponential growth follow a model of the form .
In exponential growth, the rate of growth is proportional to the quantity present. In other words, .
Systems that exhibit exponential growth have a constant doubling time, which is given by .
Systems that exhibit exponential decay follow a model of the form 
Systems that exhibit exponential decay have a constant half-life, which is given by 

Glossary

doubling time
if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double, and is given by 

exponential decay
systems that exhibit exponential decay follow a model of the form 

exponential growth
systems that exhibit exponential growth follow a model of the form 

5730 =
ln2

k

k = .
ln2

5730

y = 100 .e−(ln 2/5730)t

50

y = 100 ≈ 99.40e−(ln 2/5730)(50)

50 99.40

10

1

10
t

= 100e−(ln 2/5730)t

= e−(ln 2/5730)t

≈ 19035.

19, 000

 Exercise : Carbon-14 Decay8.4.5

y = y0ekt

y' = ky

(ln2)/k

y = .y0e−kt

(ln2)/k.

(ln2)/k

y = y0e−kt

y = y0ekt
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half-life
if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is given by 

8.4: Applications to Economics and Biology is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

6.8: Exponential Growth and Decay by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
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8.5: Probability
In this section we will briefly discuss some applications of multiple integrals in the field of probability theory. In particular we will
see ways in which multiple integrals can be used to calculate probabilities and expected values.

Probability
Suppose that you have a standard six-sided (fair) die, and you let a variable  represent the value rolled. Then the probability of
rolling a 3, written as , is 1 6 , since there are six sides on the die and each one is equally likely to be rolled, and hence in
particular the 3 has a one out of six chance of being rolled. Likewise the probability of rolling at most a 3, written as , is 

, since of the six numbers on the die, there are three equally likely numbers (1, 2, and 3) that are less than or equal to 3.

Note that:

We call  a discrete random variable on the sample space (or probability space)  consisting of all possible outcomes. In our
case, . An event  is a subset of the sample space. For example, in the case of the die, the event  is the set

.

Now let  be a variable representing a random real number in the interval . Note that the set of all real numbers between 0
and 1 is not a discrete (or countable) set of values, i.e. it can not be put into a one-to-one correspondence with the set of positive
integers. In this case, for any real number  in , it makes no sense to consider  since it must be 0 (why?). Instead,
we consider the probability , which is given by . The reasoning is this: the interval  has length 1,
and for  in  the interval  has length . So since  represents a random number in , and hence is uniformly
distributed over , then

We call  a continuous random variable on the sample space . An event  is a subset of the sample space. For
example, in our case the event  is the set .

In the case of a discrete random variable, we saw how the probability of an event was the sum of the probabilities of the individual
outcomes comprising that event (e.g.  in the die example). For a continuous
random variable, the probability of an event will instead be the integral of a function, which we will now describe.

Let  be a continuous real-valued random variable on a sample space  in . For simplicity, let . Define the
distribution function  of  as

Suppose that there is a nonnegative, continuous real-valued function  on  such that

and

Then we call  the probability density function (or . for short) for . We thus have

Also, by the Fundamental Theorem of Calculus, we have

X

P (X = 3)
P (X ≤ 3)

=
3

6

1

2

P (X ≤ 3) = P (X = 1) +P (X = 2) +P (X = 3). (8.5.1)

X Ω
Ω = 1, 2, 3, 4, 5, 6 A X ≤ 3

1, 2, 3

X (0, 1)

x (0, 1) P (X = x)
P (X ≤ x) P (X ≤ x) = x (0, 1)

x (0, 1) (0, x) x X (0, 1)
(0, 1)

P (X ≤ x) = = = x
length of (0, x)

length of (0, 1)

x

1
(8.5.2)

X Ω = (0, 1) A

X ≤ x (0, x)

P (X ≤ 3) = P (X = 1) +P (X = 2) +P (X = 3)

X Ω R Ω = (a, b)
F X

F (x) = P (X ≤ x), for  −∞ < x < ∞

=

⎧

⎩
⎨
⎪

⎪

1, for x ≥ b

P (X ≤ x), for a < x < b

0, for x ≤ a.

(8.5.3)

(8.5.4)

f R

F (x) = f(y)dy, for  −∞ < x < ∞,∫
x

−∞
(8.5.5)

f(x)dx = 1∫
∞

−∞
(8.5.6)

f p. d. f X

P (X ≤ x) = f(y)dy, for a < x < b∫
x

a

(8.5.7)
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Let  represent a randomly selected real number in the interval . We say that  has the uniform distribution on ,
with distribution function

and probability density function

In general, if  represents a randomly selected real number in an interval , then  has the uniform distribution function

A famous distribution function is given by the standard normal distribution, whose probability density function  is

This is often called a “bell curve”, and is used widely in statistics. Since we are claiming that  is a , we should have

by Equation , which is equivalent to

We can use a double integral in polar coordinates to verify this integral. First,

since the same function is being integrated twice in the middle equation, just with different variables. But using polar
coordinates, we see that

(x) = f(x), for  −∞ < x < ∞.F ′ (8.5.8)

Example : Uniform Distribution8.5.1

X (0, 1) X (0, 1)

F (x) = P (X ≤ x) =

⎧

⎩
⎨
⎪

⎪

1, for x ≥ 1

x, for 0 < x < 1

0, for x ≤ 0,

(8.5.9)

f(x) = (x) ={F ′ 1, for 0 < x < 1

0, elsewhere.
(8.5.10)

X (a, b) X

F (x) = P (X ≤ x) =

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

1,

,
x

b−a

0,

\text{for }x \ge b 

\text{for }a<x<b 

\text{for }x \le a

(8.5.11)

f(x) = F '(x) =
⎧

⎩
⎨

,
1

b−a

0,

\text{for }a<x<b 

elsewhere.

(8.5.12)

Example : Standard Normal Distribution8.5.2

f

f(x) = , for  −∞ < x < ∞
1

2π
−−

√
e− /2x2

(8.5.13)

f p. d. f .

dx = 1∫
∞

−∞

1

2π
−−

√
e− /2x2

(8.5.14)

8.5.6

dx = .∫
∞

−∞
e− /2x2

2π
−−

√ (8.5.15)

dx dy∫
∞

−∞
∫

∞

−∞
e−( + )/2x2 y2

= ( dx) dy∫
∞

−∞
e− /2y2

∫
∞

−∞
e− /2x2

=( dx)( dy)∫
∞

−∞
e− /2x2

∫
∞

−∞
e− /2y2

=( dx)∫
∞

−∞
e− /2x2

2
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and so

In addition to individual random variables, we can consider jointly distributed random variables. For this, we will let 
be three real-valued continuous random variables defined on the same sample space  in  (the discussion for two random
variables is similar). Then the joint distribution function  is given by

If there is a nonnegative, continuous real-valued function  on  such that

and

then we call  the joint probability density function (or joint p.d.f. for short) for . In general, for 
, we have

with the  symbols interchangeable in any combination. A triple integral, then, can be thought of as representing a
probability (for a function  which is a ).

Let  be real numbers selected randomly from the interval . What is the probability that the equation 
 has at least one real solution ?

Solution

We know by the quadratic formula that there is at least one real solution if . So we need to calculate 
. We will use three jointly distributed random variables to do this. First, since  we have

where the last relation holds for all  such that

Considering  as real variables, the region  in the -plane where the above relation holds is given by 

, which we can see is a union of two regions  and , as in Figure .

dx dy∫
∞

−∞
∫

∞

−∞
e−( + )/2x2 y2

= r dr dθ∫
2π

0
∫

∞

0
e− /2r2

= (− ) dθ∫
2π

0
e− /2r2 ∣

∣
r=∞

r=0

= (0 −(− ))dθ = 1 dθ = 2π,∫
2π

0
e0 ∫

2π

0

( dx)∫
∞

−∞
e− /2x2

2

dx∫
∞

−∞
e− /2x2

= 2π,  and hence 

= 2π
−−

√

X,Y  and Z
Ω R

F  of X,Y  and Z

F (x, y, z) = P (X ≤ x,Y ≤ y,Z ≤ z),  for  −∞ < x, y, z < ∞. (8.5.16)

f R
3

F (x, y, z) = f(u, v,w)du dvdw,  for  −∞ < x, y, z < ∞∫
z

−∞
∫

y

−∞
∫

x

−∞
(8.5.17)

f(x, y, z)dx dy dz = 1,∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
(8.5.18)

f X,Y  and Z
< , < , <a1 b1 a2 b2 a3 b3

P ( < X ≤ , < Y ≤ , < Z ≤ ) = f(x, y, z)dx dy dz,a1 b1 a2 b2 a3 b3 ∫
b3

a3

∫
b2

a2

∫
b1

a1

(8.5.19)

≤  and  <
f p. d. f .

Example 8.5.3

a, b,  and c (0, 1)
a +bx+c = 0x2 x

−4ac ≥ 0b2

P ( −4ac ≥ 0)b2 0 < a, b, c < 1,

−4ac ≥ 0 ⇔ 0 < 4ac ≤ < 1 ⇔ 0 < 2 ≤ b < 1,b2 b2 a−−√ c√

0 < a, c < 1

0 < 4ac < 1 ⇔ 0 < c <
1

4a

a, b and c R ac

R = (a, c) : 0 < a < 1, 0 < c < 1, 0 < c <
1

4a
R1 R2 8.5.1
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Figure : Region 

Now let  be continuous random variables, each representing a randomly selected real number from the interval 
 (think of  representing , respectively). Then, similar to how we showed that  is the 

 of the uniform distribution on , it can be shown that  in  (0 elsewhere) is the joint 
. Now,

so this probability is the triple integral of  as b varies from  to 1 and as  varies over the region .
Since  can be divided into two regions , then the required triple integral can be split into a sum of two triple
integrals, using vertical slices in :

In other words, the equation  has about a 25% chance of being solved!

Expectation Value
The expectation value (or expected value)  of a random variable  can be thought of as the “average” value of  as it varies
over its sample space. If  is a discrete random variable, then

with the sum being taken over all elements  of the sample space. For example, if  represents the number rolled on a six-sided
die, then

is the expected value of , which is the average of the integers 1−6.

8.5.1 R = ∪R1 R2

X,Y  and Z
(0, 1) X,Y  and Z a, b and c f(x) = 1
p. d. f . (0, 1) f(x, y, z) = 1 for x, y, z (0, 1)
p. d. f .  of X,Y  and Z

P ( −4ac ≥ 0) = P ((a, c) ∈ R, 2 ≤ b < 1),b2 a−−√ c√

f(a, b, c) = 1 2 a−−√ c√ (a, c) R

R  and R1 R2

R

P ( −4ac ≥ 0)b2

P ( −4ac ≥ 0)b2

= 1 db dc da+ 1 db dc da∫
1/4

0
∫

1

0  
R1

∫
1

2 a√ c√

∫
1

1/4
∫

1/4a

0
  

R2

∫
1

2 a√ c√

= (1 −2 )dc da+ (1 −2 )dc da∫
1/4

0
∫

1

0
a−−√ c√ ∫

1

1/4
∫

1/4a

0
a−−√ c√

= (c− ) da+ (c− ) da∫
1/4

0

4

3
a−−√ c3/2∣

∣
c=1

c=0
∫

1

1/4

4

3
a−−√ c3/2∣

∣
c=1/4a

c=0

= (1 − ) da+ da∫
1/4

0

4

3
a−−√ ∫

1

1/4

1

12a

= a− + lna
8

9
a3/2∣

∣
1/4

0

1

12
∣
∣
1

1/4

=( − )+(0 − ln ) = + ln4
1

4

1

9

1

12

1

4

5

36

1

12

= ≈ 0.2544
5 +3 ln4

36

a +bx+c = 0x2

EX X X

X

EX = xP (X = x),∑
x

(8.5.20)

x X

EX = xP (X = x) = x = 3.5∑
x=1

6

∑
x=1

6 1

6
(8.5.21)

X
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If  is a real-valued continuous random variable with p.d.f. , then

For example, if  has the uniform distribution on the interval , then its p.d.f. is

and so

For a pair of jointly distributed, real-valued continuous random variables  and  with joint p.d.f. , the expected values of 
 are given by

respectively.

If you were to pick  random real numbers from the interval , what are the expected values for the smallest and
largest of those numbers?

Solution

Let  be  continuous random variables, each representing a randomly selected real number from , i.e. each
has the uniform distribution on . Define random variables  by

Then it can be shown that the joint p.d.f. of  is

Thus, the expected value of  is

and similarly (see Exercise 3) it can be shown that

So, for example, if you were to repeatedly take samples of  random real numbers from , and each time store the

minimum and maximum values in the sample, then the average of the minimums would approach  and the average of the

X f

EX = xf(x)dx∫
∞

−∞
(8.5.22)

X (0, 1)

f(x) ={
1,

0,

\text{for }0 < x < 1 

elsewhere
(8.5.23)

EX = xf(x)dx = x dx =∫
∞

−∞
∫

1

0

1

2
(8.5.24)

X Y f(x, y)
X and Y

EX = xf(x, y)dx dy and EY = yf(x, y)dx dy∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
∫

∞

−∞
(8.5.25)

Example 8.5.4

n > 2 (0, 1)

, . . . ,U1 Un n (0, 1)
(0, 1) X and Y

X = min( , . . . , ) and Y = max( , . . . , ).U1 Un U1 Un

X and Y

f(x, y) ={
n(n−1)(y−x ,)n−2

0,

\text{for } 0 ≤ x ≤ y ≤ 1 

elsewhere.
(8.5.26)

X

EX

EX

= n(n−1)x(y−x dy dx∫
1

0
∫

1

x

)n−2

= (nx(y−x ) dx∫
1

0
)n−1∣

∣
y=1

y=x

= nx(1 −x dx,  so integration by parts yields∫
1

0
)n−1

= −x(1 −x − (1 −x)n
1

n+1
)n+1∣

∣
1

0

= ,
1

n+1

EY = n(n−1)y(y−x dx dy = .∫
1

0
∫

y

0
)n−2 n

n+1

n = 3 (0, 1)
1

4
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maximums would approach  as the number of samples grows. It would be relatively simple (see Exercise 4) to write a

computer program to test this.
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9.1: Modeling with Differential Equations

Identify the order of a differential equation.
Explain what is meant by a solution to a differential equation.
Distinguish between the general solution and a particular solution of a differential equation.
Identify an initial-value problem.
Identify whether a given function is a solution to a differential equation or an initial-value problem.

Calculus is the mathematics of change, and rates of change are expressed by derivatives. Thus, one of the most common ways to
use calculus is to set up an equation containing an unknown function  and its derivative, known as a differential equation.
Solving such equations often provides information about how quantities change and frequently provides insight into how and why
the changes occur.

Techniques for solving differential equations can take many different forms, including direct solution, use of graphs, or computer
calculations. We introduce the main ideas in this chapter and describe them in a little more detail later in the course. In this section
we study what differential equations are, how to verify their solutions, some methods that are used for solving them, and some
examples of common and useful equations.

General Differential Equations

Consider the equation  which is an example of a differential equation because it includes a derivative. There is a
relationship between the variables  and  is an unknown function of . Furthermore, the left-hand side of the equation is the
derivative of . Therefore we can interpret this equation as follows: Start with some function  and take its derivative. The
answer must be equal to . What function has a derivative that is equal to ? One such function is , so this function is
considered a solution to a differential equation.

A differential equation is an equation involving an unknown function  and one or more of its derivatives. A solution
to a differential equation is a function  that satisfies the differential equation when  and its derivatives are substituted
into the equation.

Go to this website to explore more on this topic.

Some examples of differential equations and their solutions appear in Table .

Table : Examples of Differential Equations and Their Solutions
Equation Solution

Note that a solution to a differential equation is not necessarily unique, primarily because the derivative of a constant is zero. For
example,  is also a solution to the first differential equation in Table . We will return to this idea a little bit later in
this section. For now, let’s focus on what it means for a function to be a solution to a differential equation.

Verify that the function  is a solution to the differential equation .

Solution

To verify the solution, we first calculate  using the chain rule for derivatives. This gives . Next we
substitute  and  into the left-hand side of the differential equation:

 Learning Objectives

y = f(x)

y' = 3 ,x2

x y : y x

y y = f(x)

3x2 3x2 y = x3

 Definition: differential equation

y = f(x)

y = f(x) f

9.1.1

9.1.1

= 2xy′ y = x2

+ 3y = 6x + 11y′ y = + 2x + 3e−3x

− 3 + 2y = 24y′′ y′ e−2x y = 3 − 4 + 2ex e2x e−2x

y = +4x2 9.1.1

 Example : Verifying Solutions of Differential Equations9.1.1

y = +2x+3e−3x y' +3y = 6x+11

y' y' = −3 +2e−3x

y y'
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The resulting expression can be simplified by first distributing to eliminate the parentheses, giving

Combining like terms leads to the expression , which is equal to the right-hand side of the differential equation. This
result verifies that  is a solution of the differential equation.

Verify that  is a solution to the differential equation 

Hint

First calculate  then substitute both  and  into the left-hand side.

It is convenient to define characteristics of differential equations that make it easier to talk about them and categorize them. The
most basic characteristic of a differential equation is its order.

The order of a differential equation is the highest order of any derivative of the unknown function that appears in the equation.

The highest derivative in the equation is ,

What is the order of each of the following differential equations?

a. 
b. 
c. 

Solution

a. The highest derivative in the equation is ,so the order is .
b. The highest derivative in the equation is , so the order is .
c. The highest derivative in the equation is , so the order is .

What is the order of the following differential equation?

Hint

What is the highest derivative in the equation?

Answer

General and Particular Solutions
We already noted that the differential equation  has at least two solutions:  and . The only difference
between these two solutions is the last term, which is a constant. What if the last term is a different constant? Will this expression
still be a solution to the differential equation? In fact, any function of the form , where  represents any constant, is a
solution as well. The reason is that the derivative of  is , regardless of the value of . It can be shown that any solution of
this differential equation must be of the form . This is an example of a general solution to a differential equation. A

(−3 +2) +3( +2x+3).e−2x e−2x

−3 +2 +3 +6x+9.e−2x e−2x

6x+11

y = +2x+3e−3x

 Exercise 9.1.1

y = 2 −2x−2e3x y' −3y = 6x+4.

y' y' y

 Definition: order of a differential equation

 Example : Identifying the Order of a Differential Equation9.1.2

y'

y' −4y = −3x+4x2

−3x +xy' −3y = sinxx2y′′′ y′′

− + y = −3 +4x−124
x y

(4) 6

x2 y
′′ 12

x4 x3 x2

y' 1

y′′′ 3

y(4) 4

 Exercise 9.1.2

( −3x) −(3 +1)y' +3y = sinx cosxx4 y(5) x2

5

y' = 2x y = x2 y = +4x2

y = +Cx2 C

+Cx2 2x C

y = +Cx2
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graph of some of these solutions is given in Figure . (Note: in this graph we used even integer values for C ranging between 
 and . In fact, there is no restriction on the value of ; it can be an integer or not.)

Figure : Family of solutions to the differential equation 

In this example, we are free to choose any solution we wish; for example,  is a member of the family of solutions to this
differential equation. This is called a particular solution to the differential equation. A particular solution can often be uniquely
identified if we are given additional information about the problem.

Find the particular solution to the differential equation  passing through the point .

Solution

Any function of the form  is a solution to this differential equation. To determine the value of , we substitute the
values  and  into this equation and solve for :

Therefore the particular solution passing through the point  is .

Find the particular solution to the differential equation

passing through the point  given that  is a general solution to the differential equation.

Hint

First substitute  and  into the equation, then solve for .

Answer

Initial-Value Problems
Usually a given differential equation has an infinite number of solutions, so it is natural to ask which one we want to use. To choose
one solution, more information is needed. Some specific information that can be useful is an initial value, which is an ordered pair
that is used to find a particular solution.

9.1.1

−4 4 C

9.1.1 y' = 2x.

y = −3x2

 Example : Finding a Particular Solution9.1.3

y' = 2x (2, 7)

y = +Cx2 C

x = 2 y = 7 C

y = +Cx2

7 = +C22

= 4 +C

C = 3.

(2, 7) y = +3x2

 Exercise 9.1.3

y' = 4x+3

(1, 7), y = 2 +3x+Cx2

x = 1 y = 7 C

y = 2 +3x+2x2
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A differential equation together with one or more initial values is called an initial-value problem. The general rule is that the
number of initial values needed for an initial-value problem is equal to the order of the differential equation. For example, if we
have the differential equation , then  is an initial value, and when taken together, these equations form an initial-
value problem. The differential equation  is second order, so we need two initial values. With initial-value
problems of order greater than one, the same value should be used for the independent variable. An example of initial values for
this second-order equation would be  and  These two initial values together with the differential equation
form an initial-value problem. These problems are so named because often the independent variable in the unknown function is ,
which represents time. Thus, a value of  represents the beginning of the problem.

Verify that the function  is a solution to the initial-value problem

Solution

For a function to satisfy an initial-value problem, it must satisfy both the differential equation and the initial condition. To
show that  satisfies the differential equation, we start by calculating . This gives . Next we substitute both 

 and  into the left-hand side of the differential equation and simplify:

This is equal to the right-hand side of the differential equation, so  solves the differential equation. Next we
calculate :

This result verifies the initial value. Therefore the given function satisfies the initial-value problem.

Verify that  is a solution to the initial-value problem

Hint

First verify that  solves the differential equation. Then check the initial value.

In Example , the initial-value problem consisted of two parts. The first part was the differential equation , and
the second part was the initial value  These two equations together formed the initial-value problem.

The same is true in general. An initial-value problem will consists of two parts: the differential equation and the initial condition.
The differential equation has a family of solutions, and the initial condition determines the value of . The family of solutions to
the differential equation in Example  is given by  This family of solutions is shown in Figure , with the
particular solution  labeled.

y' = 2x y(3) = 7

−3y' +2y = 4y′′ ex

y(0) = 2 y'(0) = −1.

t

t = 0

 Example : Verifying a Solution to an Initial-Value Problem9.1.4

y = 2 +e−2t et

y' +2y = 3 , y(0) = 3.et

y y' y' = −4 +e−2t et

y y'

y' +2y = (−4 + ) +2(2 + )e−2t et e−2t et

= −4 + +4 +2 = 3 .e−2t et e−2t et et

y = 2 +e−2t et

y(0)

y(0) = 2 + = 2 +1 = 3.e−2(0) e0

 Exercise 9.1.4

y = 3 +4 sin te2t

y' −2y = 4 cos t−8 sin t, y(0) = 3.

y

9.1.4 y' +2y = 3ex

y(0) = 3.

C

9.1.4 y = 2 +C .e−2t et 9.1.2

y = 2 +e−2t et
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Figure : A family of solutions to the differential equation . The particular solution  is labeled.

Solve the following initial-value problem:

Solution

The first step in solving this initial-value problem is to find a general family of solutions. To do this, we find an antiderivative
of both sides of the differential equation

namely,

.

We are able to integrate both sides because the y term appears by itself. Notice that there are two integration constants:  and 
. Solving this equation for  gives

Because  and  are both constants,  is also a constant. We can therefore define  which leads to the
equation

Next we determine the value of . To do this, we substitute  and  into this equation and solve for :

Now we substitute the value  into the general equation. The solution to the initial-value problem is 

Analysis

The difference between a general solution and a particular solution is that a general solution involves a family of functions,
either explicitly or implicitly defined, of the independent variable. The initial value or values determine which particular
solution in the family of solutions satisfies the desired conditions.

9.1.2 y' + 2y = 3et y = 2 +e−2t et

 Example : Solving an Initial-value Problem9.1.5

y' = 3 + −4, y(0) = 5.ex x2

∫ y' dx = ∫ (3 + −4)dx,ex x2

y+ = 3 + −4x+C1 ex 1
3
x3 C2

C1

C2 y

y = 3 + −4x+ − .ex 1
3
x3 C2 C1

C1 C2 −C2 C1 C = − ,C2 C1

y = 3 + −4x+C.ex 1
3
x3

C x = 0 y = 5 C

.

5

5

C

= 3 + −4(0) +Ce0 1

3
03

= 3 +C

= 2

C = 2

y = 3 + −4x+2.ex 1
3
x3
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Solve the initial-value problem

Hint

First take the antiderivative of both sides of the differential equation. Then substitute  and  into the resulting
equation and solve for .

Answer

In physics and engineering applications, we often consider the forces acting upon an object, and use this information to understand
the resulting motion that may occur. For example, if we start with an object at Earth’s surface, the primary force acting upon that
object is gravity. Physicists and engineers can use this information, along with Newton’s second law of motion (in equation form 

, where  represents force,  represents mass, and  represents acceleration), to derive an equation that can be solved.

Figure : For a baseball falling in air, the only force acting on it is gravity (neglecting air resistance).

In Figure  we assume that the only force acting on a baseball is the force of gravity. This assumption ignores air resistance.
(The force due to air resistance is considered in a later discussion.) The acceleration due to gravity at Earth’s surface, g, is
approximately . We introduce a frame of reference, where Earth’s surface is at a height of 0 meters. Let  represent the
velocity of the object in meters per second. If , the ball is rising, and if , the ball is falling (Figure).

Figure : Possible velocities for the rising/falling baseball.

Our goal is to solve for the velocity  at any time . To do this, we set up an initial-value problem. Suppose the mass of the ball
is , where  is measured in kilograms. We use Newton’s second law, which states that the force acting on an object is equal to its
mass times its acceleration . Acceleration is the derivative of velocity, so . Therefore the force acting on the
baseball is given by . However, this force must be equal to the force of gravity acting on the object, which (again using
Newton’s second law) is given by , since this force acts in a downward direction. Therefore we obtain the equation 

, which becomes . Dividing both sides of the equation by  gives the equation

 Exercise 9.1.5

y' = −4x+3 −6 , y(0) = 8.x2 ex

x = 0 y = 8

C

y = −2 +3x−6 +141

3
x3 x2 ex

F = ma F m a

9.1.3

9.1.3

9.8 m/s2 v(t)

v(t) > 0 v(t) < 0

9.1.4

v(t) t

m m

(F = ma) a(t) = v'(t)

F = mv'(t)

= −mgFg

F = Fg mv'(t) = −mg m

v'(t) = −g.
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Notice that this differential equation remains the same regardless of the mass of the object.

We now need an initial value. Because we are solving for velocity, it makes sense in the context of the problem to assume that we
know the initial velocity, or the velocity at time  This is denoted by 

A baseball is thrown upward from a height of  meters above Earth’s surface with an initial velocity of  m/s, and the only
force acting on it is gravity. The ball has a mass of  kg at Earth’s surface.

a. Find the velocity  of the basevall at time .
b. What is its velocity after  seconds?

Solution

a. From the preceding discussion, the differential equation that applies in this situation is

where . The initial condition is , where  m/s. Therefore the initial-value problem is 
 m/s.

The first step in solving this initial-value problem is to take the antiderivative of both sides of the differential equation. This
gives

The next step is to solve for . To do this, substitute  and :

Therefore  and the velocity function is given by 

b. To find the velocity after  seconds, substitute  into .

The units of velocity are meters per second. Since the answer is negative, the object is falling at a speed of  m/s.

Suppose a rock falls from rest from a height of  meters and the only force acting on it is gravity. Find an equation for the
velocity  as a function of time, measured in meters per second.

Hint

What is the initial velocity of the rock? Use this with the differential equation in Example  to form an initial-value
problem, then solve for .

Answer

A natural question to ask after solving this type of problem is how high the object will be above Earth’s surface at a given point in
time. Let  denote the height above Earth’s surface of the object, measured in meters. Because velocity is the derivative of

t = 0. v(0) = .v0

 Example : Velocity of a Moving Baseball9.1.6

3 10

0.15

v(t) t

2

v'(t) = −g,

g = 9.8 m/s2 v(0) = v0 = 10v0

v'(t) = −9.8 , v(0) = 10m/s
2

∫ v'(t)dt = ∫ −9.8 dt

v(t) = −9.8t+C.

C t = 0 v(0) = 10

v(t)

v(0)

10

= −9.8t+C

= −9.8(0) +C

= C.

C = 10 v(t) = −9.8t+10.

2 t = 2 v(t)

v(t)

v(2)

v(2)

= −9.8t+10

= −9.8(2) +10

= −9.6

9.6

 Exercise 9.1.6

100

v(t)

9.1.6

v(t)

v(t) = −9.8t

s(t)
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position (in this case height), this assumption gives the equation . An initial value is necessary; in this case the initial
height of the object works well. Let the initial height be given by the equation . Together these assumptions give the
initial-value problem

If the velocity function is known, then it is possible to solve for the position function as well.

A baseball is thrown upward from a height of  meters above Earth’s surface with an initial velocity of , and the only
force acting on it is gravity. The ball has a mass of  kilogram at Earth’s surface.

a. Find the position  of the baseball at time .
b. What is its height after  seconds?

Solution

We already know the velocity function for this problem is . The initial height of the baseball is  meters, so 
. Therefore the initial-value problem for this example is

To solve the initial-value problem, we first find the antiderivatives:

Next we substitute  and solve for :

.

Therefore the position function is 

b. The height of the baseball after  sec is given by 

Therefore the baseball is  meters above Earth’s surface after  seconds. It is worth noting that the mass of the ball cancelled
out completely in the process of solving the problem.

Key Concepts
A differential equation is an equation involving a function  and one or more of its derivatives. A solution is a function 

 that satisfies the differential equation when  and its derivatives are substituted into the equation.
The order of a differential equation is the highest order of any derivative of the unknown function that appears in the equation.
A differential equation coupled with an initial value is called an initial-value problem. To solve an initial-value problem, first
find the general solution to the differential equation, then determine the value of the constant. Initial-value problems have many
applications in science and engineering.

Glossary

differential equation
an equation involving a function  and one or more of its derivatives

general solution (or family of solutions)
the entire set of solutions to a given differential equation

initial value(s)
a value or set of values that a solution of a differential equation satisfies for a fixed value of the independent variable

s'(t) = v(t)

s(0) = s0

s'(t) = v(t), s(0) = .s0

 Example : Height of a Moving Baseball9.1.7

3 10m/s

0.15

s(t) t

2

v(t) = −9.8t+10 3

= 3s0

∫ s'(t)dt = ∫ (−9.8t+10)dt

s(t) = −4.9 +10t+C.t2

t = 0 C

s(t) = −4.9 +10t+Ct2

s(0) = −4.9(0 +10(0) +C)2

3 = C

s(t) = −4.9 +10t+3.t2

2 s(2) :

s(2) = −4.9(2 +10(2) +3 = −4.9(4) +23 = 3.4.)2

3.4 2

y = f(x)

y = f(x) f

y = y(x)
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initial velocity
the velocity at time 

initial-value problem
a differential equation together with an initial value or values

order of a differential equation
the highest order of any derivative of the unknown function that appears in the equation

particular solution
member of a family of solutions to a differential equation that satisfies a particular initial condition

solution to a differential equation
a function  that satisfies a given differential equation

9.1: Modeling with Differential Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

8.1: Basics of Differential Equations by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
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9.2: Direction Fields and Euler's Method
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9.4: Models for Population Growth

In this section, we strive to understand the ideas generated by the following important questions:

How can we use differential equations to realistically model the growth of a population?
How can we assess the accuracy of our models?

The growth of the earth’s population is one of the pressing issues of our time. Will the population continue to grow? Or will it
perhaps level off at some point, and if so, when? In this section, we will look at two ways in which we may use differential
equations to help us address questions such as these. Before we begin, let’s consider again two important differential equations that
we have seen in earlier work this chapter.

Recall that one model for population growth states that a population grows at a rate proportional to its size.

a. We begin with the differential equation

Sketch a slope field below as well as a few typical solutions on the axes provided.
b. Find all equilibrium solutions of Equation  and classify them as stable or unstable.
c. If  is positive, describe the long-term behavior of the solution to Equation .
d. Let’s now consider a modified differential equation given by

As before, sketch a slope field as well as a few typical solutions on the following axes provided.
e. Find any equilibrium solutions and classify them as stable or unstable.
f. If  is positive, describe the long-term behavior of the solution.

 

The Earth’s Population

We will now begin studying the earth’s population. To get started, here are some data for the earth’s population in recent years that
we will use in our investigations.

Year 1998 1999 2000 2001 2002 2005 2006 2007 2008 2009 2010

Populatio
n (in

Billions)
5.932 6.008 6.084 6.159 6.234 6.456 6.531 6.606 6.681 6.756 6.831
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Our first model will be based on the following assumption:

The rate of change of the population is proportional to the population.

On the face of it, this seems pretty reasonable. When there is a relatively small number of people, there will be fewer births and
deaths so the rate of change will be small. When there is a larger number of people, there will be more births and deaths so we
expect a larger rate of change. If  is the population  years after the year 2000, we may express this assumption as

where  is a constant of proportionality.

a. Use the data in the table to estimate the derivative  using a central difference. Assume that  corresponds to the
year 2000.

b. What is the population ?
c. Use these two facts to estimate the constant of proportionality in the differential equation.
d. Now that we know the value of , we have the initial value problem of Equation  with . Find the

solution to this initial value problem.
e. What does your solution predict for the population in the year 2010? Is this close to the actual population given in the

table?
f. When does your solution predict that the population will reach 12 billion?
g. What does your solution predict for the population in the year 2500?
h. Do you think this is a reasonable model for the earth’s population? Why or why not? Explain your thinking using a couple

of complete sentences.

Our work in Activity  shows that that the exponential model is fairly accurate for years relatively close to 2000. However, if
we go too far into the future, the model predicts increasingly large rates of change, which causes the population to grow arbitrarily
large. This does not make much sense since it is unrealistic to expect that the earth would be able to support such a large
population.

The constant  in the differential equation has an important interpretation. Let’s rewrite the differential equation

by solving for , so that we have

Viewed in this light,  is the ratio of the rate of change to the population; in other words, it is the contribution to the rate of change
from a single person. We call this the per capita growth rate.

In the exponential model we introduced in Activity , the per capita growth rate is constant. In particular, we are assuming that
when the population is large, the per capita growth rate is the same as when the population is small. It is natural to think that the per
capita growth rate should decrease when the population becomes large, since there will not be enough resources to support so many
people. In other words, we expect that a more realistic model would hold if we assume that the per capita growth rate depends on
the population P. In the previous activity, we computed the per capita growth rate in a single year by computing , the quotient of 

 and  (which we did for ). If we return data and compute the per capita growth rate over a range of years, we generate the
data shown in Figure , which shows how the per capita growth rate is a function of the population, .

Activity : Growth Dynamics9.4.1

P (t) t

= kP
dP

dt
(9.4.2)

k

(0)P ′ t = 0
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Figure : A plot of per capita growth rate vs. population P.

From the data, we see that the per capita growth rate appears to decrease as the population increases. In fact, the points seem to lie
very close to a line, which is shown at two different scales in Figure .

Figure : The line that approximates per capita growth as a function of population, P.

Looking at this line carefully, we can find its equation to be

If we multiply both sides by , we arrive at the differential equation

Graphing the dependence of  on the population , we see that this differential equation demonstrates a quadratic relationship
between  and , as shown in Figure .

9.4.1

9.4.2

9.4.2
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dt

P

P

= P (0.025 −0.002P ).
dP
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Figure : A plot of  vs.  for Equation .

Equation  is an example of the logistic equation, and is the second model for population growth that we will consider. We
have reason to believe that it will be more realistic since the per capita growth rate is a decreasing function of the population.

Indeed, the graph in Figure  shows that there are two equilibrium solutions, , which is unstable, and , which is
a stable equilibrium. The graph shows that any solution with  will eventually stabilize around 12.5. In other words, our
model predicts the world’s population will eventually stabilize around 12.5 billion.

A prediction for the long-term behavior of the population is a valuable conclusion to draw from our differential equation. We
would, however, like to answer some quantitative questions. For instance, how long will it take to reach a population of 10 billion?
To determine this, we need to find an explicit solution of the equation. Solving the logistic differential equation Since we would
like to apply the logistic model in more general situations, we state the logistic equation in its more general form,

The equilibrium solutions here are when  and , which shows that . The equilibrium at  is called
the carrying capacity of the population for it represents the stable population that can be sustained by the environment.

We now solve the logistic Equation , which is separable, so we separate the variables

and integrate to find that

To find the antiderivative on the left, we use the partial fraction decomposition

Now we are ready to integrate, with

On the left, observe that  is constant, so we can remove the factor of  and antidifferentiate to find that

Multiplying both sides of this last equation by  and using an important rule of logarithms, we next find that

From the definition of the logarithm, replacing  with , and letting  absorb the absolute value signs, we now know that

At this point, all that remains is to determine  and solve algebraically for .

If the initial population is , then it follows that

so

We will solve this most recent equation for  by multiplying both sides by  to obtain

9.4.3 dP

dt
P 9.4.3

9.4.3
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Swapping the left and right sides, expanding, and factoring, it follows that

Dividing to solve for , we see that

Finally, we choose to multiply the numerator and denominator by  to obtain

While that was a lot of algebra, notice the result: we have found an explicit solution to the initial value problem

with  and that solution is Equation .

For the logistic equation describing the earth’s population that we worked with earlier in this section, we have

, , and .

This gives the solution

whose graph is shown in Figure  Notice that the graph shows the population leveling off at 12.5 billion, as we expected, and
that the population will be around 10 billion in the year 2050. These results, which we have found using a relatively simple
mathematical model, agree fairly well with predictions made using a much more sophisticated model developed by the United
Nations.

Figure : The solution to the logistic equation modeling the earth’s population (Equation ).

The logistic equation is useful in other situations, too, as it is good for modeling any situation in which limited growth is possible.
For instance, it could model the spread of a flu virus through a population contained on a cruise ship, the rate at which a rumor
spreads within a small town, or the behavior of an animal population on an island. Again, it is important to realize that through our
work in this section, we have completely solved the logistic equation, regardless of the values of the constants , , and .

Anytime we encounter a logistic equation, we can apply the formula we found in Equation .

P (N − )P0 = (N −P )P0 e
kNt

= N − P .P0 e
kNt

P0 e
kNt

(9.4.5)

(9.4.6)

NP0 e
kNt = P (N − ) + PP0 P0 e

kNt

= P (N − + ).P0 P0e
kNt

(9.4.7)

(9.4.8)

P

P = .
NP0 ekNt

N − +P0 P0e
kNt

1
P0
e

−kNt

P (t) = .
N

( ) +1
N −P0

P0
e−kNt

(9.4.9)
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Consider the logistic equation

with the graph of  vs.  shown below.

a. At what value of  is the rate of change greatest?
b. Consider the model for the earth’s population that we created. At what value of  is the rate of change greatest? How does

that compare to the population in recent years?
c. According to the model we developed, what will the population be in the year 2100?
d. According to the model we developed, when will the population reach 9 billion?
e. Now consider the general solution to the general logistic initial value problem that we found, given by Equation .

Verify algebraically that  and that 

Summary
In this section, we encountered the following important ideas:

If we assume that the rate of growth of a population is proportional to the population, we are led to a model in which the
population grows without bound and at a rate that grows without bound.
By assuming that the per capita growth rate decreases as the population grows, we are led to the logistic model of population
growth, which predicts that the population will eventually stabilize at the carrying capacity.

 

This page titled 9.4: Models for Population Growth is shared under a CC BY-SA license and was authored, remixed, and/or curated by Matthew
Boelkins, David Austin & Steven Schlicker (ScholarWorks @Grand Valley State University) .

7.6: Population Growth and the Logistic Equation by Matthew Boelkins, David Austin & Steven Schlicker is licensed CC BY-SA 4.0.
Original source: https://activecalculus.org/single.
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9.5: Linear Equations

Write a first-order linear differential equation in standard form.
Find an integrating factor and use it to solve a first-order linear differential equation.
Solve applied problems involving first-order linear differential equations.

Earlier, we studied an application of a first-order differential equation that involved solving for the velocity of an object. In
particular, if a ball is thrown upward with an initial velocity of  ft/s, then an initial-value problem that describes the velocity of
the ball after  seconds is given by

with 

This model assumes that the only force acting on the ball is gravity. Now we add to the problem by allowing for the possibility of
air resistance acting on the ball.

Air resistance always acts in the direction opposite to motion. Therefore if an object is rising, air resistance acts in a downward
direction. If the object is falling, air resistance acts in an upward direction (Figure ). There is no exact relationship between
the velocity of an object and the air resistance acting on it. For very small objects, air resistance is proportional to velocity; that is,
the force due to air resistance is numerically equal to some constant  times . For larger (e.g., baseball-sized) objects, depending
on the shape, air resistance can be approximately proportional to the square of the velocity. In fact, air resistance may be
proportional to , or , or some other power of .

Figure : Forces acting on a moving baseball: gravity acts in a downward direction and air resistance acts in a direction
opposite to the direction of motion.

We will work with the linear approximation for air resistance. If we assume , then the expression for the force  due to air
resistance is given by . Therefore the sum of the forces acting on the object is equal to the sum of the gravitational force
and the force due to air resistance. This, in turn, is equal to the mass of the object multiplied by its acceleration at time (Newton’s
second law). This gives us the differential equation

Finally, we impose an initial condition  where  is the initial velocity measured in meters per second. This makes 
 The initial-value problem becomes

with 
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The differential equation in this initial-value problem is an example of a first-order linear differential equation. (Recall that a
differential equation is first-order if the highest-order derivative that appears in the equation is .) In this section, we study first-
order linear equations and examine a method for finding a general solution to these types of equations, as well as solving initial-
value problems involving them.

A first-order differential equation is linear if it can be written in the form

where  and  are arbitrary functions of .

Remember that the unknown function  depends on the variable ; that is,  is the independent variable and  is the dependent
variable. Some examples of first-order linear differential equations are

Examples of first-order nonlinear differential equations include

These equations are nonlinear because of terms like  etc. Due to these terms, it is impossible to put these equations into
the same form as Equation.

Standard Form

Consider the differential equation

Our main goal in this section is to derive a solution method for equations of this form. It is useful to have the coefficient of  be
equal to . To make this happen, we divide both sides by 

This is called the standard form of the differential equation. We will use it later when finding the solution to a general first-order
linear differential equation. Returning to Equation, we can divide both sides of the equation by . This leads to the equation

Now define

and

Then Equation  becomes

1

 Definition: Linear first-order differential equation

a(x)y' +b(x)y = c(x),

a(x), b(x), c(x) x

y x x y

(3 −4) +(x−3)y = sinxx2 y′

(sinx) −(cosx)y = cotxy′

4x +(3 lnx)y = −4x.y′ x3

( −( = (3x−2)(y+4)y′)4 y′)3

4 +3 = 4x−5y′ y3

( = siny+cosx.y′)2

(y' , ,)4 y3

(3 −4)y' +(x−3)y = sinx.x2

y'

1 3 −4.x2

y' +( ) y =
x−3

3 −4x2

sinx

3 −4x2

a(x)

y' + y = .
b(x)

a(x)

c(x)

a(x)
(9.5.1)

p(x) =
b(x)

a(x)

q(x) =
c(x)

a(x)
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We can write any first-order linear differential equation in this form, and this is referred to as the standard form for a first-order
linear differential equation.

Put each of the following first-order linear differential equations into standard form. Identify  and  for each equation.

a. 

b.  (here )

c. 

Solution

a. Add  to both sides:

In this equation,  and \|(q(x)=3x.\)

b. Multiply both sides by , then subtract  from each side:

Finally, divide both sides by  to make the coefficient of  equal to :

This is allowable because in the original statement of this problem we assumed that . (If  then the original equation
becomes , which is clearly a false statement.)

In this equation,  and .

c. Subtract  from each side and add :

Next divide both sides by :

.

In this equation,  and .

Put the equation  into standard form and identify  and .

Hint

Multiply both sides by the common denominator, then collect all terms involving  on one side.

Answer

y' +p(x)y = q(x).

 Example : Writing First-Order Linear Equations in Standard Form9.5.1

p(x) q(x)

= 3x−4yy′

= 2
3xy′

4y−3
x > 0

y = 3 −4 +5y′ x2

4y

+4y = 3x.y′

p(x) = 4

4y−3 8y

= 2
3xy′

4y−3

3x = 2(4y−3)y′

3x = 8y−6y′

3x −8y = −6.y′

3x y′ 1

− y = − .y′ 8

3x

2

3x

x > 0 x = 0
0 = 2

p(x) = −
8

3x
q(x) = −

2

3x

y 4 −5x2

3 −y = 4 −5.y′ x2

3

− y = −y′ 1

3

4

3
x2 5

3

p(x) = −
1

3
q(x) = −

4

3
x2 5

3

 Exercise 9.5.1

= 5
(x+3)y′

2x−3y−4
p(x) q(x)

y

+ y =y′ 15

x+3

10x−20

x+3
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and

Integrating Factors

We now develop a solution technique for any first-order linear differential equation. We start with the standard form of a first-order
linear differential equation:

The first term on the left-hand side of Equation is the derivative of the unknown function, and the second term is the product of a
known function with the unknown function. This is somewhat reminiscent of the power rule. If we multiply Equation  by a
yet-to-be-determined function , then the equation becomes

The left-hand side Equation  can be matched perfectly to the product rule:

Matching term by term gives , and . Taking the derivative of  and setting it
equal to the right-hand side of  leads to

This is a first-order, separable differential equation for  We know  because it appears in the differential equation we are
solving. Separating variables and integrating yields

Here  can be an arbitrary (positive or negative) constant. This leads to a general method for solving a first-order linear
differential equation. We first multiply both sides of Equation by the integrating factor  This gives

The left-hand side of Equation  can be rewritten as .

Next integrate both sides of Equation  with respect to .

p(x) =
15

x+3

q(x) =
10x−20

x+3

+p(x)y = q(x).y′ (9.5.2)

9.5.2
μ(x)

μ(x)y' +μ(x)p(x)y = μ(x)q(x). (9.5.3)

9.5.3

[f(x)g(x)] = f '(x)g(x) +f(x)g'(x).
d

dx

y = f(x), g(x) = μ(x) g'(x) = μ(x)p(x) g(x) = μ(x)
g'(x) = μ(x)p(x)

μ'(x) = μ(x)p(x).

μ(x). p(x)

= p(x)
μ'(x)

μ(x)

∫ dx = ∫ p(x)dx
μ'(x)

μ(x)

ln |μ(x)| = ∫ p(x)dx+C

=eln |μ(x)| e∫ p(x)dx+C

|μ(x)| = C1e
∫ p(x)dx

μ(x) = .C2e
∫ p(x)dx

(9.5.4)

(9.5.5)

(9.5.6)

(9.5.7)

(9.5.8)

(9.5.9)

C2

μ(x).

μ(x)y' +μ(x)p(x)y = μ(x)q(x). (9.5.10)

9.5.10 (μ(x)y)
d

dx

(μ(x)y) = μ(x)q(x).
d

dx
(9.5.11)

9.5.11 x
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Divide both sides of Equation  by :

Since  was previously calculated, we are now finished. An important note about the integrating constant : It may seem that
we are inconsistent in the usage of the integrating constant. However, the integral involving  is necessary in order to find an
integrating factor for Equation. Only one integrating factor is needed in order to solve the equation; therefore, it is safe to assign a
value for  for this integral. We chose . When calculating the integral inside the brackets in Equation, it is necessary to keep
our options open for the value of the integrating constant, because our goal is to find a general family of solutions to Equation. This
integrating factor guarantees just that.

1. Put the equation into standard form and identify  and .
2. Calculate the integrating factor

3. Multiply both sides of the differential equation by .
4. Integrate both sides of the equation obtained in step , and divide both sides by .
5. If there is an initial condition, determine the value of .

Find a general solution for the differential equation  Assume 

Solution

1. To put this differential equation into standard form, divide both sides by :

Therefore  and 

2. The integrating factor is .

3. Multiplying both sides of the differential equation by  gives us

4. Integrate both sides of the equation.

∫ (μ(x)y)dx = ∫ μ(x)q(x)dx
d

dx

μ(x)y = ∫ μ(x)q(x)dx

(9.5.12)

(9.5.13)

9.5.11 μ(x)

y = [∫ μ(x)q(x)dx+C] .
1

μ(x)

μ(x) C

p(x)

C C = 0

 Problem-Solving Strategy: Solving a First-order Linear Differential Equation

p(x) q(x)

μ(x) = .e∫ p(x)dx

μ(x)
3 μ(x)
C

 Example : Solving a First-order Linear Equation9.5.2

x +3y = 4 −3x.y′ x2 x > 0.

x

+ y = 4x−3.y′ 3

x

p(x) =
3

x
q(x) = 4x−3.

μ(x) = dx = =e∫(3/x) e3 ln x x3

μ(x)

y' + ( ) = (4x−3)x3 x3 3

x
x3

y' +3 y = 4 −3x3 x2 x4 x3

( y) = 4 −3 .
d

dx
x3 x4 x3

∫ ( y)dx = ∫ 4 −3 dx
d

dx
x3 x4 x3

y = − +Cx3 4x5

5

3x4

4

y = − +C .
4x2

5

3x

4
x−3
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5. There is no initial value, so the problem is complete.

Analysis

You may have noticed the condition that was imposed on the differential equation; namely, . For any nonzero value of ,
the general solution is not defined at . Furthermore, when , the integrating factor changes. The integrating factor is
given by Equation as . For this  we get

since . The behavior of the general solution changes at  largely due to the fact that  is not defined there.

Find the general solution to the differential equation  Assume .

Hint

Use the method outlined in the problem-solving strategy for first-order linear differential equations.

Answer

Now we use the same strategy to find the solution to an initial-value problem.

Solve the initial-value problem

Solution

1. This differential equation is already in standard form with  and .

2. The integrating factor is .

3. Multiplying both sides of the differential equation by  gives

Integrate both sides of the equation:

.

x > 0 C

x = 0 x < 0

f(x) = e∫ p(x)dx p(x)

=e∫ p(x)dx e∫(3/x)dx

= e3 ln |x|

= |x|
3

x < 0 x = 0 p(x)

 Exercise 9.5.2

(x−2) +y = 3 +2x.y′ x2 x > 2

y =
+ +Cx3 x2

x−2

 Example : A First-order Linear Initial-Value Problem9.5.3

y' +3y = 2x−1, y(0) = 3.

p(x) = 3 q(x) = 2x−1

μ(x) = =e∫ 3dx e3x

μ(x)

y' +3 y = (2x−1)e3x e3x e3x

[y ] = (2x−1) .
d

dx
e3x e3x

∫ [y ]dx = ∫(2x−1) dx
d

dx
e3x e3x

y = (2x−1) −∫ dxe3x e3x

3

2

3
e3x

y = − +Ce3x
(2x−1)e3x

3

2e3x

9

y = − +C
2x−1

3

2

9
e−3x

y = − +C
2x

3

5

9
e−3x
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4. Now substitute  and  into the general solution and solve for :

Therefore the solution to the initial-value problem is

Solve the initial-value problem

Solution

Applications of First-order Linear Differential Equations
We look at two different applications of first-order linear differential equations. The first involves air resistance as it relates to
objects that are rising or falling; the second involves an electrical circuit. Other applications are numerous, but most are solved in a
similar fashion.

Free fall with air resistance

We discussed air resistance at the beginning of this section. The next example shows how to apply this concept for a ball in vertical
motion. Other factors can affect the force of air resistance, such as the size and shape of the object, but we ignore them here.

A racquetball is hit straight upward with an initial velocity of m/s. The mass of a racquetball is approximately  kg. Air
resistance acts on the ball with a force numerically equal to , where  represents the velocity of the ball at time .

a. Find the velocity of the ball as a function of time.
b. How long does it take for the ball to reach its maximum height?
c. If the ball is hit from an initial height of  meter, how high will it reach?

Solution

a. The mass  and . The initial velocity is . Therefore the initial-value
problem is

Dividing the differential equation by  gives

The differential equation is linear. Using the problem-solving strategy for linear differential equations:

Step 1. Rewrite the differential equation as . This gives  and 

x = 0 y = 3 C

y = x− +C
2

3

5

9
e−3x

3 = (0) − +C
2

3

5

9
e−3(0)

3 = − +C
5

9

C = .
32

9

y = x− + .
2

3

5

9

32

9
e−3x

 Example :9.5.4

−2y = 4x+3y(0) = −2.y′

y = −2x−4 +2e2x

 Example : A Ball with Air Resistance9.5.5

2 0.0427
0.5v v t

1

m = 0.0427kg, k = 0.5, g = 9.8m/s2 = 2m/sv0

0.0427 = −0.5v−0.0427(9.8), = 2.
dv

dt
v0

0.0427

= −11.7096v−9.8, = 2.
dv

dt
v0

+11.7096v= −9.8
dv

dt
p(t) = 11.7096 q(t) = −9.8
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Step 2. The integrating factor is 

Step 3. Multiply the differential equation by :

Step 4. Integrate both sides:

Step 5. Solve for  using the initial condition :

Therefore the solution to the initial-value problem is

b. The ball reaches its maximum height when the velocity is equal to zero. The reason is that when the velocity is positive, it is
rising, and when it is negative, it is falling. Therefore when it is zero, it is neither rising nor falling, and is at its maximum
height:

Therefore it takes approximately  second to reach maximum height.

c. To find the height of the ball as a function of time, use the fact that the derivative of position is velocity, i.e., if 
represents the height at time , then . Because we know  and the initial height, we can form an initial-value
problem:

Integrating both sides of the differential equation with respect to  gives

Solve for  by using the initial condition:

μ(t) = = .e∫ 11.7096dt e11.7096t

μ(t)

+11.7096v = −9.8e
11.7096t

dv

dt e11.7096t e11.7096t

[v ] = −9.8 .
d

dt
e11.7096t e11.7096t

∫ [v ]dt = ∫ −9.8 dt
d

dt
e11.7096t e11.7096t

v = +Ce11.7096t −9.8

11.7096
e11.7096t

v(t) = −0.8369 +C .e−11.7096t

C = v(0) = 2v0

v(t) = −0.8369 +Ce−11.7096t

v(0) = −0.8369 +Ce−11.7096(0)

2 = −0.8369 +C

C = 2.8369.

v(t) = 2.8369 −0.8369.e−11.7096t

2.8369 −0.8369 = 0e−11.7096t

2.8369 = 0.8369e−11.7096t

= ≈ 0.295e−11.7096t 0.8369

2.8369

ln = ln0.295 ≈ −1.221e−11.7096t

−11.7096t = −1.221

t ≈ 0.104.

0.104

h(t)
t h'(t) = v(t) v(t)

h'(t) = 2.8369 −0.8369,h(0) = 1.e−11.7096t

t

∫ h'(t)dt = ∫ 2.8369 −0.8369dte−11.7096t

h(t) = − −0.8369t+C
2.8369

11.7096
e−11.7096t

h(t) = −0.2423 −0.8369t+C.e−11.7096t

C

h(t) = −0.2423 −0.8369t+Ce−11.7096t

h(0) = −0.2423 −0.8369(0) +Ce−11.7096(0)
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Therefore

After  second, the height is given by

 meter.

The weight of a penny is  grams (United States Mint, “Coin Specifications,” accessed April 9, 2015,
http://www.usmint.gov/about_the_mint...specifications), and the upper observation deck of the Empire State Building is 
meters above the street. Since the penny is a small and relatively smooth object, air resistance acting on the penny is actually
quite small. We assume the air resistance is numerically equal to . Furthermore, the penny is dropped with no initial
velocity imparted to it.

a. Set up an initial-value problem that represents the falling penny.
b. Solve the problem for .
c. What is the terminal velocity of the penny (i.e., calculate the limit of the velocity as  approaches infinity)?

Hint

Set up the differential equation the same way as Example. Remember to convert from grams to kilograms.

Answer

a.  

b. 

c. 

Electrical Circuits
A source of electromotive force (e.g., a battery or generator) produces a flow of current in a closed circuit, and this current
produces a voltage drop across each resistor, inductor, and capacitor in the circuit. Kirchhoff’s Loop Rule states that the sum of the
voltage drops across resistors, inductors, and capacitors is equal to the total electromotive force in a closed circuit. We have the
following three results:

1. The voltage drop across a resistor is given by

where  is a constant of proportionality called the resistance, and  is the current.

2. The voltage drop across an inductor is given by

,

where  is a constant of proportionality called the inductance, and  again denotes the current.

3. The voltage drop across a capacitor is given by

,

where  is a constant of proportionality called the capacitance, and  is the instantaneous charge on the capacitor. The relationship
between  and  is .

We use units of volts  to measure voltage , amperes  to measure current , coulombs  to measure charge , ohms 
to measure resistance , henrys  to measure inductance , and farads  to measure capacitance . Consider the circuit in

1 = −0.2423 +C

C = 1.2423.

h(t) = −0.2423 −0.8369t+1.2423.e−11.7096t

0.104

h(0.2) = −0.2423 −0.8369t+1.2423 ≈ 1.0836e−11.7096t

 Exercise 9.5.3

2.5
369

0.0025v

v(t)
t

= −v−9.8
dv

dt
v(0) = 0

v(t) = 9.8( −1)e−t

v(t) = (9.8( −1)) = −9.8m/s ≈ −21.922mphlimt→∞ limt→∞ e−t

= Ri,ER

R i

EL = Li'

L i

= qEC

1

C

C q

i q i = q'

(V ) E (A) i (C) q (Ω)
R (H) L (F ) C
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Figure .

Figure : A typical electric circuit, containing a voltage generator , capacitor , inductor , and resistor .

Applying Kirchhoff’s Loop Rule to this circuit, we let  denote the electromotive force supplied by the voltage generator. Then

.

Substituting the expressions for  and  into this equation, we obtain

If there is no capacitor in the circuit, then the equation becomes

This is a first-order differential equation in . The circuit is referred to as an circuit.

Next, suppose there is no inductor in the circuit, but there is a capacitor and a resistor, so  and  Then Equation
can be rewritten as

which is a first-order linear differential equation. This is referred to as an RC circuit. In either case, we can set up and solve an
initial-value problem.

A circuit has in series an electromotive force given by  a resistor of , and an inductor of . If the
initial current is , find the current at time .

Solution

We have a resistor and an inductor in the circuit, so we use Equation. The voltage drop across the resistor is given by 
. The voltage drop across the inductor is given by . The electromotive force becomes the

right-hand side of Equation. Therefore Equation becomes

Dividing both sides by  gives the equation

Since the initial current is 0, this result gives an initial condition of  We can solve this initial-value problem using the
five-step strategy for solving first-order differential equations.

Step 1. Rewrite the differential equation as . This gives  and .

Step 2. The integrating factor is .

Step 3. Multiply the differential equation by :

.

9.5.2

9.5.2 ( )VS (C) (L) (R)

E

+ + = EEL ER EC

, ,EL ER EC

Li' +Ri+ q = E.
1

C

Li' + = E.Ri

i LR

L = 0,R ≠ 0, C ≠ 0.

Rq' + q = E,
1

C

 Electric Circuit

E = 50 sin20tV , 5Ω 0.4H
0 t > 0

= =ER Ri 5i = Li' = 0.4i'EL

0.4i' +5i = 50 sin20t.

0.4

i' +12.5i = 125 sin20t.

i(0) = 0.

i' +12.5i = 125 sin20t p(t) = 12.5 q(t) = 125 sin20t

μ(t) = =e∫ 12.5dt e12.5t

μ(t)

i' +12.5 i = 125 sin20te12.5t e12.5t e12.5t

[i t] = 125 sin20t
d

dt
e12.5 e12.5t
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Step 4. Integrate both sides:

.

Step 5. Solve for  using the initial condition :

.

Therefore the solution to the initial-value problem is

The first term can be rewritten as a single cosine function. First, multiply and divide by :

.

Next, define  to be an acute angle such that . Then  and

Therefore the solution can be written as

.

The second term is called the attenuation term, because it disappears rapidly as  grows larger. The phase shift is given by ,

and the amplitude of the steady-state current is given by . The graph of this solution appears in Figure :

∫ [i ]dt = ∫ 125 sin20tdt
d

dt
e12.5t e12.5t

i = ( ) +Ce12.5t
250 sin20t−400 cos 20t

89
e12.5t

i(t) = +C
250 sin20t−400 cos 20t

89
e−12.5t

C v(0) = 2

i(t) = +C
250 sin20t−400 cos 20t

89
e−12.5t

i(0) = +C
250sin20(0) −400cos20(0)

89
e−12.5(0)

0 = − +C
400

89

C =
400

89

i(t) = = + .
250 sin20t−400 cos 20t+400e−12.5t

89

250 sin20t−400 cos 20t

89

400e−12.5t

89

= 50+2502 4002− −−−−−−−−
√ 89

−−
√

= ( ) = − ( − )
250 sin20t−400 cos 20t

89

50 89
−−

√

89

250 sin20t−400 cos 20t

50 89
−−

√

50 89
−−

√

89

8 cos 20t

89
−−

√

5 sin20t

89
−−

√

φ cosφ =
8

89
−−

√
sinφ =

5

89
−−

√

− ( − ) = − (cosφ cos 20t−sinφ sin20t) = − cos(20t+φ).
50 89

−−
√

89

8 cos 20t

89
−−

√

5 sin20t

89
−−

√

50 89
−−

√

89

50 89
−−

√

89

i(t) = − cos(20t+φ) +
50 89

−−
√

89

400e−12.5t

89

t φ

50 89
−−

√

89
9.5.3
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Figure .

A circuit has in series an electromotive force given by  V, a capacitor with capacitance , and a resistor of 
. If the initial charge is , find the charge at time .

Hint

Use Equation for an  circuit to set up an initial-value problem.

Answer

Initial-value problem:

Key Concepts
Any first-order linear differential equation can be written in the form .
We can use a five-step problem-solving strategy for solving a first-order linear differential equation that may or may not include
an initial value.
Applications of first-order linear differential equations include determining motion of a rising or falling object with air
resistance and finding current in an electrical circuit.

Key Equations
standard form

integrating factor

Glossary

integrating factor

9.5.3

 Exercise 9.5.4

E = 20sin5t 0.02F
8Ω 4C t > 0

RC

8q' + q = 20sin5t, q(0) = 4
1

0.02

q(t) =
10sin5t−8cos5t+172e−6.25t

41

+p(x)y = q(x)y′

+p(x)y = q(x)y′

μ(x) = e∫ p(x)dx
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any function  that is multiplied on both sides of a differential equation to make the side involving the unknown function
equal to the derivative of a product of two functions

linear
description of a first-order differential equation that can be written in the form 

standard form
the form of a first-order linear differential equation obtained by writing the differential equation in the form 

9.5: Linear Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

8.5: First-order Linear Equations by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x)

a(x)y' +b(x)y = c(x)

+p(x)y = q(x)y′
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9.6: Predator-Prey Systems

Describe the concept of environmental carrying capacity in the logistic model of population growth.
Draw a direction field for a logistic equation and interpret the solution curves.
Solve a logistic equation and interpret the results.

Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier chapter in
the section on exponential growth and decay, which is the simplest model. A more realistic model includes other factors that affect
the growth of the population. In this section, we study the logistic differential equation and see how it applies to the study of
population dynamics in the context of biology.

Population Growth and Carrying Capacity
To model population growth using a differential equation, we first need to introduce some variables and relevant terms. The
variable . will represent time. The units of time can be hours, days, weeks, months, or even years. Any given problem must
specify the units used in that particular problem. The variable  will represent population. Since the population varies over time, it
is understood to be a function of time. Therefore we use the notation  for the population as a function of time. If  is a
differentiable function, then the first derivative  represents the instantaneous rate of change of the population as a function of
time.

In Exponential Growth and Decay, we studied the exponential growth and decay of populations and radioactive substances. An
example of an exponential growth function is  In this function,  represents the population at time 
represents the initial population (population at time ), and the constant  is called the growth rate. Figure  shows a
graph of . Here  and .

Figure : An exponential growth model of population.

We can verify that the function  satisfies the initial-value problem

with 

This differential equation has an interesting interpretation. The left-hand side represents the rate at which the population increases
(or decreases). The right-hand side is equal to a positive constant multiplied by the current population. Therefore the differential
equation states that the rate at which the population increases is proportional to the population at that point in time. Furthermore, it
states that the constant of proportionality never changes.

One problem with this function is its prediction that as time goes on, the population grows without bound. This is unrealistic in a
real-world setting. Various factors limit the rate of growth of a particular population, including birth rate, death rate, food supply,
predators, and so on. The growth constant  usually takes into consideration the birth and death rates but none of the other factors,
and it can be interpreted as a net (birth minus death) percent growth rate per unit time. A natural question to ask is whether the
population growth rate stays constant, or whether it changes over time. Biologists have found that in many biological systems, the
population grows until a certain steady-state population is reached. This possibility is not taken into account with exponential
growth. However, the concept of carrying capacity allows for the possibility that in a given area, only a certain number of a given
organism or animal can thrive without running into resource issues.

 Learning Objectives

t

P

P (t) P (t)
dP

dt

P (t) = .P0e
rt

P (t) t,P0

t = 0 r > 0 9.6.1

P (t) = 100e0.03t = 100P0 r = 0.03

9.6.1

P (t) = P0e
rt

= rP
dP

dt

P (0) = .P0

r
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The carrying capacity of an organism in a given environment is defined to be the maximum population of that organism that
the environment can sustain indefinitely.

We use the variable  to denote the carrying capacity. The growth rate is represented by the variable . Using these variables, we
can define the logistic differential equation.

Let  represent the carrying capacity for a particular organism in a given environment, and let  be a real number that
represents the growth rate. The function  represents the population of this organism as a function of time , and the
constant  represents the initial population (population of the organism at time ). Then the logistic differential equation
is

The logistic equation was first published by Pierre Verhulst in . This differential equation can be coupled with the initial
condition  to form an initial-value problem for 

Suppose that the initial population is small relative to the carrying capacity. Then  is small, possibly close to zero. Thus, the
quantity in parentheses on the right-hand side of Equation  is close to , and the right-hand side of this equation is close to .
If , then the population grows rapidly, resembling exponential growth.

However, as the population grows, the ratio  also grows, because  is constant. If the population remains below the carrying
capacity, then  is less than , so . Therefore the right-hand side of Equation  is still positive, but the quantity in
parentheses gets smaller, and the growth rate decreases as a result. If  then the right-hand side is equal to zero, and the
population does not change.

Now suppose that the population starts at a value higher than the carrying capacity. Then  and . Then the right-
hand side of Equation  is negative, and the population decreases. As long as , the population decreases. It never
actually reaches K because  will get smaller and smaller, but the population approaches the carrying capacity as  approaches
infinity. This analysis can be represented visually by way of a phase line. A phase line describes the general behavior of a solution
to an autonomous differential equation, depending on the initial condition. For the case of a carrying capacity in the logistic
equation, the phase line is as shown in Figure .

Figure : A phase line for the differential equation 

This phase line shows that when  is less than zero or greater than , the population decreases over time. When  is between 
and , the population increases over time.

 Definition: Carrying Capacity

K r

 Definition: Logistic Differential Equation

K r

P (t) t

P0 t = 0

= rP (1 − ) .
dP

dt

P

K
(9.6.1)

1845

P (0) = P0 P (t).

P

K

9.6.1 1 rP

r > 0

P

K
K

P

K
1 1 − > 0P

K
9.6.1

P = K

> 1,P

K
1 − < 0P

K

9.6.1 P > K

dP

dt
t

9.6.2

9.6.2 = rP (1 − ).
dP

dt

P

K

P K P 0

K
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Let’s consider the population of white-tailed deer (Odocoileus virginianus) in the state of Kentucky. The Kentucky Department
of Fish and Wildlife Resources (KDFWR) sets guidelines for hunting and fishing in the state. Before the hunting season of
2004, it estimated a population of 900,000 deer. Johnson notes: “A deer population that has plenty to eat and is not hunted by
humans or other predators will double every three years.” (George Johnson, “The Problem of Exploding Deer Populations Has
No Attractive Solutions,” January 12,2001, accessed April 9, 2015)

Figure : (credit: modification of work by Rachel Kramer, Flickr)

This observation corresponds to a rate of increase  so the approximate growth rate is 23.11% per year.

(This assumes that the population grows exponentially, which is reasonable––at least in the short term––with plentiful food
supply and no predators.) The KDFWR also reports deer population densities for 32 counties in Kentucky, the average of
which is approximately 27 deer per square mile. Suppose this is the deer density for the whole state (39,732 square miles). The
carrying capacity  is 39,732 square miles times 27 deer per square mile, or 1,072,764 deer.

a. For this application, we have  and  Substitute these values into Equation 
 and form the initial-value problem.

b. Solve the initial-value problem from part a.
c. According to this model, what will be the population in  years? Recall that the doubling time predicted by Johnson for the

deer population was  years. How do these values compare?

Suppose the population managed to reach 1,200,000 What does the logistic equation predict will happen to the population in
this scenario?

Solution

a. The initial value problem is

b. The logistic equation is an autonomous differential equation, so we can use the method of separation of variables.

Step 1: Setting the right-hand side equal to zero gives  and  This means that if the population starts at
zero it will never change, and if it starts at the carrying capacity, it will never change.

Step 2: Rewrite the differential equation and multiply both sides by:

Step 3: Integrate both sides of the equation using partial fraction decomposition:

 Example : Examining the Carrying Capacity of a Deer Population9.6.1

9.6.3

r = = 0.2311,
ln(2)

3

K

= 900, 000,K = 1, 072, 764,P0 r = 0.2311.

9.6.1

3

3

= 0.2311P (1 − ) , P (0) = 900, 000.
dP

dt

P

1, 072, 764

P = 0 P = 1, 072, 764.

= 0.2311P ( )
dP

dt

1, 072, 764 −P

1, 072, 764

dP = 0.2311P ( ) dt
1, 072, 764 −P

1, 072, 764

= dt.
dP

P (1, 072, 764 −P )

0.2311

1, 072, 764
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Step 4: Multiply both sides by 1,072,764 and use the quotient rule for logarithms:

Here  Next exponentiate both sides and eliminate the absolute value:

Here  but after eliminating the absolute value, it can be negative as well. Now solve for:

Step 5: To determine the value of , it is actually easier to go back a couple of steps to where  was defined. In particular,
use the equation

The initial condition is . Replace  with  and  with zero:

Therefore

∫ = ∫ dt
dP

P (1, 072, 764 −P )

0.2311

1, 072, 764

∫ ( + ) dP = +C
1

1, 072, 764

1

P

1

1, 072, 764 −P

0.2311t

1, 072, 764

(ln |P | − ln |1, 072, 764 −P |) = +C.
1

1, 072, 764

0.2311t

1, 072, 764

ln = 0.2311t+ .
∣

∣
∣

P

1, 072, 764 −P

∣

∣
∣ C1

= 1, 072, 764C.C1

=e

ln
∣

∣

∣
∣

P

1, 072, 764 −P

∣

∣

∣
∣

e
0.2311t+C1

=
∣

∣
∣

P

1, 072, 764 −P

∣

∣
∣ C2e

0.2311t

= .
P

1, 072, 764 −P
C2e

0.2311t

=C2 e
C1

P = (1, 072, 764 −P )C2e
0.2311t

P = 1, 072, 764 − PC2e
0.2311t

C2 e
0.2311t

P + P = 1, 072, 764C2 e
0.2311t

C2e
0.2311t

P (1 + = 1, 072, 764C2e
0.2311t

C2e
0.2311t

P (t) = .
1, 072, 764C2e

0.2311t

1 +C2e
0.2311t

C2 C2

= .
P

1, 072, 764 −P
C2e

0.2311t

P (0) = 900, 000 P 900, 000 t

=
P

1, 072, 764 −P
C2e

0.2311t

=
900, 000

1, 072, 764 −900, 000
C2e

0.2311(0)

=
900, 000

172, 764
C2

=C2
25, 000

4, 799

≈ 5.209.
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Dividing the numerator and denominator by 25,000 gives

Figure is a graph of this equation.

Figure : Logistic curve for the deer population with an initial population of 900,000 deer.

c. Using this model we can predict the population in 3 years.

This is far short of twice the initial population of  Remember that the doubling time is based on the assumption that
the growth rate never changes, but the logistic model takes this possibility into account.

d. If the population reached 1,200,000 deer, then the new initial-value problem would be

The general solution to the differential equation would remain the same.

To determine the value of the constant, return to the equation

Substituting the values  and  you get

Therefore

P (t) =

1, 072, 764( )
25000

4799
e

0.2311t

1 +(250004799)e0.2311t

=
1, 072, 764(25000)e0.2311t

4799 +25000 .e0.2311t

P (t) = .
1, 072, 764e0.2311t

0.19196 +e0.2311t

9.6.4

P (3) = ≈ 978, 830 deer
1, 072, 764e0.2311(3)

0.19196 +e0.2311(3)

900, 000.

= 0.2311P (1 − ) , P (0) = 1, 200, 000.
dP

dt

P

1, 072, 764

P (t) =
1, 072, 764C2e

0.2311t

1 +C2e
0.2311t

= .
P

1, 072, 764 −P
C2e

0.2311t

t = 0 P = 1, 200, 000,

=C2e
0.2311(0) 1, 200, 000

1, 072, 764 −1, 200, 000

= − ≈ −9.431.C2
100, 000

10, 603
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This equation is graphed in Figure .

Figure : Logistic curve for the deer population with an initial population of 1,200,000 deer.

Solving the Logistic Differential Equation
The logistic differential equation is an autonomous differential equation, so we can use separation of variables to find the general
solution, as we just did in Example .

Step 1: Setting the right-hand side equal to zero leads to  and  as constant solutions. The first solution indicates that
when there are no organisms present, the population will never grow. The second solution indicates that when the population starts
at the carrying capacity, it will never change.

Step 2: Rewrite the differential equation in the form

Then multiply both sides by  and divide both sides by  This leads to

Multiply both sides of the equation by  and integrate:

The left-hand side of this equation can be integrated using partial fraction decomposition. We leave it to you to verify that

Then the Equation  becomes

P (t) =
1, 072, 764C2e

0.2311t

1 +C2e
0.2311t

=

1, 072, 764(− )
100, 000

10, 603
e

0.2311t

1 +(− )
100, 000

10, 603
e0.2311t

= −
107, 276, 400, 000e0.2311t

100, 000 −10, 603e0.2311t

≈
10, 117, 551e0.2311t

9.43129 −1e0.2311t

9.6.5

9.6.5

9.6.1

P = 0 P = K

= .
dP

dt

rP (K−P )

K

dt P (K−P ).

= dt.
dP

P (K−P )

r

K

K

∫ dP = ∫ rdt.
K

P (K−P )
(9.6.2)

= + .
K

P (K−P )

1

P

1

K−P

9.6.2
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Now exponentiate both sides of the equation to eliminate the natural logarithm:

We define  so that the equation becomes

To solve this equation for , first multiply both sides by  and collect the terms containing  on the left-hand side of the
equation:

Next, factor  from the left-hand side and divide both sides by the other factor:

The last step is to determine the value of  The easiest way to do this is to substitute  and  in place of  in Equation and
solve for :

Finally, substitute the expression for  into Equation :

Now multiply the numerator and denominator of the right-hand side by  and simplify:

∫ + dP = ∫ rdt
1

P

1

K−P

ln |P | − ln |K−P | = rt+C

ln ∣ ∣= rt+C.
P

K−P

=e

ln∣
P

K−P

∣

∣

∣
∣

e
rt+C

∣= .
∣
∣
∣

P

K−P
e
C
e
rt

=C1 e
c

= .
P

K−P
C1e

rt (9.6.3)

P (t) K−P P

P = (K−P )C1e
rt

= K − PC1 e
rt

C1 e
rt

P + P = K .C1 e
rt

C1 e
rt

P

P (1 + ) = KC1e
rt

C1 e
rt

P (t) = .
KC1 e

rt

1 +C1e
rt

.C1 t = 0 P0 P

C1

=
P

K−P
C1e

rt

=
P0

K−P0
C1e

r(0)

= .C1
P0

K−P0

C1 9.6.3

P (t) = =
KC1 e

rt

1 +C1e
rt

K
P0

K−P0
ert

1 +
P0

K−P0
ert

(K− )P0
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We state this result as a theorem.

Consider the logistic differential equation subject to an initial population of  with carrying capacity  and growth rate .
The solution to the corresponding initial-value problem is given by

.

Now that we have the solution to the initial-value problem, we can choose values for , and  and study the solution curve.
For example, in Example we used the values  and an initial population of  deer. This leads
to the solution

Dividing top and bottom by  gives

This is the same as the original solution. The graph of this solution is shown again in blue in Figure , superimposed over the
graph of the exponential growth model with initial population  and growth rate  (appearing in green). The red
dashed line represents the carrying capacity, and is a horizontal asymptote for the solution to the logistic equation.

Figure : A comparison of exponential versus logistic growth for the same initial population of  organisms and growth
rate of 

P (t) =

K
P0

K−P0
e
rt

1 +
P0

K−P0
ert

= ⋅ = .

K
P0

K−P0
e
rt

1 +
P0

K−P0

ert

K−P0

K−P0

KP0 e
rt

(K− ) +P0 P0e
rt

 Solution of the Logistic Differential Equation

P0 K r

P (t) =
KP0 e

rt

(K− ) +P0 P0e
rt

, rP0 K

r = 0.2311,K = 1, 072, 764, 900, 000

P (t) =
KP0 e

rt

(K− ) +P0 P0e
rt

=
900, 000(1, 072, 764)e0.2311t

(1, 072, 764 −900, 000) +900, 000e0.2311t

= .
900, 000(1, 072, 764)e0.2311t

172, 764 +900, 000e0.2311t

900, 000

P (t) = .
1, 072, 764e0.2311t

0.19196 +e0.2311t

9.6.6

900, 000 0.2311

9.6.6 900, 000
23.11
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Working under the assumption that the population grows according to the logistic differential equation, this graph predicts that
approximately  years earlier , the growth of the population was very close to exponential. The net growth rate at that time
would have been around  per year. As time goes on, the two graphs separate. This happens because the population increases,
and the logistic differential equation states that the growth rate decreases as the population increases. At the time the population
was measured , it was close to carrying capacity, and the population was starting to level off.

The solution to the logistic differential equation has a point of inflection. To find this point, set the second derivative equal to zero:

Setting the numerator equal to zero,

As long as , the entire quantity before and including is nonzero, so we can divide it out:

Solving for ,

Notice that if , then this quantity is undefined, and the graph does not have a point of inflection. In the logistic graph, the
point of inflection can be seen as the point where the graph changes from concave up to concave down. This is where the “leveling
off” starts to occur, because the net growth rate becomes slower as the population starts to approach the carrying capacity.

A population of rabbits in a meadow is observed to be  rabbits at time . After a month, the rabbit population is
observed to have increased by . Using an initial population of  and a growth rate of , with a carrying capacity of 
rabbits,

a. Write the logistic differential equation and initial condition for this model.
b. Draw a slope field for this logistic differential equation, and sketch the solution corresponding to an initial population of 

 rabbits.
c. Solve the initial-value problem for .
d. Use the solution to predict the population after  year.

Hint

20 (1984)

23.1

(2004)

P (t) =
KP0 e

rt

(K− ) +P0 P0e
rt
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rt
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2
P0 P0)2

e
rt

r
2
P

2
0 P0 e

2rt

((K− ) +P0 P0e
rt)3

= .
K(K− ) ((K− ) − )r

2
P0 P0 e

rt
P0 P0e

rt

((K− ) +P0 P0e
rt)3

K(K− ) ((K− ) − ) = 0.r
2
P0 P0 e

rt
P0 P0e

rt

≠ KP0 e
rt

(K− ) − = 0.P0 P0e
rt

t

= K−P0e
rt

P0

=e
rt K−P0

P0

ln = lne
rt K−P0

P0

rt = ln
K−P0

P0

t = ln .
1

r

K−P0

P0

> KP0
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First determine the values of  and . Then create the initial-value problem, draw the direction field, and solve
the problem.

Answer

a. 

b.

c. 

d. After  months, the population will be  rabbits.

An improvement to the logistic model includes a threshold population. The threshold population is defined to be the
minimum population that is necessary for the species to survive. We use the variable  to represent the threshold population. A
differential equation that incorporates both the threshold population  and carrying capacity  is

where  represents the growth rate, as before.

1. The threshold population is useful to biologists and can be utilized to determine whether a given species should be placed
on the endangered list. A group of Australian researchers say they have determined the threshold population for any species
to survive:  adults. (Catherine Clabby, “A Magic Number,” American Scientist 98(1): 24, doi:10.1511/2010.82.24.
accessed April 9, 2015, www.americanscientist.org/iss...a-magic-number). Therefore we use  as the threshold
population in this project. Suppose that the environmental carrying capacity in Montana for elk is . Set up Equation
using the carrying capacity of  and threshold population of . Assume an annual net growth rate of 18%.

2. Draw the direction field for the differential equation from step , along with several solutions for different initial
populations. What are the constant solutions of the differential equation? What do these solutions correspond to in the
original population model (i.e., in a biological context)?

3. What is the limiting population for each initial population you chose in step ? (Hint: use the slope field to see what
happens for various initial populations, i.e., look for the horizontal asymptotes of your solutions.)

4. This equation can be solved using the method of separation of variables. However, it is very difficult to get the solution as
an explicit function of . Using an initial population of  elk, solve the initial-value problem and express the solution
as an implicit function of t, or solve the general initial-value problem, finding a solution in terms of  and .

Key Concepts
When studying population functions, different assumptions—such as exponential growth, logistic growth, or threshold
population—lead to different rates of growth.

r,K, P0

= 0.04(1 − ),P (0) = 200
dP

dt

P

750

P (t) =
3000e.04t

11 +4e.04t

12 P (12) ≈ 278

 Student Project: Logistic Equation with a Threshold Population
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The logistic differential equation incorporates the concept of a carrying capacity. This value is a limiting value on the
population for any given environment.
The logistic differential equation can be solved for any positive growth rate, initial population, and carrying capacity.

Key Equations
Logistic differential equation and initial-value problem

Solution to the logistic differential equation/initial-value problem

Threshold population model

Glossary

carrying capacity
the maximum population of an organism that the environment can sustain indefinitely

growth rate
the constant  in the exponential growth function 

initial population
the population at time 

logistic differential equation
a differential equation that incorporates the carrying capacity  and growth rate rr into a population model

phase line
a visual representation of the behavior of solutions to an autonomous differential equation subject to various initial conditions

threshold population
the minimum population that is necessary for a species to survive
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10.1: Curves Defined by Parametric Equations

Plot a curve described by parametric equations.
Convert the parametric equations of a curve into the form .
Recognize the parametric equations of basic curves, such as a line and a circle.
Recognize the parametric equations of a cycloid.

In this section we examine parametric equations and their graphs. In the two-dimensional coordinate system, parametric equations
are useful for describing curves that are not necessarily functions. The parameter is an independent variable that both  and 
depend on, and as the parameter increases, the values of  and  trace out a path along a plane curve. For example, if the parameter
is  (a common choice), then  might represent time. Then  and  are defined as functions of time, and  can describe
the position in the plane of a given object as it moves along a curved path.

Parametric Equations and Their Graphs
Consider the orbit of Earth around the Sun. Our year lasts approximately 365.25 days, but for this discussion we will use 365 days.
On January 1 of each year, the physical location of Earth with respect to the Sun is nearly the same, except for leap years, when the
lag introduced by the extra  day of orbiting time is built into the calendar. We call January 1 “day 1” of the year. Then, for
example, day 31 is January 31, day 59 is February 28, and so on.

The number of the day in a year can be considered a variable that determines Earth’s position in its orbit. As Earth revolves around
the Sun, its physical location changes relative to the Sun. After one full year, we are back where we started, and a new year begins.
According to Kepler’s laws of planetary motion, the shape of the orbit is elliptical, with the Sun at one focus of the ellipse. We
study this idea in more detail in Conic Sections.

Figure : Earth’s orbit around the Sun in one year.

Figure  depicts Earth’s orbit around the Sun during one year. The point labeled  is one of the foci of the ellipse; the other
focus is occupied by the Sun. If we superimpose coordinate axes over this graph, then we can assign ordered pairs to each point on
the ellipse (Figure ). Then each  value on the graph is a value of position as a function of time, and each  value is also a
value of position as a function of time. Therefore, each point on the graph corresponds to a value of Earth’s position as a function
of time.
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Figure : Coordinate axes superimposed on the orbit of Earth.

We can determine the functions for  and , thereby parameterizing the orbit of Earth around the Sun. The variable  is called
an independent parameter and, in this context, represents time relative to the beginning of each year.

A curve in the  plane can be represented parametrically. The equations that are used to define the curve are called parametric
equations.

If  and  are continuous functions of  on an interval , then the equations

and

are called parametric equations and  is called the parameter. The set of points  obtained as  varies over the interval  is
called the graph of the parametric equations. The graph of parametric equations is called a parametric curve or plane curve,
and is denoted by .

Notice in this definition that  and  are used in two ways. The first is as functions of the independent variable . As  varies over
the interval , the functions  and  generate a set of ordered pairs . This set of ordered pairs generates the graph of the
parametric equations. In this second usage, to designate the ordered pairs,  and  are variables. It is important to distinguish the
variables  and  from the functions  and .

Sketch the curves described by the following parametric equations:

a. 
b. 
c. 

Solution

a. To create a graph of this curve, first set up a table of values. Since the independent variable in both  and  is , let 
appear in the first column. Then  and  will appear in the second and third columns of the table.

−3 −4 −2

−2 −3 0

10.1.2

x(t) y(t) t

(x, y)

 Definition: Parametric Equations

x y t I

x = x(t)

y = y(t)

t (x, y) t I

C

x y t t

I x(t) y(t) (x, y)
x y

x y x(t) y(t)

 Example : Graphing a Parametrically Defined Curve10.1.1

x(t) = t−1, y(t) = 2t+4, for  −3 ≤ t ≤ 2
x(t) = −3, y(t) = 2t+1, for  −2 ≤ t ≤ 3t2

x(t) = 4 cos t, y(t) = 4 sin t, for 0 ≤ t ≤ 2π
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−1 −2 2

0 −1 4

1 0 6

2 1 8

The second and third columns in this table provide a set of points to be plotted. The graph of these points appears in Figure 
. The arrows on the graph indicate the orientation of the graph, that is, the direction that a point moves on the graph as t

varies from −3 to 2.

Figure : Graph of the plane curve described by the parametric equations in part a.

b. To create a graph of this curve, again set up a table of values.

−2 1 −3

−1 −2 −1

0 −3 1

1 −2 3

2 1 5

3 6 7

The second and third columns in this table give a set of points to be plotted (Figure ). The first point on the graph
(corresponding to ) has coordinates , and the last point (corresponding to ) has coordinates . As 
progresses from  to , the point on the curve travels along a parabola. The direction the point moves is again called the
orientation and is indicated on the graph.

t x(t) y(t)

10.1.3

10.1.3

t x(t) y(t)
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Figure : Graph of the plane curve described by the parametric equations in part b.

c. In this case, use multiples of  for  and create another table of values:

0 4 0 -2

2 −2

2 0 −4

0 4 2

−2 -2

2 4 0

−4 0    

The graph of this plane curve appears in the following graph.

Figure : Graph of the plane curve described by the parametric equations in part c.

This is the graph of a circle with radius  centered at the origin, with a counterclockwise orientation. The starting point and
ending points of the curve both have coordinates .
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Sketch the curve described by the parametric equations

Hint

Make a table of values for  and  using  values from  to .

Answer

Eliminating the Parameter
To better understand the graph of a curve represented parametrically, it is useful to rewrite the two equations as a single equation
relating the variables  and . Then we can apply any previous knowledge of equations of curves in the plane to identify the curve.
For example, the equations describing the plane curve in Example  are

over the region 

Solving Equation  for  gives

This can be substituted into Equation :

Equation  describes  as a function of . These steps give an example of eliminating the parameter. The graph of this
function is a parabola opening to the right (Figure ). Recall that the plane curve started at  and ended at . These
terminations were due to the restriction on the parameter .

 Exercise 10.1.1

x(t) = 3t+2, y(t) = −1, for  −3 ≤ t ≤ 2.t2
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Eliminate the parameter for each of the plane curves described by the following parametric equations and describe the resulting
graph.

a. 
b. 

Solution

a. To eliminate the parameter, we can solve either of the equations for . For example, solving the first equation for  gives

Note that when we square both sides it is important to observe that . Substituting  into  yields

This is the equation of a parabola opening upward. There is, however, a domain restriction because of the limits on the
parameter . When , , and when , . The graph of this plane
curve follows.

Figure : Graph of the plane curve described by the parametric equations in part a.

b. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for this example
are

and

 Example : Eliminating the Parameter10.1.2

x(t) = , y(t) = 2t+1, for  −2 ≤ t ≤ 62t+4
− −−−−

√
x(t) = 4 cos t, y(t) = 3 sin t, for 0 ≤ t ≤ 2π

t t

x

x2

−4x2

t

= 2t+4
− −−−−

√

= 2t+4

= 2t

= .
−4x2

2

x ≥ 0 t =
−4x2

2
y(t)
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y = 2( )+1
−4x2
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y = −4 +1x2

y = −3.x2

t t = −2 x = = 02(−2) +4
− −−−−−−−√ t = 6 x = = 42(6) +4

− −−−−−−√
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Solving either equation for  directly is not advisable because sine and cosine are not one-to-one functions. However,
dividing the first equation by  and the second equation by  (and suppressing the ) gives us

and

Now use the Pythagorean identity  and replace the expressions for  and  with the equivalent
expressions in terms of  and . This gives

This is the equation of a horizontal ellipse centered at the origin, with semi-major axis  and semi-minor axis  as shown
in the following graph.

Figure : Graph of the plane curve described by the parametric equations in part b.

As t progresses from  to , a point on the curve traverses the ellipse once, in a counterclockwise direction. Recall from
the section opener that the orbit of Earth around the Sun is also elliptical. This is a perfect example of using
parameterized curves to model a real-world phenomenon.

Eliminate the parameter for the plane curve defined by the following parametric equations and describe the resulting graph.

Hint

Solve one of the equations for  and substitute into the other equation.

Answer

 or . This equation describes a portion of a rectangular hyperbola centered at .

t
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So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe a plane
curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for that curve? This
is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process is known as
parameterization of a curve.

Find two different pairs of parametric equations to represent the graph of .

Solution

First, it is always possible to parameterize a curve by defining , then replacing  with  in the equation for . This
gives the parameterization

Since there is no restriction on the domain in the original graph, there is no restriction on the values of .

We have complete freedom in the choice for the second parameterization. For example, we can choose . The
only thing we need to check is that there are no restrictions imposed on ; that is, the range of  is all real numbers. This is
the case for . Now since , we can substitute  for . This gives

Therefore, a second parameterization of the curve can be written as

 and 

Find two different sets of parametric equations to represent the graph of .

Hint

Follow the steps in Example . Remember we have freedom in choosing the parameterization for .

Answer

One possibility is  Another possibility is 
 There are, in fact, an infinite number of possibilities.

Cycloids and Other Parametric Curves

Imagine going on a bicycle ride through the country. The tires stay in contact with the road and rotate in a predictable pattern. Now
suppose a very determined ant is tired after a long day and wants to get home. So he hangs onto the side of the tire and gets a free
ride. The path that this ant travels down a straight road is called a cycloid (Figure ). A cycloid generated by a circle (or
bicycle wheel) of radius a is given by the parametric equations

 Example : Parameterizing a Curve10.1.3

y = 2 −3x2

x(t) = t x t y(t)

x(t) = t, y(t) = 2 −3.t2

t

x(t) = 3t−2
x x(t)

x(t) = 3t−2 y = 2 −3x2 x(t) = 3t−2 x

y(t) = 2(3t−2 −2 = 2(9 −12t+4) −2 = 18 −24t+8 −2 = 18 −24t+6.)2 t2 t2 t2

x(t) = 3t−2 y(t) = 18 −24t+6.t2

 Exercise 10.1.3

y = +2xx2

10.1.3 x(t)

x(t) = t, y(t) = +2t.t2

x(t) = 2t−3, y(t) = (2t−3 +2(2t−3) = 4 −8t+3.)2 t2
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To see why this is true, consider the path that the center of the wheel takes. The center moves along the -axis at a constant height
equal to the radius of the wheel. If the radius is , then the coordinates of the center can be given by the equations

for any value of . Next, consider the ant, which rotates around the center along a circular path. If the bicycle is moving from left to
right then the wheels are rotating in a clockwise direction. A possible parameterization of the circular motion of the ant (relative to
the center of the wheel) is given by

(The negative sign is needed to reverse the orientation of the curve. If the negative sign were not there, we would have to imagine
the wheel rotating counterclockwise.) Adding these equations together gives the equations for the cycloid.

Figure : A wheel traveling along a road without slipping; the point on the edge of the wheel traces out a cycloid.

Now suppose that the bicycle wheel doesn’t travel along a straight road but instead moves along the inside of a larger wheel, as in
Figure . In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point on the edge
of the green circle traces out the red graph, which is called a hypocycloid.

Figure : Graph of the hypocycloid described by the parametric equations shown.

The general parametric equations for a hypocycloid are

x(t) = a(t−sin t), y(t) = a(1 −cos t).

x

a

x(t) = at, y(t) = a

t

x(t)

y(t)

= −a sin t

= −a cos t.

x(t)

y(t)

= a(t−sin t)

= a(1 −cos t)

10.1.8

10.1.9

10.1.9

x(t) = (a−b) cos t+b cos( )t
a−b

b
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These equations are a bit more complicated, but the derivation is somewhat similar to the equations for the cycloid. In this case we
assume the radius of the larger circle is  and the radius of the smaller circle is . Then the center of the wheel travels along a circle
of radius  This fact explains the first term in each equation above. The period of the second trigonometric function in both 

 and  is equal to .

The ratio  is related to the number of cusps on the graph (cusps are the corners or pointed ends of the graph), as illustrated in

Figure . This ratio can lead to some very interesting graphs, depending on whether or not the ratio is rational. Figure 
corresponds to  and . The result is a hypocycloid with four cusps. Figure  shows some other possibilities. The
last two hypocycloids have irrational values for . In these cases the hypocycloids have an infinite number of cusps, so they never

return to their starting point. These are examples of what are known as space-filling curves.

Figure : Graph of various hypocycloids corresponding to different values of .

Many plane curves in mathematics are named after the people who first investigated them, like the folium of Descartes or the
spiral of Archimedes. However, perhaps the strangest name for a curve is the witch of Agnesi. Why a witch?

Maria Gaetana Agnesi (1718–1799) was one of the few recognized women mathematicians of eighteenth-century Italy. She
wrote a popular book on analytic geometry, published in 1748, which included an interesting curve that had been studied by
Fermat in 1630. The mathematician Guido Grandi showed in 1703 how to construct this curve, which he later called the
“versoria,” a Latin term for a rope used in sailing. Agnesi used the Italian term for this rope, “versiera,” but in Latin, this same
word means a “female goblin.” When Agnesi’s book was translated into English in 1801, the translator used the term “witch”
for the curve, instead of rope. The name “witch of Agnesi” has stuck ever since.

The witch of Agnesi is a curve defined as follows: Start with a circle of radius a so that the points  and  are points
on the circle (Figure ). Let O denote the origin. Choose any other point A on the circle, and draw the secant line OA.
Let B denote the point at which the line OA intersects the horizontal line through . The vertical line through B intersects
the horizontal line through A at the point P. As the point A varies, the path that the point P travels is the witch of Agnesi curve
for the given circle.

y(t) = (a−b) sin t−b sin( )t.
a−b

b

a b

a−b.

x(t) y(t)
2πb

a−b
a

b
10.1.10 10.1.9

a = 4 b = 1 10.1.10
a

b

10.1.10 a/b

 The Witch of Agnesi

(0, 0) (0, 2a)
10.1.11

(0, 2a)
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Witch of Agnesi curves have applications in physics, including modeling water waves and distributions of spectral lines. In
probability theory, the curve describes the probability density function of the Cauchy distribution. In this project you will
parameterize these curves.

Figure : As the point  moves around the circle, the point  traces out the witch of Agnesi curve for the given circle.

1. On the figure, label the following points, lengths, and angle:

a.  is the point on the -axis with the same -coordinate as .

b.  is the -coordinate of , and  is the -coordinate of .

c.  is the point .

d.  is the point on the line segment  such that the line segment  is perpendicular to the line segment .

e.  is the distance from  to .

f.  is the distance from  to .

g.  is the distance from  to .

h.  is the measure of angle .

The goal of this project is to parameterize the witch using  as a parameter. To do this, write equations for  and  in terms of
only .

2. Show that .

3. Note that . Show that . When you do this, you will have parameterized the -coordinate of the
curve with respect to . If you can get a similar equation for , you will have parameterized the curve.

4. In terms of , what is the angle ?

5. Show that .

6. Show that .

7. Show that . You have now parameterized the -coordinate of the curve with respect to .

8. Conclude that a parameterization of the given witch curve is

9. Use your parameterization to show that the given witch curve is the graph of the function .

Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a wheel
traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid, called the
curtate and prolate cycloids.

First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant trying to
get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very edge, where the

10.1.11 A P

C x x A

x x P y y P

E (0, a)

F OA EF OA

b O F

c F A

d O C

θ ∠COA

θ x y

θ

d =
2a

sinθ

x = d cosθ x = 2a cotθ x

θ y

θ ∠EOA

b+c = 2a cos( −θ)π
2

y = 2a cos( −θ) sinθπ
2

y = 2a θsin2 y θ

x = 2a cotθ, y = 2a θ, for  −∞ < θ < ∞.sin2

f(x) =
8a3

+4x2 a2

 Travels with My Ant: The Curtate and Prolate Cycloids

https://libretexts.org/
https://math.libretexts.org/@go/page/4505?pdf


10.1.12 https://math.libretexts.org/@go/page/4505

tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure ).

As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter t represent
the angle the tire has rotated through. Looking at Figure , we see that after the tire has rotated through an angle of , the
position of the center of the wheel, , is given by

 and .

Furthermore, letting  denote the position of the ant, we note that

 and 

Then

Figure : (a) The ant clings to the edge of the bicycle tire as the tire rolls along the ground. (b) Using geometry to
determine the position of the ant after the tire has rotated through an angle of .

Note that these are the same parametric representations we had before, but we have now assigned a physical meaning to the
parametric variable .

After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the spokes
toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of motion. The new
path has less up-and-down motion and is called a curtate cycloid (Figure ). As shown in the figure, we let b denote the
distance along the spoke from the center of the wheel to the ant. As before, we let t represent the angle the tire has rotated
through. Additionally, we let  represent the position of the center of the wheel and  represent the
position of the ant.

10.1.12

10.1.12 t

C = ( , )xC yC

= atxC = ayC

A = ( , )xA yA

− = a sin txC xA − = a cos tyC yA

= −a sin t = at−a sin t = a(t−sin t)xA xC

= −a cos t = a−a cos t = a(1 −cos t).yA yC

10.1.12
t

t

10.1.13

C = ( , )xC yC A = ( , )xA yA
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Figure : (a) The ant climbs up one of the spokes toward the center of the wheel. (b) The ant’s path of motion after he
climbs closer to the center of the wheel. This is called a curtate cycloid. (c) The new setup, now that the ant has moved closer
to the center of the wheel.

1. What is the position of the center of the wheel after the tire has rotated through an angle of ?

2. Use geometry to find expressions for  and for .

3. On the basis of your answers to parts 1 and 2, what are the parametric equations representing the curtate cycloid?

Once the ant’s head clears, he realizes that the bicyclist has made a turn, and is now traveling away from his home. So he
drops off the bicycle tire and looks around. Fortunately, there is a set of train tracks nearby, headed back in the right
direction. So the ant heads over to the train tracks to wait. After a while, a train goes by, heading in the right direction,
and he manages to jump up and just catch the edge of the train wheel (without getting squished!).

The ant is still worried about getting dizzy, but the train wheel is slippery and has no spokes to climb, so he decides to
just hang on to the edge of the wheel and hope for the best. Now, train wheels have a flange to keep the wheel running
on the tracks. So, in this case, since the ant is hanging on to the very edge of the flange, the distance from the center of
the wheel to the ant is actually greater than the radius of the wheel (Figure ).

The setup here is essentially the same as when the ant climbed up the spoke on the bicycle wheel. We let b denote the
distance from the center of the wheel to the ant, and we let t represent the angle the tire has rotated through. Additionally,
we let  represent the position of the center of the wheel and  represent the position of the ant
(Figure ).

When the distance from the center of the wheel to the ant is greater than the radius of the wheel, his path of motion is
called a prolate cycloid. A graph of a prolate cycloid is shown in the figure.

10.1.13

t

−xC xA −yC yA

10.1.14

C = ( , )xC yC A = ( , )xA yA
10.1.14
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Figure : (a) The ant is hanging onto the flange of the train wheel. (b) The new setup, now that the ant has jumped onto
the train wheel. (c) The ant travels along a prolate cycloid.

4. Using the same approach you used in parts 1– 3, find the parametric equations for the path of motion of the ant.

5. What do you notice about your answer to part 3 and your answer to part 4?

Notice that the ant is actually traveling backward at times (the “loops” in the graph), even though the train
continues to move forward. He is probably going to be really dizzy by the time he gets home!

Key Concepts
Parametric equations provide a convenient way to describe a curve. A parameter can represent time or some other meaningful
quantity.
It is often possible to eliminate the parameter in a parameterized curve to obtain a function or relation describing that curve.
There is always more than one way to parameterize a curve.
Parametric equations can describe complicated curves that are difficult or perhaps impossible to describe using rectangular
coordinates.

Glossary

cycloid
the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage

cusp
a pointed end or part where two curves meet

orientation
the direction that a point moves on a graph as the parameter increases

parameter
an independent variable that both  and  depend on in a parametric curve; usually represented by the variable 

parametric curve
the graph of the parametric equations  and  over an interval  combined with the equations

10.1.14

x y t

x(t) y(t) a ≤ t ≤ b
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parametric equations
the equations  and  that define a parametric curve

parameterization of a curve
rewriting the equation of a curve defined by a function  as parametric equations

10.1: Curves Defined by Parametric Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

11.1: Parametric Equations by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

x = x(t) y = y(t)

y = f(x)
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10.2: Calculus with Parametric Curves

Determine derivatives and equations of tangents for parametric curves.
Find the area under a parametric curve.
Use the equation for arc length of a parametric curve.
Apply the formula for surface area to a volume generated by a parametric curve.

Now that we have introduced the concept of a parameterized curve, our next step is to learn how to work with this concept in the context
of calculus. For example, if we know a parameterization of a given curve, is it possible to calculate the slope of a tangent line to the
curve? How about the arc length of the curve? Or the area under the curve?

Another scenario: Suppose we would like to represent the location of a baseball after the ball leaves a pitcher’s hand. If the position of
the baseball is represented by the plane curve  then we should be able to use calculus to find the speed of the ball at any given
time. Furthermore, we should be able to calculate just how far that ball has traveled as a function of time.

Derivatives of Parametric Equations

We start by asking how to calculate the slope of a line tangent to a parametric curve at a point. Consider the plane curve defined by the
parametric equations

within .

The graph of this curve appears in Figure . It is a line segment starting at  and ending at 

Figure : Graph of the line segment described by the given parametric equations.

We can eliminate the parameter by first solving Equation  for :

 Learning Objectives

(x(t), y(t))

x(t)

y(t)

= 2t+3

= 3t−4

(10.2.1)

(10.2.2)

−2 ≤ t ≤ 3

10.2.1 (−1, −10) (9, 5).

10.2.1

10.2.1 t

x(t) = 2t+3

x−3 = 2t
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.

Substituting this into  (Equation ), we obtain

.

The slope of this line is given by . Next we calculate  and . This gives  and . Notice that

This is no coincidence, as outlined in the following theorem.

Consider the plane curve defined by the parametric equations  and . Suppose that  and  exist, and assume

that . Then the derivative is given by

This theorem can be proven using the Chain Rule. In particular, assume that the parameter  can be eliminated, yielding a
differentiable function . Then  Differentiating both sides of this equation using the Chain Rule yields

so

But , which proves the theorem.

□

Equation  can be used to calculate derivatives of plane curves, as well as critical points. Recall that a critical point of a
differentiable function  is any point  such that either  or  does not exist. Equation  gives a
formula for the slope of a tangent line to a curve defined parametrically regardless of whether the curve can be described by a function 

 or not.

Calculate the derivative  for each of the following parametrically defined plane curves, and locate any critical points on their

respective graphs.

a. 
b. 
c. 

Solution

t =
x−3

2

y(t) 10.2.2

y(t) = 3t−4

y = 3( )−4
x−3

2

y = − −4
3x

2

9

2

y = −
3x

2

17

2

=
dy

dx

3

2
x'(t) y'(t) x'(t) = 2 y'(t) = 3

= = .
dy

dx

dy/dt

dx/dt

3

2

 Derivative of Parametric Equations

x = x(t) y = y(t) x'(t) y'(t)

x'(t) ≠ 0
dy

dx

= = .
dy

dx

dy/dt

dx/dt

y'(t)

x'(t)
(10.2.3)

 Proof

t

y = F (x) y(t) = F (x(t)).

y'(t) = F '(x(t))x'(t),

F '(x(t)) = .
y'(t)

x'(t)

F '(x(t)) =
dy

dx

10.2.3
y = f(x) x = x0 f '( ) = 0x0 f '( )x0 10.2.3

y = f(x)

 Example : Finding the Derivative of a Parametric Curve10.2.1

dy

dx

x(t) = −3, y(t) = 2t−1, for  −3 ≤ t ≤ 4t2

x(t) = 2t+1, y(t) = −3t+4, for  −2 ≤ t ≤ 2t3

x(t) = 5 cos t, y(t) = 5 sin t, for 0 ≤ t ≤ 2π
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a. To apply Equation , first calculate  and :

.

Next substitute these into the equation:

.

This derivative is undefined when . Calculating  and  gives  and 
, which corresponds to the point  on the graph. The graph of this curve is a parabola opening

to the right, and the point  is its vertex as shown.

Figure : Graph of the parabola described by parametric equations in part a.

b. To apply Equation , first calculate  and :

.

Next substitute these into the equation:

.

This derivative is zero when . When  we have

 and ,

which corresponds to the point  on the graph. When  we have

 and 

which corresponds to the point  on the graph. The point  is a relative minimum and the point  is a relative
maximum, as seen in the following graph.

10.2.3 x'(t) y'(t)

x'(t) = 2t

y'(t) = 2

=
dy

dx

dy/dt

dx/dt

=
dy

dx

2

2t

=
dy

dx

1

t

t = 0 x(0) y(0) x(0) = (0 −3 = −3)2

y(0) = 2(0) −1 = −1 (−3, −1)
(−3, −1)

10.2.2

10.2.3 x'(t) y'(t)

x'(t) = 2

y'(t) = 3 −3t2

=
dy

dx

dy/dt

dx/dt

=
dy

dx

3 −3t2

2

t = ±1 t = −1

x(−1) = 2(−1) +1 = −1 y(−1) = (−1 −3(−1) +4 = −1 +3 +4 = 6)3

(−1, 6) t = 1

x(1) = 2(1) +1 = 3 y(1) = (1 −3(1) +4 = 1 −3 +4 = 2,)3

(3, 2) (3, 2) (−1, 6)
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Figure : Graph of the curve described by parametric equations in part b.

c. To apply Equation , first calculate  and :

Next substitute these into the equation:

This derivative is zero when  and is undefined when  This gives  and  as critical points

for t. Substituting each of these into  and , we obtain

0 5 0

0 5

−5 0

0 −5

5 0

These points correspond to the sides, top, and bottom of the circle that is represented by the parametric equations (Figure 
). On the left and right edges of the circle, the derivative is undefined, and on the top and bottom, the derivative equals

zero.

10.2.3

10.2.3 x'(t) y'(t)

x'(t) = −5 sin t

y'(t) = 5 cos t.

=
dy

dx

dy/dt

dx/dt

=
dy

dx

5 cos t

−5 sin t

= −cot t.
dy

dx

cos t = 0 sin t = 0. t = 0, , π, ,
π

2

3π

2
2π

x(t) y(t)

t x(t) y(t)

π

2

π

3π

2

2π

10.2.4
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Figure : Graph of the curve described by parametric equations in part c.

Calculate the derivative  for the plane curve defined by the equations

and locate any critical points on its graph.

Hint

Calculate  and  and use Equation .

Answer

 and , so .

This expression is undefined when  and equal to zero when .

Find the equation of the tangent line to the curve defined by the equations

10.2.4

 Exercise 10.2.1

dy/dx

x(t) = −4t, y(t) = 2 −6t, for  −2 ≤ t ≤ 3t2 t3

x'(t) y'(t) 10.2.3

x'(t) = 2t−4 y'(t) = 6 −6t2 = =
dy

dx

6 −6t2

2t−4

3 −3t2

t−2

t = 2 t = ±1

 Example : Finding a Tangent Line10.2.2

x(t) = −3, y(t) = 2t−1, for  −3 ≤ t ≤ 4t2
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when .

Solution

First find the slope of the tangent line using Equation , which means calculating  and :

.

Next substitute these into the equation:

.

When , so this is the slope of the tangent line. Calculating  and  gives

 and ,

which corresponds to the point  on the graph (Figure ). Now use the point-slope form of the equation of a line to find the
equation of the tangent line:

.

Figure : Tangent line to the parabola described by the given parametric equations when .

Find the equation of the tangent line to the curve defined by the equations

 when .

Hint

Calculate  and  and use Equation .

Answer

The equation of the tangent line is 

t = 2

10.2.3 x'(t) y'(t)

x'(t) = 2t

y'(t) = 2

=
dy

dx

dy/dt

dx/dt

=
dy

dx

2

2t

=
dy

dx

1

t

t = 2, =
dy

dx

1

2
x(2) y(2)

x(2) = (2 −3 = 1)2 y(2) = 2(2) −1 = 3

(1, 3) 10.2.5

y− = m(x− )y0 x0

y−3 = (x−1)
1

2

y−3 = x−
1

2

1

2

y = x+
1

2

5

2

10.2.5 t = 2

 Exercise 10.2.2

x(t) = −4t, y(t) = 2 −6t, for  −2 ≤ t ≤ 6t2 t3 t = 5

x'(t) y'(t) 10.2.3

y = 24x+100.
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Second-Order Derivatives

Our next goal is to see how to take the second derivative of a function defined parametrically. The second derivative of a function 
 is defined to be the derivative of the first derivative; that is,

Since

we can replace the  on both sides of Equation  with . This gives us

If we know  as a function of , then this formula is straightforward to apply

Calculate the second derivative  for the plane curve defined by the parametric equations 

Solution

From Example  we know that . Using Equation , we obtain

.

Calculate the second derivative  for the plane curve defined by the equations

and locate any critical points on its graph.

Hint

Start with the solution from the previous exercise, and use Equation .

Answer

. Critical points ,and 

Integrals Involving Parametric Equations

Now that we have seen how to calculate the derivative of a plane curve, the next question is this: How do we find the area under a curve
defined parametrically? Recall the cycloid defined by these parametric equations

Suppose we want to find the area of the shaded region in the following graph.

y = f(x)

= [ ] .
yd2

dx2

d

dx

dy

dx
(10.2.4)

= ,
dy

dx

dy/dt

dx/dt

y 10.2.4
dy

dx

= ( ) = .
yd2

dx2

d

dx

dy

dx

(d/dt)(dy/dx)

dx/dt
(10.2.5)

dy/dx t

 Example : Finding a Second Derivative10.2.3

y/dd2 x2

x(t) = −3, y(t) = 2t−1, for  −3 ≤ t ≤ 4.t2

10.2.1 = =
dy

dx

2

2t

1

t
10.2.5

= = = = −
yd2

dx2

(d/dt)(dy/dx)

dx/dt

(d/dt)(1/t)

2t

−t−2

2t

1

2t3

 Exercise 10.2.3

y/dd2 x2

x(t) = −4t, y(t) = 2 −6t, for  −2 ≤ t ≤ 3t2 t3

10.2.5

=
yd2

dx2

3 −12t+3t2

2(t−2)3
(5, 4), (−3, −4) (−4, 6).

x(t)

y(t)

= t−sin t

= 1 −cos t.
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Figure : Graph of a cycloid with the arch over  highlighted.

To derive a formula for the area under the curve defined by the functions

where .

We assume that  is differentiable and start with an equal partition of the interval . Suppose 
 and consider the following graph.

Figure : Approximating the area under a parametrically defined curve.

We use rectangles to approximate the area under the curve. The height of a typical rectangle in this parametrization is  for some
value  in the  subinterval, and the width can be calculated as . Thus the area of the  rectangle is given by

Then a Riemann sum for the area is

Multiplying and dividing each area by  gives

Taking the limit as  approaches infinity gives

This leads to the following theorem.

10.2.6 [0, 2π]

x

y

= x(t)

= y(t)

a ≤ t ≤ b

x(t) a ≤ t ≤ b

= a < < < ⋯ < = bt0 t1 t2 tn

10.2.7

y(x( ))tī
tī ith x( ) −x( )ti ti−1 ith

= y(x( ))(x( ) −x( )).Ai tī ti ti−1

= y(x( ))(x( ) −x( )).An ∑
i=1

n

tī ti ti−1

−ti ti−1

An = y(x( ))( ) ( − )∑
i=1

n

tī
x( ) −x( )ti ti−1

−ti ti−1
ti ti−1

= y(x( ))( )Δt.∑
i=1

n

tī
x( ) −x( )ti ti−1

Δt

n

A = = y(t)x'(t)dt.lim
n→∞

An ∫
b

a
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Consider the non-self-intersecting plane curve defined by the parametric equations

and assume that  is differentiable. The area under this curve is given by

Find the area under the curve of the cycloid defined by the equations

Solution

Using Equation , we have

Find the area under the curve of the hypocycloid defined by the equations

Hint

Use Equation , along with the identities  and .

Answer

 (Note that the integral formula actually yields a negative answer. This is due to the fact that  is a decreasing function
over the interval  that is, the curve is traced from right to left.)

Arc Length of a Parametric Curve

In addition to finding the area under a parametric curve, we sometimes need to find the arc length of a parametric curve. In the case of a
line segment, arc length is the same as the distance between the endpoints. If a particle travels from point  to point  along a curve,
then the distance that particle travels is the arc length. To develop a formula for arc length, we start with an approximation by line
segments as shown in the following graph.

 Area under a Parametric Curve

x = x(t), y = y(t), for a ≤ t ≤ b

x(t)

A = y(t)x'(t)dt.∫
b

a

(10.2.6)

 Example : Finding the Area under a Parametric Curve10.2.4

x(t) = t−sin t, y(t) = 1 −cos t, for 0 ≤ t ≤ 2π.

10.2.6

A = y(t)x'(t)dt∫
b

a

= (1 −cos t)(1 −cos t)dt∫
2π

0

= (1 −2 cos t+ t)dt∫
2π

0
cos2

= (1 −2 cos t+ ) dt∫
2π

0

1 +cos(2t)

2

= ( −2 cos t+ ) dt∫
2π

0

3

2

cos(2t)

2

= −2 sin t+
3t

2

sin(2t)

4

∣

∣
∣
2π

0

= 3π

 Exercise 10.2.4

x(t) = 3 cos t+cos(3t), y(t) = 3 sin t−sin(3t), for 0 ≤ t ≤ π.

10.2.6 sinα sinβ = [cos(α−β) −cos(α+β)]
1

2
t =sin2

1 −cos(2t)

2

A = 3π x(t)
[0, π];

A B
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Figure : Approximation of a curve by line segments.

Given a plane curve defined by the functions , we start by partitioning the interval  into 
equal subintervals: . The width of each subinterval is given by . We can calculate the
length of each line segment:

etc.

Then add these up. We let  denote the exact arc length and  denote the approximation by  line segments:

If we assume that  and  are differentiable functions of , then the Mean Value Theorem applies, so in each subinterval 
there exist  and  such that

Therefore Equation  becomes

This is a Riemann sum that approximates the arc length over a partition of the interval . If we further assume that the derivatives are
continuous and let the number of points in the partition increase without bound, the approximation approaches the exact arc length. This
gives

When taking the limit, the values of  and  are both contained within the same ever-shrinking interval of width , so they must
converge to the same value.

We can summarize this method in the following theorem.

10.2.7

x = x(t), y = y(t), for a ≤ t ≤ b [a, b] n

= a < < < ⋯ < = bt0 t1 t2 tn Δt = (b−a)/n

=d1 (x( ) −x( ) +(y( ) −y( )t1 t0 )2 t1 t0 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−

√

=d2 (x( ) −x( ) +(y( ) −y( )t2 t1 )2 t2 t1 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−

√

s sn n

s ≈ = .∑
k=1

n

sk ∑
k=1

n

(x( ) −x( ) +(y( ) −y( )tk tk−1 )2 tk tk−1 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (10.2.7)

x(t) y(t) t [ , ]tk−1 tk

tk̂ tk
~

x( ) −x( ) = x'( )( − ) = x'( ) Δttk tk−1 tk̂ tk tk−1 tk̂

y( ) −y( ) = y'( )( − ) = y'( ) Δt.tk tk−1 tk
~

tk tk−1 tk
~

10.2.7

s ≈∑
k=1

n

sk =∑
k=1

n

(x'( )Δt +(y'( )Δttk̂ )2 tk
~

)2
− −−−−−−−−−−−−−−−−−−−

√

=∑
k=1

n

(x'( ) (Δt +(y'( ) (Δttk̂ )2 )2 tk
~

)2 )2
− −−−−−−−−−−−−−−−−−−−−−−−

√

= Δt.∑
k=1

n

(x'( ) +(y'( )tk̂ )2 tk
~

)2
− −−−−−−−−−−−−−−

√

[a, b]

s = lim
n→∞

∑
k=1

n

sk

= Δtlim
n→∞

∑
k=1

n

(x'( ) +(y'( )tk̂ )2 tk
~

)2
− −−−−−−−−−−−−−−

√

= dt.∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√

tk̂ tk
~

Δt
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Consider the plane curve defined by the parametric equations

and assume that  and  are differentiable functions of . Then the arc length of this curve is given by

At this point a side derivation leads to a previous formula for arc length. In particular, suppose the parameter can be eliminated, leading
to a function . Then  and the Chain Rule gives

Substituting this into Equation  gives

Here we have assumed that , which is a reasonable assumption. The Chain Rule gives  and letting  and
 we obtain the formula

which is the formula for arc length obtained in the Introduction to the Applications of Integration.

Find the arc length of the semicircle defined by the equations

Solution

The values  to  trace out the blue curve in Figure . To determine its length, use Equation :

 Arc Length of a Parametric Curve

x = x(t), y = y(t), for  ≤ t ≤t1 t2

x(t) y(t) t

s = dt.∫
t2

t1

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√ (10.2.8)

y = F (x) y(t) = F (x(t))

y'(t) = F '(x(t))x'(t).

10.2.8

s = dt∫
t2

t1

+( )
dx

dt

2

(F '(x) )
dx

dt

2
− −−−−−−−−−−−−−−−−−−

√

= dt∫
t2

t1

(1 + )( )
dx

dt

2

(F '(x))
2

− −−−−−−−−−−−−−−−−

√

= x'(t) dt.∫
t2

t1

1 +( )
dy

dx

2
− −−−−−−−−

√

x'(t) > 0 dx = x'(t)dt, a = x( )t1

b = x( )t2

s = dx,∫
b

a

1 +( )
dy

dx

2
− −−−−−−−−

√

 Example : Finding the Arc Length of a Parametric Curve10.2.5

x(t) = 3 cos t, y(t) = 3 sin t, for 0 ≤ t ≤ π.

t = 0 t = π 10.2.8 10.2.8

s = dt∫
t2

t1

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√

= dt∫
π

0
(−3 sin t +(3 cos t)2 )2
− −−−−−−−−−−−−−−−−

√

= dt∫
π

0
9 t+9 tsin2 cos2− −−−−−−−−−−−−

√

= dt∫
π

0
9( t+ t)sin2 cos2
− −−−−−−−−−−−−

√

= 3 dt = 3t∫
π

0

∣
∣
π

0

= 3π units.
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Note that the formula for the arc length of a semicircle is  and the radius of this circle is . This is a great example of using
calculus to derive a known formula of a geometric quantity.

Figure : The arc length of the semicircle is equal to its radius times .

Find the arc length of the curve defined by the equations

Hint

Use Equation .

Answer

 units

We now return to the problem posed at the beginning of the section about a baseball leaving a pitcher’s hand. Ignoring the effect of air
resistance (unless it is a curve ball!), the ball travels a parabolic path. Assuming the pitcher’s hand is at the origin and the ball travels left
to right in the direction of the positive -axis, the parametric equations for this curve can be written as

where  represents time. We first calculate the distance the ball travels as a function of time. This distance is represented by the arc
length. We can modify the arc length formula slightly. First rewrite the functions  and  using v as an independent variable, so as
to eliminate any confusion with the parameter :

Then we write the arc length formula as follows:

The variable  acts as a dummy variable that disappears after integration, leaving the arc length as a function of time . To integrate this
expression we can use a formula from Appendix A,

We set  and  This gives  so  Therefore

πr 3

10.2.8 π

 Exercise 10.2.5

x(t) = 3 , y(t) = 2 , for 1 ≤ t ≤ 3.t2 t3

10.2.8

s = 2( − ) ≈ 57.589103/2 23/2

x

x(t) = 140t, y(t) = −16 +2tt2

t

x(t) y(t)
t

x(v) = 140v, y(v) = −16 +2v.v2

s(t) = dv∫
t

0
( +(
dx

dv
)2 dy

dv
)2

− −−−−−−−−−−−
√

= dv∫
t

0
+(−32v+21402 )2

− −−−−−−−−−−−−−−
√

v t

∫ du = + ln ∣ u+ ∣ +C.+a2 u2− −−−−−
√ u

2
+a2 u2− −−−−−

√ a2

2
+a2 u2− −−−−−

√

a = 140 u = −32v+2. du = −32 dv, dv= − du.
1

32
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and

This function represents the distance traveled by the ball as a function of time. To calculate the speed, take the derivative of this function
with respect to . While this may seem like a daunting task, it is possible to obtain the answer directly from the Fundamental Theorem of
Calculus:

Therefore

One third of a second after the ball leaves the pitcher’s hand, the distance it travels is equal to

This value is just over three quarters of the way to home plate. The speed of the ball is

 ft/s.

This speed translates to approximately  mph—a major-league fastball.

Surface Area Generated by a Parametric Curve

Recall the problem of finding the surface area of a volume of revolution. In Curve Length and Surface Area, we derived a formula for
finding the surface area of a volume generated by a function  from  to  revolved around the -axis:

∫ dv+(−32v+21402 )2
− −−−−−−−−−−−−−−

√ = − ∫ du
1

32
+a2 u2− −−−−−

√

= − [ + ln ∣ (−32v+2) + | +C]
1

32

(−32v+2)

2
+(−32v+21402 )2

− −−−−−−−−−−−−−−
√

1402

2
+(−32v+21402 )2

− −−−−−−−−−−−−−−
√

s(t) = − [ + ln (−32t+2) + ]
1

32

(−32t+2)

2
+(−32t+21402 )2

− −−−−−−−−−−−−−−
√

1402

2
∣
∣ +(−32t+21402 )2

− −−−−−−−−−−−−−−
√ ∣

∣

+ [ + ln 2 + ]
1

32
+1402 22− −−−−−−−

√ 1402

2
∣∣ +1402 22− −−−−−−−

√ ∣∣

=( − ) − ln (−32t+2) + + + ln
t

2

1

32
1024 −128t+19604t2− −−−−−−−−−−−−−−−−−

√
1225

4
∣∣ 1024 −128t+19604t2− −−−−−−−−−−−−−−−−−

√ ∣∣
19604
− −−−−

√

32

1225

4

(2 + )19604
− −−−−

√
.

t

f(u)du = f(x).
d

dx
∫

x

a

s'(t) = [s(t)]
d

dt

= [ dv]
d

dt
∫

t

0
+(−32v+21402 )2

− −−−−−−−−−−−−−−
√

= +(−32t+21402 )2
− −−−−−−−−−−−−−−

√

= 1024 −128t+19604t2− −−−−−−−−−−−−−−−−−√

= 2 .256 −32t+4901t2− −−−−−−−−−−−−−−
√

s( )
1

3
=( − )

1/3

2

1

32
1024 −128( )+19604( )

1

3

2 1

3

− −−−−−−−−−−−−−−−−−−−−−−−−

√

− ln (−32( )+2)+
1225

4

∣

∣
∣

1

3
1024 −128( )+19604( )

1

3

2
1

3

− −−−−−−−−−−−−−−−−−−−−−−−−

√
∣

∣
∣

+ + ln(2 + )
19604
− −−−−

√

32

1225

4
19604
− −−−−

√

≈ 46.69 feet.

s' ( ) = 2 ≈ 140.271
3

256 −32 ( )+4901( )1
3

2 1
3

− −−−−−−−−−−−−−−−−−−−
√

95

y = f(x) x = a x = b, x

S = 2π f(x) dx.∫
b

a

1 +(f '(x))2
− −−−−−−−−−

√
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We now consider a volume of revolution generated by revolving a parametrically defined curve 
around the -axis as shown in Figure .

Figure : A surface of revolution generated by a parametrically defined curve.

The analogous formula for a parametrically defined curve is

provided that  is not negative on .

Find the surface area of a sphere of radius  centered at the origin.

Solution

We start with the curve defined by the equations

This generates an upper semicircle of radius  centered at the origin as shown in the following graph.

Figure : A semicircle generated by parametric equations.

When this curve is revolved around the -axis, it generates a sphere of radius . To calculate the surface area of the sphere, we use
Equation :

x = x(t), y = y(t), for a ≤ t ≤ b

x 10.2.9

10.2.9

S = 2π y(t) dt∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√ (10.2.9)

y(t) [a, b]

 Example : Finding Surface Area10.2.6

r

x(t) = r cos t, y(t) = r sin t, for 0 ≤ t ≤ π.

r

10.2.10

x r

10.2.9
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This is, in fact, the formula for the surface area of a sphere.

Find the surface area generated when the plane curve defined by the equations

is revolved around the -axis.

Hint

Use Equation . When evaluating the integral, use a -substitution.

Answer

Key Concepts

The derivative of the parametrically defined curve  and  can be calculated using the formula . Using

the derivative, we can find the equation of a tangent line to a parametric curve.

The area between a parametric curve and the -axis can be determined by using the formula 

The arc length of a parametric curve can be calculated by using the formula

The surface area of a volume of revolution revolved around the -axis is given by

If the curve is revolved around the -axis, then the formula is

S = 2π y(t) dt∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√

= 2π r sin t dt∫
π

0
(−r sin t +(r cos t)2 )2
− −−−−−−−−−−−−−−−−

√

= 2π r sin t dt∫
π

0
t+ tr2 sin2 r2 cos2− −−−−−−−−−−−−−

√

= 2π r sin t dt∫
π

0
( t+ t)r2 sin2 cos2

− −−−−−−−−−−−−−
√

= 2π sin t dt∫
π

0
r2

= 2π (−cos t )r2 ∣
∣
π

0

= 2π (−cosπ+cos 0)r2

= 4π .r2 units2

 Exercise 10.2.6

x(t) = , y(t) = , for 0 ≤ t ≤ 1t3 t2

x

10.2.9 u

A =
π(494 +128)13

−−
√

1215
 units2

x = x(t) y = y(t) =
dy

dx

y'(t)

x'(t)

x A = y(t)x'(t)dt.∫
t2

t1

s = dt.∫
t2

t1

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√

x

S = 2π y(t) dt.∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√

y

S = 2π x(t) dt.∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√
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Key Equations
Derivative of parametric equations

Second-order derivative of parametric equations

Area under a parametric curve

Arc length of a parametric curve

Surface area generated by a parametric curve

10.2: Calculus with Parametric Curves is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

11.2: Calculus of Parametric Curves by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

= =
dy

dx

dy/dt

dx/dt

y'(t)

x'(t)

= ( ) =
yd2

dx2

d

dx

dy

dx

(d/dt)(dy/dx)

dx/dt

A = y(t)x'(t)dt∫
b

a

s = dt∫
t2

t1

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√

S = 2π y(t) dt∫
b

a

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√
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10.3: Polar Coordinates

Locate points in a plane by using polar coordinates.
Convert points between rectangular and polar coordinates.
Sketch polar curves from given equations.
Convert equations between rectangular and polar coordinates.
Identify symmetry in polar curves and equations.

The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered pairs to
points. This is called a one-to-one mapping from points in the plane to ordered pairs. The polar coordinate system provides an
alternative method of mapping points to ordered pairs. In this section we see that in some circumstances, polar coordinates can be
more useful than rectangular coordinates.

Defining Polar Coordinates
To find the coordinates of a point in the polar coordinate system, consider Figure . The point  has Cartesian coordinates 

. The line segment connecting the origin to the point  measures the distance from the origin to  and has length . The
angle between the positive x-axis and the line segment has measure . This observation suggests a natural correspondence between
the coordinate pair  and the values  and . This correspondence is the basis of the polar coordinate system. Note that every
point in the Cartesian plane has two values (hence the term ordered pair) associated with it. In the polar coordinate system, each
point also has two values associated with it:  and .

Figure : An arbitrary point in the Cartesian plane.

Using right-triangle trigonometry, the following equations are true for the point :

Furthermore,

and

Each point  in the Cartesian coordinate system can therefore be represented as an ordered pair  in the polar coordinate
system. The first coordinate is called the radial coordinate and the second coordinate is called the angular coordinate. Every
point in the plane can be represented in this form.

Note that the equation  has an infinite number of solutions for any ordered pair . However, if we restrict the
solutions to values between  and  then we can assign a unique solution to the quadrant in which the original point  is

 Learning Objectives

10.3.1 P

(x, y) P P r

θ

(x, y) r θ

r θ

10.3.1

P

cosθ =  so x = r cosθ
x

r

sinθ =  so y = r sinθ.
y

r

= +r2 x2 y2

tanθ = .
y

x

(x, y) (r, θ)

tanθ = y/x (x, y)
0 2π (x, y)

https://libretexts.org/
https://math.libretexts.org/@go/page/4507?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates/10.03%3A_Polar_Coordinates


10.3.2 https://math.libretexts.org/@go/page/4507

located. Then the corresponding value of  is positive, so .

Given a point  in the plane with Cartesian coordinates  and polar coordinates , the following conversion formulas
hold true:

and

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates. Notice that Equation 
 is the Pythagorean theorem. (Figure ).

Convert each of the following points into polar coordinates.

a. 
b. 
c. 
d. 

Convert each of the following points into rectangular coordinates.

e. 
f. 
g. 

Solution

a. Use  and  in Equation :

and via Equation 

Therefore this point can be represented as  in polar coordinates.

b. Use  and  in Equation :

and via Equation 

r = +r2 x2 y2

 Converting Points between Coordinate Systems

P (x, y) (r, θ)

x

y

= r cosθ

= r sinθ

(10.3.1)

(10.3.2)

.
r2

tanθ

= +x2 y2

=
y

x

(10.3.3)

(10.3.4)

10.3.3 10.3.1

 Example : Converting between Rectangular and Polar Coordinates10.3.1

(1, 1)
(−3, 4)
(0, 3)
(5 , −5)3

–
√

(3, π/3)
(2, 3π/2)
(6, −5π/6)

x = 1 y = 1 10.3.3

r2

r

= +x2 y2

= +12 12

= 2
–

√

10.3.4

tanθ

θ

= = = 1
y

x

1

1

= .
π

4

( , )2
–

√
π

4

x = −3 y = 4 10.3.3

r2

r

= + = (−3 +(4x2 y2 )2 )2

= 5

10.3.4

tanθ = = −
y

x

4

3
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Therefore this point can be represented as  in polar coordinates.

c. Use  and  in Equation :

 

and via Equation 

.

Direct application of the second equation leads to division by zero. Graphing the point  on the rectangular
coordinate system reveals that the point is located on the positive y-axis. The angle between the positive x-axis and the
positive y-axis is . Therefore this point can be represented as  in polar coordinates.

d. Use  and  in Equation :

and via Equation 

.

Therefore this point can be represented as  in polar coordinates.

e. Use  and  in Equation :

and

.

Therefore this point can be represented as  in rectangular coordinates.

f. Use  and  in Equation :

and

Therefore this point can be represented as  in rectangular coordinates.

g. Use  and  in Equation :

and

.

Therefore this point can be represented as  in rectangular coordinates.

θ = arctan(− ) +π ≈ 2.21.
4

3

(5, 2.21)

x = 0 y = 3 10.3.3

= + = (3 +(0 = 9 +0r2 x2 y2 )2 )2 r = 3

10.3.4

tanθ = =
y

x

3

0

(0, 3)

π

2
(3, )

π

2

x = 5 3
–

√ y = −5 10.3.3

= + = (5 +(−5 = 75 +25r2 x2 y2 3
–

√ )2 )2

r = 10

10.3.4

tanθ = = = −
y

x

−5

5 3
–

√

3
–

√

3

θ = −
π

6

(10, − )
π

6

r = 3 θ =
π

3
10.3.1

x = r cosθ = 3 cos( ) = 3( ) =
π

3

1

2

3

2

y = r sinθ = 3 sin( ) = 3( ) =
π

3

3
–

√

2

3 3
–

√

2

( , )
3

2

3 3
–

√

2

r = 2 θ =
3π

2
10.3.1

x = r cosθ = 2 cos( ) = 2(0) = 0
3π

2

y = r sinθ = 2 sin( ) = 2(−1) = −2.
3π

2

(0, −2)

r = 6 θ = −
5π

6
10.3.1

x = r cosθ = 6 cos(− ) = 6(− ) = −3
5π

6

3
–

√

2
3
–

√

y = r sinθ = 6 sin(− ) = 6(− ) = −3
5π

6

1

2

(−3 , −3)3
–√
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Convert  into polar coordinates and  into rectangular coordinates.

Hint

Use Equation  and Equation . Make sure to check the quadrant when calculating .

Answer

 and 

The polar representation of a point is not unique. For example, the polar coordinates  and  both represent the point 

 in the rectangular system. Also, the value of r can be negative. Therefore, the point with polar coordinates  also

represents the point  in the rectangular system, as we can see by using Equation :

and

Every point in the plane has an infinite number of representations in polar coordinates. However, each point in the plane has only
one representation in the rectangular coordinate system.

Note that the polar representation of a point in the plane also has a visual interpretation. In particular,  is the directed distance that
the point lies from the origin, and  measures the angle that the line segment from the origin to the point makes with the positive -
axis. Positive angles are measured in a counterclockwise direction and negative angles are measured in a clockwise direction. The
polar coordinate system appears in Figure .

Figure : The polar coordinate system.

The line segment starting from the center of the graph going to the right (called the positive x-axis in the Cartesian system) is the
polar axis. The center point is the pole, or origin, of the coordinate system, and corresponds to . The innermost circle shown
in Figure  contains all points a distance of 1 unit from the pole, and is represented by the equation . Then  is the

 Exercise 10.3.1

(−8, −8) (4, )
2π

3

10.3.3 10.3.1 θ

(8 , )2
–

√
5π

4
(−2, 2 )3

–
√

(2, )
π

3
(2, )

7π

3

(1, )3
–

√ (−2, )
4π

3
(1, )3

–
√ 10.3.1

x = r cosθ = −2 cos( ) = −2(− ) = 1
4π

3

1

2

y = r sinθ = −2 sin( ) = −2(− ) = .
4π

3

3
–

√

2
3
–

√

r

θ x

10.3.2

10.3.2

r = 0
10.3.2 r = 1 r = 2
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set of points 2 units from the pole, and so on. The line segments emanating from the pole correspond to fixed angles. To plot a
point in the polar coordinate system, start with the angle. If the angle is positive, then measure the angle from the polar axis in a
counterclockwise direction. If it is negative, then measure it clockwise. If the value of r is positive, move that distance along the
terminal ray of the angle. If it is negative, move along the ray that is opposite the terminal ray of the given angle.

Plot each of the following points on the polar plane.

a. 

b. 

c. 

Solution

The three points are plotted in Figure .

Figure : Three points plotted in the polar coordinate system.

Plot  and  on the polar plane.

Hint

Start with , then use .

Answer

 Example : Plotting Points in the Polar Plane10.3.2

(2, )
π

4

(−3, )
2π

3

(4, )
5π

4

10.3.3

10.3.3

 Exercise 10.3.2

(4, )
5π

3
(−3, − )

7π

2

θ r
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Polar Curves
Now that we know how to plot points in the polar coordinate system, we can discuss how to plot curves. In the rectangular
coordinate system, we can graph a function  and create a curve in the Cartesian plane. In a similar fashion, we can graph a
curve that is generated by a function .

The general idea behind graphing a function in polar coordinates is the same as graphing a function in rectangular coordinates.
Start with a list of values for the independent variable (  in this case) and calculate the corresponding values of the dependent
variable . This process generates a list of ordered pairs, which can be plotted in the polar coordinate system. Finally, connect the
points, and take advantage of any patterns that may appear. The function may be periodic, for example, which indicates that only a
limited number of values for the independent variable are needed.

1. Create a table with two columns. The first column is for , and the second column is for .
2. Create a list of values for .
3. Calculate the corresponding  values for each .
4. Plot each ordered pair  on the coordinate axes.
5. Connect the points and look for a pattern.

Graph the curve defined by the function . Identify the curve and rewrite the equation in rectangular coordinates.

Solution

Because the function is a multiple of a sine function, it is periodic with period , so use values for  between  and . The
result of steps 1–3 appear in the following table. Figure  shows the graph based on this table.

0 0 0

2

4

y = f(x)
r = f(θ)

θ

r

 Problem-Solving Strategy: Plotting a Curve in Polar Coordinates

θ r

θ

r θ

(r, θ)

 Example : Graphing a Function in Polar Coordinates10.3.3

r = 4 sinθ

2π θ 0 2π
10.3.4

θ r = 4 sinθ θ r = 4 sinθ

π

π

6
7π

6
−2

π

4
2 ≈ 2.82

–
√

5π

4
−2 ≈ −2.82

–
√

π

3
2 ≈ 3.43

–
√

4π

3
−2 ≈ −3.43

–
√

π

2
3π

2
−4
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2 −2

  0

Figure : The graph of the function  is a circle.

This is the graph of a circle. The equation  can be converted into rectangular coordinates by first multiplying both
sides by . This gives the equation  Next use the facts that  and . This gives 

. To put this equation into standard form, subtract  from both sides of the equation and complete the square:

This is the equation of a circle with radius 2 and center  in the rectangular coordinate system.

Create a graph of the curve defined by the function .

Hint

Follow the problem-solving strategy for creating a graph in polar coordinates.

Answer

The name of this shape is a cardioid, which we will study further later in this section.

θ r = 4 sinθ θ r = 4 sinθ

2π

3
2 ≈ 3.43

–
√

5π

3
−2 ≈ −3.43

–
√

3π

4
2 ≈ 2.82

–
√

7π

4
−2 ≈ −2.82

–
√

5π

6

11π

6

2π

10.3.4 r = 4 sin θ

r = 4 sinθ
r = 4r sinθ.r2 = +r2 x2 y2 y = r sinθ

+ = 4yx2 y2 4y

+ −4yx2 y2

+( −4y)x2 y2

+( −4y+4)x2 y2

+(y−2x2 )2

= 0

= 0

= 0 +4

= 4

(0, 2)

 Exercise 10.3.3

r = 4 +4 cosθ
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The graph in Example  was that of a circle. The equation of the circle can be transformed into rectangular coordinates using
the coordinate transformation formulas in Equation . Example  gives some more examples of functions for
transforming from polar to rectangular coordinates.

Rewrite each of the following equations in rectangular coordinates and identify the graph.

a. 

b. 
c. 

Solution:

a. Take the tangent of both sides. This gives .Since  we can replace the left-hand side of
this equation by . This gives , which can be rewritten as . This is the equation of a straight line passing
through the origin with slope . In general, any polar equation of the form  represents a straight line through the pole
with slope equal to .

b. First, square both sides of the equation. This gives  Next replace  with . This gives the equation 
, which is the equation of a circle centered at the origin with radius 3. In general, any polar equation of the form 

 where k is a positive constant represents a circle of radius k centered at the origin. (Note: when squaring both sides of an
equation it is possible to introduce new points unintentionally. This should always be taken into consideration. However, in this

case we do not introduce new points. For example,  is the same point as .)

c. Multiply both sides of the equation by . This leads to . Next use the formulas

This gives

To put this equation into standard form, first move the variables from the right-hand side of the equation to the left-hand side,
then complete the square.

10.3.3
10.3.1 10.3.4

 Example : Transforming Polar Equations to Rectangular Coordinates10.3.4

θ =
π

3
r = 3
r = 6 cosθ−8 sinθ

tanθ = tan(π/3) = 3
–

√ tanθ = y/x
y/x y/x = 3

–
√ y = x 3

–
√

3
–

√ θ = K

tanK

= 9.r2 r2 +x2 y2

+ = 9x2 y2

r = k

(−3, )
π

3
(3, )

4π

3

r = 6r cosθ−8r sinθr2

= + , x = r cosθ, y = r sinθ.r2 x2 y2

= 6(r cosθ) −8(r sinθ)r2

+ = 6x−8y.x2 y2
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This is the equation of a circle with center at  and radius 5. Notice that the circle passes through the origin since the
center is 5 units away.

Rewrite the equation  in rectangular coordinates and identify its graph.

Hint

Convert to sine and cosine, then multiply both sides by cosine.

Answer

, which is the equation of a parabola opening upward.

We have now seen several examples of drawing graphs of curves defined by polar equations. A summary of some common curves
is given in the tables below. In each equation, a and b are arbitrary constants.

+ = 6x−8yx2 y2

−6x+ +8y = 0x2 y2

( −6x) +( +8y) = 0x2 y2

( −6x+9) +( +8y+16) = 9 +16x2 y2

(x−3 +(y+4 = 25.)2 )2

(3, −4)

 Exercise 10.3.4

r = sec θ tanθ

y = x2
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Figure 10.3.5
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Figure 

A cardioid is a special case of a limaçon (pronounced “lee-mah-son”), in which  or . The rose is a very interesting
curve. Notice that the graph of  has four petals. However, the graph of  has three petals as shown.

10.3.6

a = b a = −b

r = 3 sin2θ r = 3 sin3θ

https://libretexts.org/
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Figure : Graph of .

If the coefficient of  is even, the graph has twice as many petals as the coefficient. If the coefficient of  is odd, then the number
of petals equals the coefficient. You are encouraged to explore why this happens. Even more interesting graphs emerge when the
coefficient of  is not an integer. For example, if it is rational, then the curve is closed; that is, it eventually ends where it started
(Figure ). However, if the coefficient is irrational, then the curve never closes (Figure ). Although it may appear that
the curve is closed, a closer examination reveals that the petals just above the positive x axis are slightly thicker. This is because the
petal does not quite match up with the starting point.

Figure : Polar rose graphs of functions with (a) rational coefficient and (b) irrational coefficient. Note that the rose in part (b)
would actually fill the entire circle if plotted in full.

Since the curve defined by the graph of  never closes, the curve depicted in Figure  is only a partial depiction.
In fact, this is an example of a space-filling curve. A space-filling curve is one that in fact occupies a two-dimensional subset of
the real plane. In this case the curve occupies the circle of radius 3 centered at the origin.

Recall the chambered nautilus introduced in the chapter prelude. This creature displays a spiral when half the outer shell is
cut away. It is possible to describe a spiral using rectangular coordinates. Figure  shows a spiral in rectangular
coordinates. How can we describe this curve mathematically?

10.3.7 r = 3 sin 3θ

θ θ

θ

10.3.8a 10.3.8b

10.3.8

r = 3 sin(πθ) 10.3.8b

 Example : Describing a Spiral10.3.5

10.3.9
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Figure : How can we describe a spiral graph mathematically?

Solution

As the point P travels around the spiral in a counterclockwise direction, its distance d from the origin increases. Assume that
the distance d is a constant multiple k of the angle  that the line segment OP makes with the positive x-axis. Therefore 

, where  is the origin. Now use the distance formula and some trigonometry:

.

Although this equation describes the spiral, it is not possible to solve it directly for either x or y. However, if we use polar
coordinates, the equation becomes much simpler. In particular, , and  is the second coordinate. Therefore the
equation for the spiral becomes . Note that when  we also have , so the spiral emanates from the origin. We
can remove this restriction by adding a constant to the equation. Then the equation for the spiral becomes  for
arbitrary constants  and . This is referred to as an Archimedean spiral, after the Greek mathematician Archimedes.

Another type of spiral is the logarithmic spiral, described by the function . A graph of the function  is
given in Figure . This spiral describes the shell shape of the chambered nautilus.

10.3.9

θ

d(P ,O) = kθ O

d(P ,O) = kθ

= k arctan( )(x−0 +(y−0)2 )2− −−−−−−−−−−−−−−
√

y

x

= k arctan( )+x2 y2− −−−−−√
y

x

arctan( ) =
y

x

+x2 y2− −−−−−
√

k

y = x tan( )
+x2 y2

− −−−−−
√

k

d(P ,O) = r θ

r = kθ θ = 0 r = 0
r = a+kθ

a k

r = a ⋅ bθ r = 1.2( )1.25θ

10.3.10
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Figure : A logarithmic spiral is similar to the shape of the chambered nautilus shell. (credit: modification of work by
Jitze Couperus, Flickr)

Suppose a curve is described in the polar coordinate system via the function . Since we have conversion formulas from
polar to rectangular coordinates given by

,

it is possible to rewrite these formulas using the function

This step gives a parameterization of the curve in rectangular coordinates using  as the parameter. For example, the spiral formula 
 from Figure becomes

Letting  range from  to  generates the entire spiral.

Symmetry in Polar Coordinates
When studying symmetry of functions in rectangular coordinates (i.e., in the form ), we talk about symmetry with respect
to the y-axis and symmetry with respect to the origin. In particular, if  for all  in the domain of , then  is an even
function and its graph is symmetric with respect to the y-axis. If  for all x in the domain of , then f is an odd
function and its graph is symmetric with respect to the origin. By determining which types of symmetry a graph exhibits, we can
learn more about the shape and appearance of the graph. Symmetry can also reveal other properties of the function that generates
the graph. Symmetry in polar curves works in a similar fashion.

Consider a curve generated by the function  in polar coordinates.

i. The curve is symmetric about the polar axis if for every point  on the graph, the point  is also on the graph.
Similarly, the equation  is unchanged by replacing  with .

ii. The curve is symmetric about the pole if for every point  on the graph, the point  is also on the graph.
Similarly, the equation  is unchanged when replacing  with , or  with 

10.3.10

r = f(θ)

x = r cosθ

y = r sinθ

x = f(θ) cosθ

y = f(θ) sinθ.

θ

r = a+bθ

x = (a+bθ) cosθ

y = (a+bθ) sinθ.

θ −∞ ∞

y = f(x)
f(−x) = f(x) x f f

f(−x) = −f(x) f

 Symmetry in Polar Curves and Equations

r = f(θ)

(r, θ) (r, −θ)
r = f(θ) θ −θ

(r, θ) (r, π+θ)
r = f(θ) r −r θ π+θ.
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iii. The curve is symmetric about the vertical line  if for every point  on the graph, the point  is also on

the graph. Similarly, the equation  is unchanged when  is replaced by .

The following table shows examples of each type of symmetry.

Find the symmetry of the rose defined by the equation  and create a graph.

Solution

Suppose the point  is on the graph of 

i. To test for symmetry about the polar axis, first try replacing  with . This gives .
Since this changes the original equation, this test is not satisfied. However, returning to the original equation and
replacing  with  and  with  yields

θ =
π

2
(r, θ) (r, π−θ)

r = f(θ) θ π−θ

 Example : Using Symmetry to Graph a Polar Equation10.3.6

r = 3 sin(2θ)

(r, θ) r = 3 sin(2θ).

θ −θ r = 3 sin(2(−θ)) = −3 sin(2θ)

r −r θ π−θ
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Multiplying both sides of this equation by  gives , which is the original equation. This demonstrates that
the graph is symmetric with respect to the polar axis.

ii. To test for symmetry with respect to the pole, first replace  with , which yields . Multiplying both
sides by  gives , which does not agree with the original equation. Therefore the equation does not pass
the test for this symmetry. However, returning to the original equation and replacing  with  gives

Since this agrees with the original equation, the graph is symmetric about the pole.

iii. To test for symmetry with respect to the vertical line , first replace both  with  and  with .

Multiplying both sides of this equation by  gives , which is the original equation. Therefore the graph is
symmetric about the vertical line .

This graph has symmetry with respect to the polar axis, the origin, and the vertical line going through the pole. To graph the
function, tabulate values of  between  and  and then reflect the resulting graph.

0 0

3

0

This gives one petal of the rose, as shown in the following graph.

−r

−r

−r

−r

= 3 sin(2(π−θ))

= 3 sin(2π−2θ)

= 3 sin(−2θ)

= −3 sin2θ.

−1 r = 3 sin2θ

r −r −r = 3 sin(2θ)
−1 r = −3 sin(2θ)

θ θ+π

r = 3 sin(2(θ+π))

= 3 sin(2θ+2π)

= 3(sin2θcos 2π+cos 2θ sin2π)

= 3 sin2θ.

θ =
π

2
r −r θ −θ

−r

−r

−r

= 3 sin(2(−θ))

= 3 sin(−2θ)

= −3 sin2θ.

−1 r = 3 sin2θ

θ =
π

2

θ 0 π/2

π

6 ≈ 2.6
3 3

–
√

2
π

4

π

3 ≈ 2.6
3 3

–
√

2
π

2
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Figure : The graph of the equation between  and 

Reflecting this image into the other three quadrants gives the entire graph as shown.

Figure : The entire graph of the equation is called a four-petaled rose.

Determine the symmetry of the graph determined by the equation  and create a graph.

Hint

Use Note.

Answer

Symmetric with respect to the polar axis.

10.3.11 θ = 0 θ = π/2.

10.3.12

 Exercise Symmetry10.3.5

r = 2 cos(3θ)
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Key Concepts
The polar coordinate system provides an alternative way to locate points in the plane.
Convert points between rectangular and polar coordinates using the formulas

and

To sketch a polar curve from a given polar function, make a table of values and take advantage of periodic properties.
Use the conversion formulas to convert equations between rectangular and polar coordinates.
Identify symmetry in polar curves, which can occur through the pole, the horizontal axis, or the vertical axis.

Glossary

angular coordinate
 the angle formed by a line segment connecting the origin to a point in the polar coordinate system with the positive radial (x)

axis, measured counterclockwise

cardioid
a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius; the equation
of a cardioid is  or 

limaçon
the graph of the equation  or  If  then the graph is a cardioid

polar axis
the horizontal axis in the polar coordinate system corresponding to 

polar coordinate system
a system for locating points in the plane. The coordinates are , the radial coordinate, and , the angular coordinate

polar equation
an equation or function relating the radial coordinate to the angular coordinate in the polar coordinate system

pole
the central point of the polar coordinate system, equivalent to the origin of a Cartesian system

x = r cosθ and y = r sinθ

r =  andtanθ = .+x2 y2
− −−−−−

√
y

x

θ

r = a(1 +sinθ) r = a(1 +cosθ)

r = a+b sinθ r = a+b cosθ. a = b

r ≥ 0

r θ
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radial coordinate
 the coordinate in the polar coordinate system that measures the distance from a point in the plane to the pole

rose
graph of the polar equation  or for a positive constant 

space-filling curve
a curve that completely occupies a two-dimensional subset of the real plane

10.3: Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

11.3: Polar Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

r

r = a cos 2θ r = a sin2θ a
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10.4: Areas and Lengths in Polar Coordinates

Apply the formula for area of a region in polar coordinates.
Determine the arc length of a polar curve.

In the rectangular coordinate system, the definite integral provides a way to calculate the area under a curve. In particular, if we
have a function  defined from  to  where  on this interval, the area between the curve and the x-axis
is given by

This fact, along with the formula for evaluating this integral, is summarized in the Fundamental Theorem of Calculus. Similarly,
the arc length of this curve is given by

In this section, we study analogous formulas for area and arc length in the polar coordinate system.

Areas of Regions Bounded by Polar Curves
We have studied the formulas for area under a curve defined in rectangular coordinates and parametrically defined curves. Now we
turn our attention to deriving a formula for the area of a region bounded by a polar curve. Recall that the proof of the Fundamental
Theorem of Calculus used the concept of a Riemann sum to approximate the area under a curve by using rectangles. For polar
curves we use the Riemann sum again, but the rectangles are replaced by sectors of a circle.

Consider a curve defined by the function  where  Our first step is to partition the interval  into n equal-
width subintervals. The width of each subinterval is given by the formula , and the ith partition point  is given
by the formula . Each partition point  defines a line with slope  passing through the pole as shown in the
following graph.

 Learning Objectives

y = f(x) x = a x = b f(x) > 0

A = f(x)dx.∫
b

a

L = dx.∫
b

a

1 +(f '(x))2
− −−−−−−−−−

√

r = f(θ), α ≤ θ ≤ β. [α, β]
Δθ = (β−α)/n θi

= α+ iΔθθi θ = θi tanθi
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Figure : A partition of a typical curve in polar coordinates.

The line segments are connected by arcs of constant radius. This defines sectors whose areas can be calculated by using a
geometric formula. The area of each sector is then used to approximate the area between successive line segments. We then sum the
areas of the sectors to approximate the total area. This approach gives a Riemann sum approximation for the total area. The formula
for the area of a sector of a circle is illustrated in the following figure.

Figure : The area of a sector of a circle is given by .

Recall that the area of a circle is . When measuring angles in radians, 360 degrees is equal to  radians. Therefore a

fraction of a circle can be measured by the central angle . The fraction of the circle is given by , so the area of the sector is this

fraction multiplied by the total area:

Since the radius of a typical sector in Figure  is given by , the area of the ith sector is given by

10.4.1

10.4.2 A = θ
1

2
r2

A = πr2 2π

θ
θ

2π

A = ( )π = θ .
θ

2π
r2 1

2
r2

10.4.1 = f( )ri θi

= (Δθ)(f( ) .Ai

1

2
θi )2
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Therefore a Riemann sum that approximates the area is given by

We take the limit as  to get the exact area:

This gives the following theorem.

Suppose  is continuous and nonnegative on the interval  with . The area of the region bounded by
the graph of  between the radial lines  and  is

Find the area of one petal of the rose defined by the equation 

Solution

The graph of  follows.

Figure : The graph of 

When  we have . The next value for which  is . This can be seen by solving the
equation  for . Therefore the values  to  trace out the first petal of the rose. To find the area inside
this petal, use Equation  with  and :

To evaluate this integral, use the formula  with 

= ≈ (Δθ)(f( ) .An ∑
i=1

n

Ai ∑
i=1

n 1

2
θi )2

n → ∞

A = = (f(θ) dθ.lim
n→∞

An

1

2
∫

β

α

)2

 Area of a Region Bounded by a Polar Curve

f α ≤ θ ≤ β 0 < β−α ≤ 2π
r = f(θ) θ = α θ = β

A = [f(θ) dθ
1

2
∫

β

α

]2

= dθ.
1

2
∫

β

α

r2

(10.4.1)

(10.4.2)

 Example : Finding an Area of a Polar Region10.4.1

r = 3 sin(2θ).

r = 3 sin(2θ)

10.4.3 r = 3 sin(2θ).

θ = 0 r = 3 sin(2(0)) = 0 r = 0 θ = π/2
3 sin(2θ) = 0 θ θ = 0 θ = π/2

10.4.2 f(θ) = 3 sin(2θ),α = 0, β = π/2

A = [f(θ) dθ
1

2
∫

β

α

]2

= [3 sin(2θ) dθ
1

2
∫

π/2

0
]2

= 9 (2θ)dθ.
1

2
∫

π/2

0
sin2

α = (1 −cos(2α))/2sin2 α = 2θ :
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Find the area inside the cardioid defined by the equation .

Hint

Use Equation . Be sure to determine the correct limits of integration before evaluating.

Answer

Example  involved finding the area inside one curve. We can also use Equation  to find the area between two polar
curves. However, we often need to find the points of intersection of the curves and determine which function defines the outer
curve or the inner curve between these two points.

Find the area outside the cardioid  and inside the circle .

Solution

First draw a graph containing both curves as shown.

Figure : The region between the curves  and 

To determine the limits of integration, first find the points of intersection by setting the two functions equal to each other and
solving for :

A = 9 (2θ)dθ
1

2
∫

π/2

0
sin2

= dθ
9

2
∫

π/2

0

(1 −cos(4θ))

2

= ( 1 −cos(4θ)dθ)
9

4
∫

π/2

0

= (θ−
9

4

sin(4θ)

4

∣

∣
∣
π/2

0

= ( − ) − (0 − )
9

4

π

2

sin2π

4

9

4

sin4(0)

4

=
9π

8

 Exercise 10.4.1

r = 1 −cosθ

10.4.2

A = 3π/2

10.4.1 10.4.2

 Example : Finding the Area between Two Polar Curves10.4.2

r = 2 +2 sinθ r = 6 sinθ

10.4.4 r = 2 + 2 sin θ r = 6 sin θ.

θ
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This gives the solutions  and , which are the limits of integration. The circle  is the red graph, which

is the outer function, and the cardioid  is the blue graph, which is the inner function. To calculate the area

between the curves, start with the area inside the circle between  and , then subtract the area inside the cardioid

between  and :

.

Find the area inside the circle  and outside the circle .

Hint

Use Equation  and take advantage of symmetry.

Answer

In Example  we found the area inside the circle and outside the cardioid by first finding their intersection points. Notice that

solving the equation directly for  yielded two solutions:  and . However, in the graph there are three intersection

points. The third intersection point is the origin. The reason why this point did not show up as a solution is because the origin is on
both graphs but for different values of . For example, for the cardioid we get

so the values for  that solve this equation are , where  is any integer. For the circle we get

The solutions to this equation are of the form  for any integer value of . These two solution sets have no points in
common. Regardless of this fact, the curves intersect at the origin. This case must always be taken into consideration.

.

6 sinθ

4 sinθ

sinθ

= 2 +2 sinθ

= 2

=
1

2

θ =
π

6
θ =

5π

6
r = 3 sinθ

r = 2 +2 sinθ

θ =
π

6
θ =

5π

6

θ =
π

6
θ =

5π

6

A = circle −cardioid

= [6 sinθ dθ− [2 +2 sinθ dθ
1

2
∫ 5π/6
π/6

]2
1

2
∫ 5π/6
π/6

]2

= 36 θ dθ− 4 +8 sinθ+4 θ dθ
1

2
∫ 5π/6
π/6

sin2 1

2
∫ 5π/6
π/6

sin2

= 18 dθ−2 1 +2 sinθ+ dθ∫ 5π/6
π/6

1 −cos(2θ)

2
∫ 5π/6
π/6

1 −cos(2θ)

2

= 9[θ− −2[ −2 cosθ−
sin(2θ)

2
]
5π/6
π/6

3θ

2

sin(2θ)

4
]
5π/6
π/6

= 9( − ) −9( − ) −(3( ) −4 cos − )
5π

6

sin(10π/6)

2

π

6

sin(2π/6)

2

5π

6

5π

6

sin(10π/6)

2

+(3( ) −4 cos − )
π

6

π

6

sin(2π/6)

2

= 4π

 Exercise 10.4.2

r = 4 cosθ r = 2

10.4.2

A = +2
4π

3
3
–

√

10.4.2

θ θ =
π

6
θ =

5π

6

θ

.
2 +2 sinθ = 0

sinθ = −1,

θ θ = +2nπ
3π

2
n

6 sinθ = 0.

θ = nπ n
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Arc Length in Polar Curves
Here we derive a formula for the arc length of a curve defined in polar coordinates. In rectangular coordinates, the arc length of a
parameterized curve  for  is given by

In polar coordinates we define the curve by the equation , where  In order to adapt the arc length formula for a
polar curve, we use the equations

and

and we replace the parameter  by . Then

We replace  by , and the lower and upper limits of integration are  and , respectively. Then the arc length formula becomes

This gives us the following theorem.

Let  be a function whose derivative is continuous on an interval . The length of the graph of  from 
to  is

(x(t), y(t)) a ≤ t ≤ b

L = dt.∫
b

a

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√

r = f(θ) α ≤ θ ≤ β.

x = r cosθ = f(θ) cosθ

y = r sinθ = f(θ) sinθ,

t θ

= f '(θ) cosθ−f(θ) sinθ
dx

dθ

= f '(θ) sinθ+f(θ) cosθ.
dy

dθ

dt dθ α β

L = dt∫
b

a

+( )
dx

dt

2

( )
dy

dt

2
− −−−−−−−−−−−−−

√

= dθ∫
β

α

+( )
dx

dθ

2

( )
dy

dθ

2
− −−−−−−−−−−−−−

√

= dθ∫
β

α

(f '(θ) cosθ−f(θ) sinθ +(f '(θ) sinθ+f(θ) cosθ)2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dθ∫
β

α

(f '(θ) ( θ+ θ) +(f(θ) ( θ+ θ))2 cos2 sin2 )2 cos2 sin2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dθ∫
β

α

(f '(θ) +(f(θ))2 )2
− −−−−−−−−−−−−−

√

= dθ∫
β

α

+r2 ( )
dr

dθ

2
− −−−−−−−−−

√

 Arc Length of a Curve Defined by a Polar Function

f α ≤ θ ≤ β r = f(θ) θ = α

θ = β

L = dθ∫
β

α

[f(θ) +[f '(θ)]2 ]2
− −−−−−−−−−−−−

√

= dθ.∫
β

α

+r2 ( )
dr

dθ

2
− −−−−−−−−−

√

(10.4.3)

(10.4.4)
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Find the arc length of the cardioid .

Solution

When  Furthermore, as  goes from  to , the cardioid is traced out exactly once. Therefore
these are the limits of integration. Using  and  Equation  becomes

Next, using the identity  add 1 to both sides and multiply by 2. This gives 
Substituting  gives , so the integral becomes

The absolute value is necessary because the cosine is negative for some values in its domain. To resolve this issue, change the

limits from  to  and double the answer. This strategy works because cosine is positive between  and . Thus,

Find the total arc length of .

Hint

Use Equation . To determine the correct limits, make a table of values.

Answer

 Example : Finding the Arc Length of a cardioid10.4.3

r = 2 +2 cosθ

θ = 0, r = 2 +2 cos 0 = 4. θ 0 2π
f(θ) = 2 +2 cosθ,α = 0, β = 2π, 10.4.3

L = dθ∫
β

α

[f(θ) +[f '(θ)]2 ]2
− −−−−−−−−−−−−

√

= dθ∫
2π

0
[2 +2 cosθ +[−2 sinθ]2 ]2

− −−−−−−−−−−−−−−−−−−−
√

= dθ∫
2π

0
4 +8 cosθ+4 θ+4 θcos2 sin2− −−−−−−−−−−−−−−−−−−−−−−

√

= dθ∫
2π

0
4 +8 cosθ+4( θ+ θ)cos2 sin2

− −−−−−−−−−−−−−−−−−−−−−−
√

= dθ∫
2π

0
8 +8 cosθ
− −−−−−−−

√

= 2 dθ.∫
2π

0
2 +2 cosθ
− −−−−−−−√

cos(2α) = 2 α−1,cos2 2 +2 cos(2α) = 4 α.cos2

α = θ/2 2 +2 cosθ = 4 (θ/2)cos2

L = 2 dθ∫
2π

0
2 +2 cosθ
− −−−−−−−

√

= 2 dθ∫
2π

0
4 ( )cos2 θ

2

− −−−−−−−
√

= 4 ∣ cos( ) ∣ dθ.∫
2π

0

θ

2

0 π 0
π

2

L = 4 ∣ cos( ) ∣ dθ∫
2π

0

θ

2

= 8 cos( )dθ∫
π

0

θ

2

= 8(2 sin( )
θ

2

∣
∣
∣
π

0

= 16

 Exercise 10.4.3

r = 3 sinθ

10.4.3
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Key Concepts
The area of a region in polar coordinates defined by the equation  with  is given by the integral 

.

To find the area between two curves in the polar coordinate system, first find the points of intersection, then subtract the
corresponding areas.
The arc length of a polar curve defined by the equation  with  is given by the integral 

.

Key Equations
Area of a region bounded by a polar curve

Arc length of a polar curve

10.4: Areas and Lengths in Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

11.4: Area and Arc Length in Polar Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

s = 3π

r = f(θ) α ≤ θ ≤ β

A = [f(θ) dθ
1

2
∫ β

α
]2

r = f(θ) α ≤ θ ≤ β

L = dθ = dθ∫ β

α [f(θ) +[f '(θ)]2 ]2
− −−−−−−−−−−−−√ ∫ β

α +(r2
dr

dθ
)2

− −−−−−−−−
√

A = [f(θ) dθ = dθ
1

2
∫

β

α

]2
1

2
∫

β

α

r2

L = dθ = dθ∫
β

α

[f(θ) +[f '(θ)]2 ]2
− −−−−−−−−−−−−

√ ∫
β

α

+(r2 dr

dθ
)2

− −−−−−−−−
√
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10.5: Conic Sections

Identify the equation of a parabola in standard form with given focus and directrix.
Identify the equation of an ellipse in standard form with given foci.
Identify the equation of a hyperbola in standard form with given foci.
Recognize a parabola, ellipse, or hyperbola from its eccentricity value.
Write the polar equation of a conic section with eccentricity .
Identify when a general equation of degree two is a parabola, ellipse, or hyperbola.

Conic sections have been studied since the time of the ancient Greeks, and were considered to be an important mathematical
concept. As early as 320 BCE, such Greek mathematicians as Menaechmus, Appollonius, and Archimedes were fascinated by these
curves. Appollonius wrote an entire eight-volume treatise on conic sections in which he was, for example, able to derive a specific
method for identifying a conic section through the use of geometry. Since then, important applications of conic sections have arisen
(for example, in astronomy), and the properties of conic sections are used in radio telescopes, satellite dish receivers, and even
architecture. In this section we discuss the three basic conic sections, some of their properties, and their equations.

Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped
parts called nappes. One nappe is what most people mean by “cone,” having the shape of a party hat. A right circular cone can be
generated by revolving a line passing through the origin around the y-axis as shown in Figure .

Figure : A cone generated by revolving the line  around the -axis.

Conic sections are generated by the intersection of a plane with a cone (Figure ). If the plane is parallel to the axis of
revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a
parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle. If the plane intersects one nappe at an
angle to the axis (other than 90°), then the conic section is an ellipse.

 Learning Objectives

e

10.5.1

10.5.1 y = 3x y

10.5.2
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Figure : The four conic sections. Each conic is determined by the angle the plane makes with the axis of the cone.

Parabolas
A parabola is generated when a plane intersects a cone parallel to the generating line. In this case, the plane intersects only one of
the nappes. A parabola can also be defined in terms of distances.

A parabola is the set of all points whose distance from a fixed point, called the focus, is equal to the distance from a fixed line,
called the directrix. The point halfway between the focus and the directrix is called the vertex of the parabola.

Figure : A typical parabola in which the distance from the focus to the vertex is represented by the variable .

A graph of a typical parabola appears in Figure . Using this diagram in conjunction with the distance formula, we can derive
an equation for a parabola. Recall the distance formula: Given point P with coordinates  and point Q with coordinates 

 the distance between them is given by the formula

Then from the definition of a parabola and Figure , we get

10.5.2

 Definitions: The Focus, Directrix and Vertex

10.5.3 p

10.5.3
( , )x1 y1

( , ),x2 y2

d(P ,Q) = .( − +( −x2 x1)2 y2 y1)2
− −−−−−−−−−−−−−−−−−

√

10.5.3

d(F ,P ) = d(P ,Q)
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Squaring both sides and simplifying yields

Now suppose we want to relocate the vertex. We use the variables  to denote the coordinates of the vertex. Then if the focus
is directly above the vertex, it has coordinates  and the directrix has the equation . Going through the same
derivation yields the formula . Solving this equation for  leads to the following theorem.

Given a parabola opening upward with vertex located at  and focus located at , where  is a constant, the
equation for the parabola is given by

This is the standard form of a parabola.

We can also study the cases when the parabola opens down or to the left or the right. The equation for each of these cases can also
be written in standard form as shown in the following graphs.

= .(0 −x +(p−y)2 )2
− −−−−−−−−−−−−−−

√ (x−x +(−p−y)2 )2
− −−−−−−−−−−−−−−−

√

+(p−y = +(−p−yx2 )2 02 )2

+ −2py+ = +2py+x2 p2 y2 p2 y2

−2py = 2pyx2

= 4py.x2

(10.5.1)

(10.5.2)

(10.5.3)

(10.5.4)

(h, k)
(h, k+p) y = k−p

(x−h = 4p(y−k))2 y

 Equations for Parabolas: standard form

(h, k) (h, k+p) p

y = (x−h +k.
1

4p
)2
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Figure : Four parabolas, opening in various directions, along with their equations in standard form.

In addition, the equation of a parabola can be written in the general form, though in this form the values of , , and  are not
immediately recognizable. The general form of a parabola is written as

or

Equation  represents a parabola that opens either up or down. Equation  represents a parabola that opens either to the
left or to the right. To put the equation into standard form, use the method of completing the square.

Put the equation

into standard form and graph the resulting parabola.

Solution

Since y is not squared in this equation, we know that the parabola opens either upward or downward. Therefore we need to
solve this equation for y, which will put the equation into standard form. To do that, first add  to both sides of the equation:

10.5.4

h k p

a +bx+cy+d = 0x2 (10.5.5)

a +bx+cy+d = 0.y2 (10.5.6)

10.5.5 10.5.6

 Example : Converting the Equation of a Parabola from General into Standard Form10.5.1

−4x−8y+12 = 0x2

8y
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The next step is to complete the square on the right-hand side. Start by grouping the first two terms on the right-hand side using
parentheses:

Next determine the constant that, when added inside the parentheses, makes the quantity inside the parentheses a perfect square

trinomial. To do this, take half the coefficient of x and square it. This gives  Add 4 inside the parentheses and

subtract 4 outside the parentheses, so the value of the equation is not changed:

Now combine like terms and factor the quantity inside the parentheses:

Finally, divide by 8:

This equation is now in standard form. Comparing this to Equation gives , and . The parabola opens up,
with vertex at , focus at , and directrix . The graph of this parabola appears as follows.

Figure : The parabola in Example .

Put the equation  into standard form and graph the resulting parabola.

Hint

Solve for . Check which direction the parabola opens.

Answer

8y = −4x+12.x2

8y = ( −4x) +12.x2

( = 4.
−4

2
)2

8y = ( −4x+4) +12 −4.x2

8y = (x−2 +8.)2

y = (x−2 +1.
1

8
)2

h = 2, k = 1 p = 2
(2, 1) (2, 3) y = −1

10.5.5 10.5.1

 Exercise 10.5.1

2 −x+12y+16 = 0y2

x

x = 2(y+3 −2)2
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The axis of symmetry of a vertical (opening up or down) parabola is a vertical line passing through the vertex. The parabola has an
interesting reflective property. Suppose we have a satellite dish with a parabolic cross section. If a beam of electromagnetic waves,
such as light or radio waves, comes into the dish in a straight line from a satellite (parallel to the axis of symmetry), then the waves
reflect off the dish and collect at the focus of the parabola as shown.

Consider a parabolic dish designed to collect signals from a satellite in space. The dish is aimed directly at the satellite, and a
receiver is located at the focus of the parabola. Radio waves coming in from the satellite are reflected off the surface of the
parabola to the receiver, which collects and decodes the digital signals. This allows a small receiver to gather signals from a wide
angle of sky. Flashlights and headlights in a car work on the same principle, but in reverse: the source of the light (that is, the light
bulb) is located at the focus and the reflecting surface on the parabolic mirror focuses the beam straight ahead. This allows a small
light bulb to illuminate a wide angle of space in front of the flashlight or car.

Ellipses
An ellipse can also be defined in terms of distances. In the case of an ellipse, there are two foci (plural of focus), and two
directrices (plural of directrix). We look at the directrices in more detail later in this section.

An ellipse is the set of all points for which the sum of their distances from two fixed points (the foci) is constant.

A graph of a typical ellipse is shown in Figure . In this figure the foci are labeled as  and . Both are the same fixed
distance from the origin, and this distance is represented by the variable . Therefore the coordinates of  are  and the
coordinates of  are  The points  and  are located at the ends of the major axis of the ellipse, and have coordinates 

 and , respectively. The major axis is always the longest distance across the ellipse, and can be horizontal or vertical.
Thus, the length of the major axis in this ellipse is . Furthermore,  and  are called the vertices of the ellipse. The points 
and  are located at the ends of the minor axis of the ellipse, and have coordinates  and  respectively. The minor
axis is the shortest distance across the ellipse. The minor axis is perpendicular to the major axis.

 Definition: Ellipse

10.5.6 F F '

c F (c, 0)
F ' (−c, 0). P P '

(a, 0) (−a, 0)
2a P P ' Q

Q' (0, b) (0, −b),
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Figure : A typical ellipse in which the sum of the distances from any point on the ellipse to the foci is constant.

According to the definition of the ellipse, we can choose any point on the ellipse and the sum of the distances from this point to the
two foci is constant. Suppose we choose the point . Since the coordinates of point  are  the sum of the distances is

Therefore the sum of the distances from an arbitrary point A with coordinates  is also equal to . Using the distance formula,
we get

Subtract the second radical from both sides and square both sides:

Now isolate the radical on the right-hand side and square again:

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

10.5.6

P P (a, 0),

d(P ,F ) +d(P ,F ') = (a−c) +(a+c) = 2a.

(x, y) 2a

d(A,F ) +d(A,F ') = 2a.

+ = 2a(x−c +)2 y2
− −−−−−−−−−

√ (x+c +)2 y2
− −−−−−−−−−

√

= 2a−(x−c +)2 y2
− −−−−−−−−−

√ (x+c +)2 y2
− −−−−−−−−−

√

(x−c + = 4 −4a +(x+c +)2 y2 a2 (x+c +)2 y2
− −−−−−−−−−

√ )2 y2

−2cx+ + = 4 −4a + +2cx+ +x2 c2 y2 a2 (x+c +)2 y2
− −−−−−−−−−

√ x2 c2 y2

−2cx = 4 −4a +2cx.a2 (x+c +)2 y2
− −−−−−−−−−

√

−2cx = 4 −4a +2cxa2 (x+c +)2 y2
− −−−−−−−−−

√

4a = 4 +4cx(x+c +)2 y2
− −−−−−−−−−

√ a2

= a+(x+c +)2 y2
− −−−−−−−−−

√
cx

a

(x+c + = +2cx+)2 y2 a2 c2x2

a2

+2cx+ + = +2cx+x2 c2 y2 a2 c2x2

a2

+ + = + .x2 c2 y2 a2 c2x2

a2
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Divide both sides by . This gives the equation

If we refer back to Figure , then the length of each of the two green line segments is equal to . This is true because the sum
of the distances from the point  to the foci  and  is equal to , and the lengths of these two line segments are equal. This line
segment forms a right triangle with hypotenuse length  and leg lengths  and . From the Pythagorean theorem,  and 

. Therefore the equation of the ellipse becomes

Finally, if the center of the ellipse is moved from the origin to a point , we have the following standard form of an ellipse.

Consider the ellipse with center , a horizontal major axis with length , and a vertical minor axis with length . Then
the equation of this ellipse in standard form is

and the foci are located at , where . The equations of the directrices are .

If the major axis is vertical, then the equation of the ellipse becomes

and the foci are located at , where . The equations of the directrices in this case are .

If the major axis is horizontal, then the ellipse is called horizontal, and if the major axis is vertical, then the ellipse is called vertical.
The equation of an ellipse is in general form if it is in the form

where A and B are either both positive or both negative. To convert the equation from general to standard form, use the method of
completing the square.

Put the equation

into standard form and graph the resulting ellipse.

Solution

First subtract 36 from both sides of the equation:

Next group the  terms together and the  terms together, and factor out the common factor:

− + = −x2 c2x2

a2
y2 a2 c2

+ = − .
( − )a2 c2 x2

a2
y2 a2 c2

−a2 c2

+ = 1.
x2

a2

y2

−a2 c2

10.5.6 a

Q F F ' 2a
a b c + =b2 c2 a2

= −b2 a2 c2

+ = 1.
x2

a2

y2

b2

(h, k)

 Equation of an Ellipse in Standard Form

(h, k) 2a 2b

+ = 1
(x−h)2

a2

(y−k)2

b2
(10.5.7)

(h±c, k) = −c2 a2 b2 x = h±
a2

c

+ = 1
(x−h)2

b2

(y−k)2

a2
(10.5.8)

(h, k±c) = −c2 a2 b2 y = k±
a2

c

A +B +Cx+Dy+E = 0,x2 y2

 Example : Finding the Standard Form of an Ellipse10.5.2

9 +4 −36x+24y+36 = 0x2 y2

9 +4 −36x+24y = −36.x2 y2

x y
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We need to determine the constant that, when added inside each set of parentheses, results in a perfect square. In the first set of

parentheses, take half the coefficient of x and square it. This gives  In the second set of parentheses, take half the

coefficient of y and square it. This gives  Add these inside each pair of parentheses. Since the first set of parentheses

has a 9 in front, we are actually adding 36 to the left-hand side. Similarly, we are adding 36 to the second set as well. Therefore
the equation becomes

Now factor both sets of parentheses and divide by 36:

The equation is now in standard form. Comparing this to Equation  gives  and . This is a
vertical ellipse with center at , major axis 6, and minor axis 4. The graph of this ellipse appears as follows.

Figure : The ellipse in Example .

Put the equation

into standard form and graph the resulting ellipse.

Hint

Move the constant over and complete the square.

Answer

(9 −36x) +(4 +24y) = −36x2 y2

9( −4x) +4( +6y) = −36.x2 y2

( = 4.
−4

2
)2

( = 9.
6

2
)2

9( −4x+4) +4( +6y+9) = −36 +36 +36x2 y2

9( −4x+4) +4( +6y+9) = 36.x2 y2

9(x−2 +4(y+3 = 36)2 )2

+ = 1
9(x−2)2

36

4(y+3)2

36

+ = 1.
(x−2)2

4

(y+3)2

9

10.5.8 h = 2, k = −3, a = 3, b = 2
(2, −3)

10.5.7 10.5.2

 Exercise 10.5.2

9 +16 +18x−64y−71 = 0x2 y2

+ = 1
(x+1)2

16

(y−2)2

9
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According to Kepler’s first law of planetary motion, the orbit of a planet around the Sun is an ellipse with the Sun at one of the foci
as shown in Figure . Because Earth’s orbit is an ellipse, the distance from the Sun varies throughout the year. A commonly
held misconception is that Earth is closer to the Sun in the summer. In fact, in summer for the northern hemisphere, Earth is farther
from the Sun than during winter. The difference in season is caused by the tilt of Earth’s axis in the orbital plane. Comets that orbit
the Sun, such as Halley’s Comet, also have elliptical orbits, as do moons orbiting the planets and satellites orbiting Earth.

Ellipses also have interesting reflective properties: A light ray emanating from one focus passes through the other focus after mirror
reflection in the ellipse. The same thing occurs with a sound wave as well. The National Statuary Hall in the U.S. Capitol in
Washington, DC, is a famous room in an elliptical shape as shown in Figure . This hall served as the meeting place for the
U.S. House of Representatives for almost fifty years. The location of the two foci of this semi-elliptical room are clearly identified
by marks on the floor, and even if the room is full of visitors, when two people stand on these spots and speak to each other, they
can hear each other much more clearly than they can hear someone standing close by. Legend has it that John Quincy Adams had
his desk located on one of the foci and was able to eavesdrop on everyone else in the House without ever needing to stand.
Although this makes a good story, it is unlikely to be true, because the original ceiling produced so many echoes that the entire
room had to be hung with carpets to dampen the noise. The ceiling was rebuilt in 1902 and only then did the now-famous
whispering effect emerge. Another famous whispering gallery—the site of many marriage proposals—is in Grand Central Station
in New York City.

Figure : (a) Earth’s orbit around the Sun is an ellipse with the Sun at one focus. (b) Statuary Hall in the U.S. Capitol is a
whispering gallery with an elliptical cross section.

Hyperbolas

A hyperbola can also be defined in terms of distances. In the case of a hyperbola, there are two foci and two directrices. Hyperbolas
also have two asymptotes.

A hyperbola is the set of all points where the difference between their distances from two fixed points (the foci) is constant.

A graph of a typical hyperbola appears as follows.

10.5.8A

10.5.8B

10.5.8

 Definition: hyperbola
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Figure : A typical hyperbola in which the difference of the distances from any point on the hyperbola to the foci is constant.
The transverse axis is also called the major axis, and the conjugate axis is also called the minor axis.

The derivation of the equation of a hyperbola in standard form is virtually identical to that of an ellipse. One slight hitch lies in the
definition: The difference between two numbers is always positive. Let  be a point on the hyperbola with coordinates . Then
the definition of the hyperbola gives . To simplify the derivation, assume that  is on the right
branch of the hyperbola, so the absolute value bars drop. If it is on the left branch, then the subtraction is reversed. The vertex of
the right branch has coordinates  so

This equation is therefore true for any point on the hyperbola. Returning to the coordinates  for :

Isolate the second radical and square both sides:

Now isolate the radical on the right-hand side and square again:

.

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

10.5.9

P (x, y)
|d(P , ) −d(P , )| = constantF1 F2 P

(a, 0),

d(P , ) −d(P , ) = (c+a) −(c−a) = 2a.F1 F2

(x, y) P

d(P , ) −d(P , ) = 2aF1 F2

− = 2a.(x+c +)2 y2
− −−−−−−−−−

√ (x−c +)2 y2
− −−−−−−−−−

√

= −2a+(x−c +)2 y2
− −−−−−−−−−

√ (x+c +)2 y2
− −−−−−−−−−

√

(x−c + = 4 −4a +(x+c +)2 y2 a2 (x+c +)2 y2
− −−−−−−−−−

√ )2 y2

−2cx+ + = 4 −4a + +2cx+ +x2 c2 y2 a2 (x+c +)2 y2
− −−−−−−−−−

√ x2 c2 y2

−2cx = 4 −4a +2cx.a2 (x+c +)2 y2
− −−−−−−−−−

√

−2cx = 4 −4a +2cxa2 (x+c +)2 y2− −−−−−−−−−
√

−4a = −4 −4cx(x+c +)2 y2− −−−−−−−−−
√ a2

− = −a−(x+c +)2 y2− −−−−−−−−−
√

cx

a

(x+c + = +2cx+)2 y2 a2 c2x2

a2

+2cx+ + = +2cx+x2 c2 y2 a2 c2x2

a2

+ + = +x2 c2 y2 a2 c2x2

a2
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Finally, divide both sides by . This gives the equation

We now define b so that . This is possible because . Therefore the equation of the hyperbola becomes

Finally, if the center of the hyperbola is moved from the origin to the point  we have the following standard form of a
hyperbola.

Consider the hyperbola with center , a horizontal major axis, and a vertical minor axis. Then the equation of this
hyperbola is

and the foci are located at  where . The equations of the asymptotes are given by 

The equations of the directrices are

If the major axis is vertical, then the equation of the hyperbola becomes

and the foci are located at  where . The equations of the asymptotes are given by .

The equations of the directrices are

If the major axis (transverse axis) is horizontal, then the hyperbola is called horizontal, and if the major axis is vertical then the
hyperbola is called vertical. The equation of a hyperbola is in general form if it is in the form

where A and B have opposite signs. In order to convert the equation from general to standard form, use the method of completing
the square.

Put the equation  into standard form and graph the resulting hyperbola. What are the
equations of the asymptotes?

Solution

First add 124 to both sides of the equation:

− + = −x2 c2x2

a2
y2 a2 c2

+ = − .
( − )a2 c2 x2

a2
y2 a2 c2

−a2 c2

+ = 1.
x2

a2

y2

−a2 c2

= −b2 c2 a2 c > a

− = 1.
x2

a2

y2

b2

(h, k),

 Equation of a Hyperbola in Standard Form

(h, k)

− = 1
(x−h)2

a2

(y−k)2

b2
(10.5.9)

(h±c, k), = +c2 a2 b2 y = k± (x−h).
b

a

x = h± = h±
a2

+a2 b2
− −−−−−

√

a2

c

− = 1
(y−k)2

a2

(x−h)2

b2

(h, k±c), = +c2 a2 b2 y = k± (x−h)
a

b

y = k± = k± .
a2

+a2 b2
− −−−−−

√

a2

c

A +B +Cx+Dy+E = 0,x2 y2

 Example : Finding the Standard Form of a Hyperbola10.5.3

9 −16 +36x+32y−124 = 0x2 y2

9 −16 +36x+32y = 124.x2 y2
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Next group the x terms together and the y terms together, then factor out the common factors:

.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square. In the first set of

parentheses, take half the coefficient of x and square it. This gives . In the second set of parentheses, take half the

coefficient of y and square it. This gives  Add these inside each pair of parentheses. Since the first set of

parentheses has a 9 in front, we are actually adding 36 to the left-hand side. Similarly, we are subtracting 16 from the second
set of parentheses. Therefore the equation becomes

Next factor both sets of parentheses and divide by 144:

The equation is now in standard form. Comparing this to Equation  gives  and . This is a

horizontal hyperbola with center at  and asymptotes given by the equations . The graph of this

hyperbola appears in Figure .

Figure : Graph of the hyperbola in Example .

Put the equation  into standard form and graph the resulting hyperbola. What are the
equations of the asymptotes?

Hint

Move the constant over and complete the square. Check which direction the hyperbola opens

Answer

 This is a vertical hyperbola. Asymptotes 

(9 +36x) −(16 −32y) = 124x2 y2

9( +4x) −16( −2y) = 124x2 y2

( = 4
4

2
)2

( = 1.
−2

2
)2

9( +4x+4) −16( −2y+1) = 124 +36 −16x2 y2

9( +4x+4) −16( −2y+1) = 144.x2 y2

9(x+2 −16(y−1 = 144)2 )2

− = 1
9(x+2)2

144

16(y−1)2

144

− = 1.
(x+2)2

16

(y−1)2

9

10.5.9 h = −2, k = 1, a = 4, b = 3

(−2, 1) y = 1 ± (x+2)
3

4
10.5.10

10.5.10 10.5.3

 Exercise 10.5.3

4 −9 +16y+18x−29 = 0y2 x2

− = 1.
(y+2)2

9

(x−1)2

4
y = −2 ± (x−1).

3

2
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Hyperbolas also have interesting reflective properties. A ray directed toward one focus of a hyperbola is reflected by a hyperbolic
mirror toward the other focus. This concept is illustrated in Figure .

Figure : A hyperbolic mirror used to collect light from distant stars.

This property of the hyperbola has important applications. It is used in radio direction finding (since the difference in signals from
two towers is constant along hyperbolas), and in the construction of mirrors inside telescopes (to reflect light coming from the
parabolic mirror to the eyepiece). Another interesting fact about hyperbolas is that for a comet entering the solar system, if the
speed is great enough to escape the Sun’s gravitational pull, then the path that the comet takes as it passes through the solar system
is hyperbolic.

Eccentricity and Directrix
An alternative way to describe a conic section involves the directrices, the foci, and a new property called eccentricity. We will see
that the value of the eccentricity of a conic section can uniquely define that conic.

The eccentricity  of a conic section is defined to be the distance from any point on the conic section to its focus, divided by
the perpendicular distance from that point to the nearest directrix. This value is constant for any conic section, and can define
the conic section as well:

10.5.11

10.5.11

 Definition: Eccentricity and Directrices

e
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1. If , the conic is a parabola.
2. If , it is an ellipse.
3. If  it is a hyperbola.

The eccentricity of a circle is zero. The directrix of a conic section is the line that, together with the point known as the focus,
serves to define a conic section. Hyperbolas and noncircular ellipses have two foci and two associated directrices. Parabolas
have one focus and one directrix.

The three conic sections with their directrices appear in Figure .

Figure : The three conic sections with their foci and directrices.

Recall from the definition of a parabola that the distance from any point on the parabola to the focus is equal to the distance from
that same point to the directrix. Therefore, by definition, the eccentricity of a parabola must be 1. The equations of the directrices of

a horizontal ellipse are . The right vertex of the ellipse is located at  and the right focus is . Therefore the

distance from the vertex to the focus is  and the distance from the vertex to the right directrix is  This gives the

eccentricity as

Since , this step proves that the eccentricity of an ellipse is less than 1. The directrices of a horizontal hyperbola are also

located at , and a similar calculation shows that the eccentricity of a hyperbola is also . However in this case we

have , so the eccentricity of a hyperbola is greater than 1.

Determine the eccentricity of the ellipse described by the equation

Solution

From the equation we see that  and . The value of c can be calculated using the equation  for an
ellipse. Substituting the values of a and b and solving for c gives . Therefore the eccentricity of the ellipse is 

e = 1
e < 1
e > 1,

10.5.12

10.5.12

x = ±
a2

c
(a, 0) (c, 0)

a−c −c.
a2

c

e = = = = .
a−c

−a
a2

c

c(a−c)

−aca2

c(a−c)

a(a−c)

c

a

c < a

x = ±
a2

c
e =

c

a
c > a

 Example : Determining Eccentricity of a Conic Section10.5.4

+ = 1.
(x−3)2

16

(y+2)2

25

a = 5 b = 4 = +a2 b2 c2

c = 3

e = = = 0.6.
c

a

3

5
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Determine the eccentricity of the hyperbola described by the equation

Hint

First find the values of a and b, then determine c using the equation .

Answer

Polar Equations of Conic Sections
Sometimes it is useful to write or identify the equation of a conic section in polar form. To do this, we need the concept of the focal
parameter. The focal parameter of a conic section p is defined as the distance from a focus to the nearest directrix. The following
table gives the focal parameters for the different types of conics, where a is the length of the semi-major axis (i.e., half the length of
the major axis), c is the distance from the origin to the focus, and e is the eccentricity. In the case of a parabola, a represents the
distance from the vertex to the focus.

Table : Eccentricities and Focal Parameters of the Conic Sections
Conic

Ellipse

Parabola

Hyperbola

Using the definitions of the focal parameter and eccentricity of the conic section, we can derive an equation for any conic section in
polar coordinates. In particular, we assume that one of the foci of a given conic section lies at the pole. Then using the definition of
the various conic sections in terms of distances, it is possible to prove the following theorem.

The polar equation of a conic section with focal parameter p is given by

 or 

In the equation on the left, the major axis of the conic section is horizontal, and in the equation on the right, the major axis is
vertical. To work with a conic section written in polar form, first make the constant term in the denominator equal to 1. This can be
done by dividing both the numerator and the denominator of the fraction by the constant that appears in front of the plus or minus
in the denominator. Then the coefficient of the sine or cosine in the denominator is the eccentricity. This value identifies the conic.
If cosine appears in the denominator, then the conic is horizontal. If sine appears, then the conic is vertical. If both appear then the
axes are rotated. The center of the conic is not necessarily at the origin. The center is at the origin only if the conic is a circle (i.e., 

).

Identify and create a graph of the conic section described by the equation

.

Solution

 Exercise 10.5.4

− = 1.
(y−3)2

49

(x+2)2

25

= +c2 a2 b2

e = = ≈ 1.229
c

a

74
−−

√

7

10.5.1

e p

0 < e < 1 =
−a2 c2

c

a(1 − )e2

c

e = 1 2a

e > 1 =
−c2 a2

c

a( − 1)e2

c

 Polar Equation of Conic Sections

r =
ep

1 ±e cosθ
r = .

ep

1 ±e sinθ

e = 0

 Example : Graphing a Conic Section in Polar Coordinates10.5.5

r =
3

1 +2 cosθ
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The constant term in the denominator is 1, so the eccentricity of the conic is 2. This is a hyperbola. The focal parameter p can

be calculated by using the equation  Since , this gives . The cosine function appears in the denominator, so

the hyperbola is horizontal. Pick a few values for  and create a table of values. Then we can graph the hyperbola (Figure 
).

0 1 −3

3 3

Figure : Graph of the hyperbola described in Example .

Identify and create a graph of the conic section described by the equation

.

Hint

First find the values of e and p, and then create a table of values.

Answer

Here  and . This conic section is an ellipse.

ep = 3. e = 2 p =
3

2
θ

10.5.13

θ r θ r

π

π

4
≈ 1.2426

3

1 + 2
–

√

5π

4
≈ −7.2426

3

1 − 2
–

√

π

2
3π

2

3π

4
≈ −7.2426

3

1 − 2
–

√

7π

4
≈ 1.2426

3

1 + 2
–

√

10.5.13 10.5.5

 Exercise 10.5.5

r =
4

1 −0.8 sinθ

e = 0.8 p = 5
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General Equations of Degree Two
A general equation of degree two can be written in the form

The graph of an equation of this form is a conic section. If  then the coordinate axes are rotated. To identify the conic
section, we use the discriminant of the conic section 

One of the following cases must be true:

1. . If so, the graph is an ellipse.
2. . If so, the graph is a parabola.
3. . If so, the graph is a hyperbola.

The simplest example of a second-degree equation involving a cross term is . This equation can be solved for  to obtain 

. The graph of this function is called a rectangular hyperbola as shown.

A +Bxy+C +Dx+Ey+F = 0.x2 y2

B ≠ 0
4AC − .B2

 Identifying the Conic Section

4AC − > 0B2

4AC − = 0B2

4AC − < 0B2

xy = 1 y

y =
1

x
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Figure : Graph of the equation ; The red lines indicate the rotated axes.

The asymptotes of this hyperbola are the  and  coordinate axes. To determine the angle θ of rotation of the conic section, we use
the formula . In this case  and , so  and . The method for
graphing a conic section with rotated axes involves determining the coefficients of the conic in the rotated coordinate system. The
new coefficients are labeled  and  and are given by the formulas

The procedure for graphing a rotated conic is the following:

1. Identify the conic section using the discriminant .
2. Determine  using the formula

3. Calculate ,and .
4. Rewrite the original equation using ,and .
5. Draw a graph using the rotated equation.

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

Solution

In this equation,  and . The discriminant of this equation is

Therefore this conic is an ellipse.

To calculate the angle of rotation of the axes, use Equation 

10.5.14 xy = 1

x y

cot 2θ = A−C

B
A = C = 0 B = 1 cot 2θ = (0 −0)/1 = 0 θ = 45°

A',B',C',D',E', F ',

A' = A θ+B cosθ sinθ+C θcos2 sin2

B' = 0

C' = A θ−B sinθcosθ+C θsin2 cos2

D' = D cosθ+E sinθ

E' = −D sinθ+E cosθ

F ' = F .

(10.5.10)

(10.5.11)

(10.5.12)

(10.5.13)

(10.5.14)

(10.5.15)

 Procedure: graphing a rotated conic

4AC −B2

θ

cot 2θ = .
A−C

B
(10.5.16)

A',B',C',D',E' F '

A',B',C',D',E' F '

 Example : Identifying a Rotated Conic10.5.6

13 −6 xy+7 −256 = 0.x2 3
–

√ y2

A = 13,B = −6 ,C = 7,D = 0,E = 0,3
–

√ F = −256

4AC − = 4(13)(7) −(−6 = 364 −108 = 256.B2 3
–

√ )2

10.5.16
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This gives

.

Therefore  and , which is the angle of the rotation of the axes.

To determine the rotated coefficients, use the formulas given above:

The equation of the conic in the rotated coordinate system becomes

.

A graph of this conic section appears as follows.

cot 2θ = .
A−C

B

cot 2θ = = = −
A−C

B

13 −7

−6 3
–

√

3
–

√

3

2θ = 120o θ = 60o

A' = A θ+B cosθ sinθ+C θcos2 sin2

= 13 60 +(−6 ) cos 60 sin60 +7 60cos2 3
–

√ sin2

= 13( −6 ( )( ) +7(
1

2
)2 3

–
√

1

2

3
–

√

2

3
–

√

2
)2

= 4,

B' = 0

C' = A θ−B sinθcosθ+C θsin2 cos2

= 13 60 +(6 ) sin60 cos 60 +7 60sin2 3
–

√ cos2

= 13( +6 ( )( ) +7(
3
–

√

2
)2 3

–
√

3
–

√

2

1

2

1

2
)2

= 16,

D' = D cosθ+E sinθ

= (0) cos 60 +(0) sin60

= 0,

E' = −D sinθ+E cosθ

= −(0) sin60 +(0) cos 60

= 0

F ' = F

= −256.

4(x' +16(y' = 256)2 )2

+ = 1
(x')2

64

(y')2

16
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Figure : Graph of the ellipse described by the equation . The axes are rotated .
The red dashed lines indicate the rotated axes.

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

Hint

Follow steps 1 and 2 of the five-step method outlined above

Answer

The conic is a hyperbola and the angle of rotation of the axes is 

Key Concepts

The equation of a vertical parabola in standard form with given focus and directrix is  where  is the

distance from the vertex to the focus and  are the coordinates of the vertex.

The equation of a horizontal ellipse in standard form is  where the center has coordinates , the

major axis has length 2a, the minor axis has length 2b, and the coordinates of the foci are , where .

The equation of a horizontal hyperbola in standard form is  where the center has coordinates ,

the vertices are located at , and the coordinates of the foci are  where .
The eccentricity of an ellipse is less than 1, the eccentricity of a parabola is equal to 1, and the eccentricity of a hyperbola is
greater than 1. The eccentricity of a circle is 0.
The polar equation of a conic section with eccentricity e is  or , where p represents the focal

parameter.
To identify a conic generated by the equation ,first calculate the discriminant 

. If  then the conic is an ellipse, if  then the conic is a parabola, and if  then the conic is a
hyperbola.

Glossary

conic section
a conic section is any curve formed by the intersection of a plane with a cone of two nappes

10.5.15 13 − 6 xy+ 7 − 256 = 0x2 3–√ y2 60°

 Exercise 10.5.6

3 +5xy−2 −125 = 0.x2 y2

θ = 22.5°.

y = (x−h +k
1

4p
)2 p

(h, k)

+ = 1
(x−h)2

a2

(y−k)2

b2
(h, k)

(h±c, k) = −c2 a2 b2

− = 1
(x−h)2

a2

(y−k)2

b2
(h, k)

(h±a, k) (h±c, k), = +c2 a2 b2

r =
ep

1 ±ecosθ
r =

ep

1 ±esinθ

A +Bxy+C +Dx+Ey+F = 0x2 y2

D = 4AC −B2 D > 0 D = 0 D < 0
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directrix
a directrix (plural: directrices) is a line used to construct and define a conic section; a parabola has one directrix; ellipses and
hyperbolas have two

discriminant
the value , which is used to identify a conic when the equation contains a term involving , is called a discriminant

focus
a focus (plural: foci) is a point used to construct and define a conic section; a parabola has one focus; an ellipse and a hyperbola
have two

eccentricity
the eccentricity is defined as the distance from any point on the conic section to its focus divided by the perpendicular distance
from that point to the nearest directrix

focal parameter
the focal parameter is the distance from a focus of a conic section to the nearest directrix

general form
an equation of a conic section written as a general second-degree equation

major axis
the major axis of a conic section passes through the vertex in the case of a parabola or through the two vertices in the case of an
ellipse or hyperbola; it is also an axis of symmetry of the conic; also called the transverse axis

minor axis
the minor axis is perpendicular to the major axis and intersects the major axis at the center of the conic, or at the vertex in the
case of the parabola; also called the conjugate axis

nappe
a nappe is one half of a double cone

standard form
an equation of a conic section showing its properties, such as location of the vertex or lengths of major and minor axes

vertex
a vertex is an extreme point on a conic section; a parabola has one vertex at its turning point. An ellipse has two vertices, one at
each end of the major axis; a hyperbola has two vertices, one at the turning point of each branch

10.5: Conic Sections is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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10.6: Conic Sections in Polar Coordinates

Identify a conic in polar form.
Graph the polar equations of conics.
Define conics in terms of a focus and a directrix.

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an atomic nucleus.
Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are often elliptical. Comets,
however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics of the planets’ orbits may vary over
time. Each orbit is tied to the location of the celestial body being orbited and the distance and direction of the planet or other object
from that body. As a result, we tend to use polar coordinates to represent these orbits.

Figure : Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which they are
farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and decrease as it
approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These bodies exhibit either a
parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s gravitational pull and fires off into
space. Each of these orbits can be modeled by a conic section in the polar coordinate system.

Identifying a Conic in Polar Form
Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and the ratio of the distances
of each to a point on the graph. Consider the parabola  shown in Figure .

Figure 

We previously learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this section, we will
learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus  at the pole, and a line, the
directrix, which is perpendicular to the polar axis.

 Learning Objectives

10.6.1

x = 2 +y2 10.6.2

10.6.2

P (r, θ)
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If  is a fixed point, the focus, and  is a fixed line, the directrix, then we can let  be a fixed positive number, called the
eccentricity, which we can define as the ratio of the distances from a point on the graph to the focus and the point on the graph to

the directrix. Then the set of all points  such that  is a conic. In other words, we can define a conic as the set of all

points  with the property that the ratio of the distance from  to  to the distance from  to  is equal to the constant .

For a conic with eccentricity ,

if , the conic is an ellipse
if , the conic is a parabola
if , the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, , the eccentricity , and the angle . Thus, each
conic may be written as a polar equation, an equation written in terms of  and .

For a conic with a focus at the origin, if the directrix is , where  is a positive real number, and the eccentricity is a
positive real number , the conic has a polar equation

For a conic with a focus at the origin, if the directrix is , where  is a positive real number, and the eccentricity is a
positive real number , the conic has a polar equation

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite the equation in
standard form.

2. Identify the eccentricity  as the coefficient of the trigonometric function in the denominator.
3. Compare  with  to determine the shape of the conic.
4. Determine the directrix as  if cosine is in the denominator and  if sine is in the denominator. Set  equal to the

numerator in standard form to solve for  or .

For each of the following equations, identify the conic with focus at the origin, the directrix, and the eccentricity.

a. 

b. 

c. 

Solution

For each of the three conics, we will rewrite the equation in standard form. Standard form has a  as the constant in the
denominator. Therefore, in all three parts, the first step will be to multiply the numerator and denominator by the reciprocal of

the constant of the original equation, , where  is that constant.

a. Multiply the numerator and denominator by .

F D e

P e =
P F

P D
P P F P D e

e

0 ≤ e < 1

e = 1

e > 1

x = ±p e θ

r θ

 THE POLAR EQUATION FOR A CONIC

x = ±p p

e

r =
ep

1 ±e cos θ
(10.6.1)

y = ±p p

e

r =
ep

1 ±e sinθ
(10.6.2)

 How to: Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

e

e 1

x = p y = p ep

x y

 Example : Identifying a Conic Given the Polar Form10.6.1

r =
6

3 +2 sinθ

r =
12

4 +5 cos θ

r =
7

2 −2 sinθ

1

1

c
c

1

3
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Because  is in the denominator, the directrix is . Comparing to standard form, note that .Therefore, from the

numerator,

Since , the conic is an ellipse. The eccentricity is  and the directrix is .

b. Multiply the numerator and denominator by .

Because  is in the denominator, the directrix is . Comparing to standard form, . Therefore, from the

numerator,

Since , the conic is a hyperbola. The eccentricity is  and the directrix is .

c. Multiply the numerator and denominator by .

r = ⋅ = =
6

3 +2 sinθ

( )
1

3

( )
1

3

6( )
1

3

3( )+2( ) sinθ
1

3

1

3

2

1 + sinθ
2

3

sinθ y = p e =
2

3

2

2

( ) 2
3

2

3

= ep

= p
2

3

=( ) p
3

2

2

3

= p

e < 1 e =
2

3
y = 3

1

4

r

r

r

= ⋅
12

4 +5 cos θ

( )
1

4

( )
1

4

=

12( )
1

4

4( )+5( ) cos θ
1

4

1

4

=
3

1 + cos θ
5

4

cos θ x = p e =
5

4

3

3

( ) 3
4

5
12

5

= ep

= p
5

4

=( ) p
4

5

5

4

= p

e > 1 e =
5

4
x = = 2.4

12

5

1

2

https://libretexts.org/
https://math.libretexts.org/@go/page/4510?pdf


10.6.4 https://math.libretexts.org/@go/page/4510

Because sine is in the denominator, the directrix is . Comparing to standard form, . Therefore, from the
numerator,

Because , the conic is a parabola. The eccentricity is  and the directrix is .

Identify the conic with focus at the origin, the directrix, and the eccentricity for .

Answer

ellipse; ; 

Graphing the Polar Equations of Conics
When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing in polar
coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and then determine its
specific characteristics. The first step is to rewrite the conic in standard form as we have done in the previous example. In other
words, we need to rewrite the equation so that the denominator begins with . This enables us to determine  and, therefore, the

shape of the curve. The next step is to substitute values for  and solve for  to plot a few key points. Setting  equal to , , ,

and  provides the vertices so we can create a rough sketch of the graph.

Graph .

Solution

First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of , which is .

r

r

r

= ⋅
7

2 −2 sinθ

( )
1

2

( )
1

2

=

7( )
1

2

2( )−2( ) sinθ
1

2

1

2

=

7

2
1 −sinθ

y = −p e = 1

7

2
7

2
7

2

= ep

= (1)p

= p

e = 1 e = 1 y = − = −3.5
7

2

 Exercise 10.6.1

r =
2

3 −cos θ

e =
1

3
x = −2

1 e

θ r θ 0
π

2
π

3π

2

 Example : Graphing a Parabola in Polar Form10.6.2A

r =
5

3 +3 cos θ

3
1

3
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Because ,we will graph a parabola with a focus at the origin. The function has a , and there is an addition sign in
the denominator, so the directrix is .

The directrix is .

Plotting a few key points as in Table  will enable us to see the vertices. See Figure .

Table 
A B C D

undefined

Figure 

We can check our result with a graphing utility. See Figure .

r

r

= =
5

3 +3 cos θ

5( )
1

3

3( )+3( ) cos θ
1

3

1

3

=

5

3
1 +cos θ

e = 1 cos θ

x = p

5

3
5

3
5

3

= ep

= (1)p

= p

x =
5

3

10.6.1 10.6.3

10.6.1

θ 0
π

2
π

3π

2

r =
5

3 + 3cosθ
≈ 0.83

5

6
≈ 1.67

5

3
≈ 1.67

5

3

10.6.3

10.6.4

https://libretexts.org/
https://math.libretexts.org/@go/page/4510?pdf


10.6.6 https://math.libretexts.org/@go/page/4510

Figure 

Graph .

Solution

First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of , which is .

Because , , so we will graph a hyperbola with a focus at the origin. The function has a  term and there is a

subtraction sign in the denominator, so the directrix is .

The directrix is .

Plotting a few key points as in Table  will enable us to see the vertices. See Figure .

Table 
A B C D

10.6.4

 Example : Graphing a Hyperbola in Polar Form10.6.2B

r =
8

2 −3 sinθ

2
1

2

r

r

= =
8

2 −3 sinθ

8( )
1

2

2( )−3( ) sinθ
1

2

1

2

=
4

1 − sinθ
3

2

e =
3

2
e > 1 sinθ

y = −p

4

4

4( )
2

3
8

3

= ep

=( ) p
3

2

= p

= p

y = −
8

3

10.6.2 10.6.5

10.6.2

θ 0
π

2
π

3π

2

r =
8

2 − 3sinθ
4 −8 4 = 1.6

8

5
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Figure 

Graph .

Solution

First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 5, which is .

Because , , so we will graph an ellipse with a focus at the origin. The function has a , and there is a

subtraction sign in the denominator, so the directrix is .

The directrix is .

Plotting a few key points as in Table  will enable us to see the vertices. See Figure .

Table 
A B C D

10.6.5

 Example : Graphing an Ellipse in Polar Form10.6.2C

r =
10

5 −4 cos θ

1

5

r

r

= =
10

5 −4 cos θ

10( )
1

5

5( )−4( ) cos θ
1

5

1

5

=
2

1 − cos θ
4

5

e =
4

5
e < 1 cos θ

x = −p

2

2

2( )
5

4
5

2

= ep

=( ) p
4

5

= p

= p

x = −
5

2

10.6.3 10.6.6

10.6.3

θ 0
π

2
π

3π

2
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A B C D

Figure 

Analysis

We can check our result using a graphing utility. See Figure .

Figure :  graphed on a viewing window of  by ,  and .

Graph .

Answer

r =
10

5 − 4cosθ
10 2 ≈ 1.1

10

9
2

10.6.6

10.6.7

10.6.6 r =
10

5 − 4 cos θ
[– 3, 12, 1] [– 4, 4, 1] θmin = 0 θmax = 2π

 Exercise 10.6.2

r =
2

4 −cos θ
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Figure 

Defining Conics in Terms of a Focus and a Directrix

So far we have been using polar equations of conics to describe and graph the curve. Now we will work in reverse; we will use
information about the origin, eccentricity, and directrix to determine the polar equation.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of , we use the general polar
form in terms of sine. If the directrix is given in terms of , we use the general polar form in terms of cosine.

2. Determine the sign in the denominator. If , use subtraction. If , use addition.
3. Write the coefficient of the trigonometric function as the given eccentricity.
4. Write the absolute value of  in the numerator, and simplify the equation.

Find the polar form of the conic given a focus at the origin,  and directrix .

Solution

The directrix is , so we know the trigonometric function in the denominator is sine.

Because , , so we know there is a subtraction sign in the denominator. We use the standard form of

and  and .

Therefore,

Find the polar form of a conic given a focus at the origin, , and directrix .

10.6.7

 How to: Given the focus, eccentricity, and directrix of a conic, determine the polar equation

y

x

p < 0 p > 0

p

 Example : Finding the Polar Form of a Vertical Conic Given a Focus at the Origin and the
Eccentricity and Directrix

10.6.3A

e = 3 y = −2

y = −p

y = −2 – 2 < 0

r =
ep

1 −e sinθ

e = 3 | −2| = 2 = p

r

r

=
(3)(2)

1 −3 sinθ

=
6

1 −3 sinθ

 Example : Finding the Polar Form of a Horizontal Conic Given a Focus at the Origin and the
Eccentricity and Directrix

10.6.3B

e =
3

5
x = 4

https://libretexts.org/
https://math.libretexts.org/@go/page/4510?pdf


10.6.10 https://math.libretexts.org/@go/page/4510

Solution

Because the directrix is , we know the function in the denominator is cosine. Because , , so we know there is
an addition sign in the denominator. We use the standard form of

and  and .

Therefore,

Find the polar form of the conic given a focus at the origin, , and directrix .

Answer

Convert the conic  to rectangular form.

Solution

We will rearrange the formula to use the identities , ,and .

x = p x = 4 4 > 0

r =
ep

1 +e cos θ

e =
3

5
|4| = 4 = p

r

r

r

r

r

r

=

( ) (4)
3

5

1 + cos θ
3

5

=

12

5

1 + cos θ
3

5

=

12

5

1( )+ cos θ
5

5

3

5

=

12

5

+ cos θ
5

5

3

5

= ⋅
12

5

5

5 +3 cos θ

=
12

5 +3 cos θ

 Exercise 10.6.3

e = 1 x = −1

r =
1

1 −cos θ

 Example : Converting a Conic in Polar Form to Rectangular Form10.6.4

r =
1

5 −5 sinθ

r = +x2 y2
− −−−−−

√ x = r cos θ y = r sinθ
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Convert the conic  to rectangular form.

Answer

Access these online resources for additional instruction and practice with conics in polar coordinates.

Polar Equations of Conic Sections
Graphing Polar Equations of Conics - 1
Graphing Polar Equations of Conics - 2

Visit this website for additional practice questions from Learningpod.

Key Concepts
Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We can also define a conic in
terms of a fixed point, the focus  at the pole, and a line, the directrix, which is perpendicular to the polar axis.

A conic is the set of all points , where eccentricity  is a positive real number. Each conic may be written in terms of

its polar equation. See Example .
The polar equations of conics can be graphed. See Example , Example , and Example .
Conics can be defined in terms of a focus, a directrix, and eccentricity. See Example  and Example .
We can use the identities , ,and  to convert the equation for a conic from polar to
rectangular form. See Example .

10.6: Conic Sections in Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

12.5: Conic Sections in Polar Coordinates by OpenStax is licensed CC BY 4.0. Original source:
https://openstax.org/details/books/precalculus.

r

r ⋅ (5 −5 sinθ)

5r −5r sinθ

5r

25r2

25( + )x2 y2

25 +25x2 y2

25 −10yx2

=
1

5 −5 sinθ

= ⋅ (5 −5 sinθ) Eliminate the fraction.
1

5 −5 sinθ

= 1 Distribute.

= 1 +5r sinθ Isolate 5r.

= Square both sides. (1 +5r sinθ) 2

= Substitute r =  and y = r sinθ.(1 +5y)
2

+x2 y2
− −−−−−

√

= 1 +10y +25 Distribute and use FOIL. y2

= 1 Rearrange terms and set equal to 1.

 Exercise 10.6.4

r =
2

1 +2 cos θ

4 −8x +3 − = 0x2 y2

 Media

P (r, θ)

e =
P F

P D
e

10.6.1

10.6.2 10.6.3 10.6.4

10.6.5 10.6.6

r = +x2 y2− −−−−−
√ x = r cos θ y = r sinθ

10.6.7
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11.1: Sequences
While the idea of a sequence of numbers,  is straightforward, it is useful to think of a sequence as a function. We have
up until now dealt with functions whose domains are the real numbers, or a subset of the real numbers, like . A
sequence is a function with domain the natural numbers  or the non-negative integers, .
The range of the function is still allowed to be the real numbers; in symbols, we say that a sequence is a function .
Sequences are written in a few different ways, all equivalent; these all mean the same thing:

As with functions on the real numbers, we will most often encounter sequences that can be expressed by a formula. We have
already seen the sequence , and others are easy to come by:

Frequently these formulas will make sense if thought of either as functions with domain  or , though occasionally one will
make sense only for integer values.

Faced with a sequence we are interested in the limit  We already understand  when  is a
real valued variable; now we simply want to restrict the "input'' values to be integers. No real difference is required in the definition
of limit, except that we specify, perhaps implicitly, that the variable is an integer. Compare this definition to definition 4.10.2.

Suppose that  is a sequence. We say that  if for every  there is an  so that whenever 
, . If  we say that the sequence converges, otherwise it diverges.

If  defines a sequence, and  makes sense, and , then it is clear that  as well, but it is

important to note that the converse of this statement is not true. For example, since , it is clear that also 
, that is, the numbers

get closer and closer to 0. Consider this, however: Let .

This is the sequence

since

when  is an integer. Thus . But , when  is real, does not exist: as  gets bigger and bigger, the
values  do not get closer and closer to a single value, but take on all values between  and  over and over. In general,
whenever you want to know  you should first attempt to compute , since if the latter exists it is also
equal to the first limit. But if for some reason  does not exist, it may still be true that  exists, but you'll
have to figure out another way to compute it.

, , , …a1 a2 a3

f(x) = sinx

N = {1, 2, 3, …} = {0, 1, 2, 3, …}Z≥0

f : N → R

, , , …a1 a2 a3

{ }an
∞
n=1

{f(n)}∞
n=1

(11.1.1)

= f(i) = 1 −1/ai 2i

f(i)

f(n)

f(n)

f(i)

=
i

i +1

=
1

2n

= sin(nπ/6)

= .
(i −1)(i +2)

2i

(11.1.2)

R N

f(i) = .limi→∞ limi→∞ ai f(x)limx→∞ x

Definition 11.1.1: Converging and Diverging Sequences

{ }an
∞
n=1 = Llimn→∞ an ϵ > 0 N > 0

n > N | −L| < ϵan = Llimn→∞ an

f(i) f(x) f(x) = Llim
x→∞

f(i) = Llimi→∞

(1/x) = 0limx→∞

(1/i) = 0limi→∞

, , , , , , …
1

1

1

2

1

3

1

4

1

5

1

6
(11.1.3)

f(n) = sin(nπ)

sin(0π), sin(1π), sin(2π), sin(3π), … = 0, 0, 0, 0, … (11.1.4)

sin(nπ) = 0 (11.1.5)

n f(n) = 0limn→∞ f(x)limx→∞ x x

sin(xπ) −1 1
f(n)limn→∞ f(x)limx→∞

f(x)limx→∞ f(n)limn→∞
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It is occasionally useful to think of the graph of a sequence. Since the function is defined only for integer values, the graph is just a
sequence of dots. In figure 11.1.1 we see the graphs of two sequences and the graphs of the corresponding real functions.

Figure 11.1.1. Graphs of sequences and their corresponding real functions.

Not surprisingly, the properties of limits of real functions translate into properties of sequences quite easily. Theorem 2.3.6 about
limits becomes

Suppose that  and  and  is some constant. Then

Likewise the Squeeze Theorem (4.3.1) becomes

Suppose that

for all , for some . If

then

And a final useful fact:

if and only if

Definition 11.1.2

= Llimn→∞ an = Mlimn→∞ bn k

k = k = kLlim
n→∞

an lim
n→∞

an

( + ) = + = L +Mlim
n→∞

an bn lim
n→∞

an lim
n→∞

bn

( − ) = − = L −Mlim
n→∞

an bn lim
n→∞

an lim
n→∞

bn

( ) = ⋅ = LMlim
n→∞

anbn lim
n→∞

an lim
n→∞

bn

= = ,  if M  is not 0.lim
n→∞

an

bn

limn→∞ an

limn→∞ bn

L

M

(11.1.6)

Theorem 11.1.3

≤ ≤an bn cn (11.1.7)

n > N N

= = L,lim
n→∞

an lim
n→∞

cn (11.1.8)

= L.lim
n→∞

bn (11.1.9)

Theorem 11.1.4

| | = 0lim
n→∞

an (11.1.10)

= 0.lim
n→∞

an (11.1.11)
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This theorem says simply that the size of  gets close to zero if and only if  gets close to zero.

Determine whether  converges or diverges. If it converges, compute the limit.

Solution

Since this makes sense for real numbers we consider

Thus the sequence converges to 1.

Determine whether  converges or diverges. If it converges, compute the limit.

Solution

We compute  using L'Hôpital's Rule. Thus the sequence converges to 0.

Determine whether  converges or diverges. If it converges, compute the limit.

Solution

This does not make sense for all real exponents, but the sequence is easy to understand: it is  and clearly
diverges.

Determine whether  converges or diverges. If it converges, compute the limit.

Solution

We consider the sequence

Then

so by theorem 11.1.4 the sequence converges to 0.

Determine whether  converges or diverges. If it converges, compute the limit.

Solution

Since ,  and we can use theorem 11.1.3 with  and . Since 
,  and the sequence converges to 0.

A particularly common and useful sequence is , for various values of . Some are quite easy to understand: If 
the sequence converges to 1 since every term is 1, and likewise if  the sequence converges to 0. If  this is the
sequence of example 11.1.7 and diverges. If  or  the terms  get large without limit, so the sequence diverges. If 

an an

Example 11.1.5

{ }n
n+1

∞

n=0

= 1 − = 1 −0 = 1.lim
x→∞

x

x +1
lim

x→∞

1

x +1
(11.1.12)

Example 11.1.6

{ ln n
n
}

∞

n=1

= = 0,limx→∞
ln x

x limx→∞
1/x

1

Example 11.1.7

{(−1)n}∞
n=0

1, −1, 1, −1, 1 …

Example 11.1.8

{(−1/2)n}∞
n=0

{|(−1/2 | = {(1/2 .)n }∞
n=0 )n}∞

n=0 (11.1.13)

= = 0,lim
x→∞

( )
1

2

x

lim
x→∞

1

2x (11.1.14)

Example 11.1.9

{(sinn)/ n−−√ }∞
n=1

| sinn| ≤ 1 0 ≤ | sinn/ | ≤ 1/n−−√ n−−√ = 0an = 1/cn n−−√
= = 0limn→∞ an limn→∞ cn sinn/ = 0limn→∞ n−−√

Example 11.1.10

{rn}∞
n=0 r r = 1

r = 0 r = −1
r > 1 r < −1 rn
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 then the sequence converges to 0. If  then  and , so the sequence 
converges to 0, so also  converges to 0. converges. In summary,  converges precisely when  in which

case 

Sometimes we will not be able to determine the limit of a sequence, but we still would like to know whether it converges. In some
cases we can determine this even without being able to compute the limit.

A sequence is called increasing or sometimes strictly increasing if  for all . It is called non-decreasing or sometimes
(unfortunately) increasing if  for all . Similarly a sequence is decreasing if  for all  and non-increasing if 

 for all . If a sequence has any of these properties it is called monotonic.

The sequence

is increasing,

and

is decreasing.

A sequence is bounded above if there is some number  such that  for every , and bounded below if there is some
number  such that  for every . If a sequence is bounded above and bounded below it is bounded. If a sequence 

 is increasing or non-decreasing it is bounded below (by ), and if it is decreasing or non-increasing it is bounded above
(by ). Finally, with all this new terminology we can state an important theorem.

If a sequence is bounded and monotonic, then it converges.

We will not prove this; the proof appears in many calculus books. It is not hard to believe: suppose that a sequence is increasing
and bounded, so each term is larger than the one before, yet never larger than some fixed value . The terms must then get closer
and closer to some value between  and . It need not be , since  may be a "too-generous'' upper bound; the limit will be the
smallest number that is above all of the terms .

All of the terms  are less than 2, and the sequence is increasing. As we have seen, the limit of the sequence is 1---1
is the smallest number that is bigger than all the terms in the sequence. Similarly, all of the terms  are bigger than 

, and the limit is 1---1 is the largest number that is smaller than the terms of the sequence.

We do not actually need to know that a sequence is monotonic to apply this theorem---it is enough to know that the sequence is
"eventually'' monotonic, that is, that at some point it becomes increasing or decreasing. For example, the sequence , , , , , 

, , , , ,  is not increasing, because among the first few terms it is not. But starting with the term  it is
increasing, so the theorem tells us that the sequence  converges. Since convergence depends only on
what happens as  gets large, adding a few terms at the beginning can't turn a convergent sequence into a divergent one.

Show that  converges.

Solution

0 < r < 1 −1 < r < 0 | | = |rrn |n 0 < |r| < 1 {|r|n}∞
n=0

{rn}∞
n=0 { }rn −1 < r ≤ 1

={limn→∞ rn 0
1

 if −1 < r < 1
 if r = 1.

<ai ai+1 i

≤ai ai+1 i >ai ai+1 i

≥ai ai+1 i

Example 11.1.11

= , , , , …{ }
−12i

2i

∞

i=1

1

2

3

4

7

8

15

16
(11.1.15)

= , , , , …{ }
n +1

n

∞

i=1

2

1

3

2

4

3

5

4
(11.1.16)

N ≤ Nan n

N ≥ Nan n

{an}∞
n=0 a0

a0

Theorem 11.1.12

N

a0 N N N

ai

Example 11.1.13

( −1)/2i 2i

(n +1)/n

1/2

10 9 8 15 3
21 4 3/4 7/8 15/16 31/32, … 3/4

3/4, 7/8, 15/16, 31/32, …
n

Example 11.1.14

{ }n1/n
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We first show that this sequence is decreasing, that is, that . Consider the real function 
when . We can compute the derivative, , and note that when  this is negative. Since the
function has negative slope,  when . Since all terms of the sequence are positive, the sequence is
decreasing and bounded when , and so the sequence converges. (As it happens, we can compute the limit in this case, but
we know it converges even without knowing the limit; see exercise 1.)

Show that  converges.

Solution

Again we show that the sequence is decreasing, and since each term is positive the sequence converges. We can't take the
derivative this time, as  doesn't make sense for  real. But we note that if  then , which is what we
want to know. So we look at

(Again it is possible to compute the limit; see exercise 2.)

Contributors
David Guichard (Whitman College)

Integrated by Justin Marshall.

11.1: Sequences is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

11.2: Sequences by David Guichard is licensed CC BY-NC-SA 4.0.

> (n +1n1/n )1/(n+1) f(x) = x1/x

x ≥ 1 (x) = (1 −lnx)/f ′ x1/x x2 x ≥ 3

> (n +1n1/n )1/(n+1) n ≥ 3
n ≥ 3

Example 11.1.15

{n!/ }nn

x! x / < 1an+1 an <an+1 an

/ : = = = = < 1.an+1 an

an+1

an

(n +1)!

(n +1)n+1

nn

n!

(n +1)!

n!

nn

(n +1)n+1

n +1

n +1
( )

n

n +1

n

( )
n

n +1

n

(11.1.17)

https://libretexts.org/
https://math.libretexts.org/@go/page/4514?pdf
http://skink.whitman.edu/~guichard/
http://www.whitman.edu/
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/11%3A_Infinite_Sequences_And_Series/11.01%3A_Sequences
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/11%3A_Infinite_Sequences_And_Series/11.01%3A_Sequences?no-cache
https://math.libretexts.org/@go/page/552
http://skink.whitman.edu/~guichard/
https://creativecommons.org/licenses/by-nc-sa/4.0/


11.2.1 https://math.libretexts.org/@go/page/4515

11.2: Series
While much more can be said about sequences, we now turn to our principal interest, series. Recall that a series, roughly speaking, is
the sum of a sequence: if  is a sequence then the associated series is

Associated with a series is a second sequence, called the sequence of partial sums:

with

So

A series converges if the sequence of partial sums converges, and otherwise the series diverges.

If , then

is called a geometric series. A typical partial sum is

We note that

so

If ,  so

Thus, when  the geometric series converges to . When, for example,  and :

We began the chapter with the series  namely, the geometric series without the first term . Each partial sum of this
series is 1 less than the corresponding partial sum for the geometric series, so of course the limit is also one less than the value of
the geometric series, that is,

{an}∞
n=0

= + + +⋯∑
i=0

∞

an a0 a1 a2 (11.2.1)

{sn}∞
n=0 (11.2.2)

= .sn ∑
i=0

n

ai (11.2.3)

= , = + , = + + , …s0 a0 s1 a0 a1 s2 a0 a1 a2 (11.2.4)

Example 11.2.1: Geometric Series

= kan x
n

∑
n=0

∞

an (11.2.5)

= k +kx +k +k +⋯ +k = k(1 +x + + +⋯ + ).sn x
2

x
3

x
n

x
2

x
3

x
n (11.2.6)

(1 −x)sn = k(1 +x + + +⋯ + )(1 −x)x
2

x
3

x
n

= k(1 +x + + +⋯ + )1 −k(1 +x + + +⋯ + + )xx
2

x
3

x
n

x
2

x
3

x
n−1

x
n

= k(1 +x + + +⋯ + −x − − −⋯ − − )x
2

x
3

x
n

x
2

x
3

x
n

x
n+1

= k(1 − )x
n+1

(11.2.7)

(1 −x)sn

sn

= k(1 − )x
n+1

= k .
1 −x

n+1

1 −x

(11.2.8)

|x| < 1 = 0limn→∞ xn

= k = k .lim
n→∞

sn lim
n→∞

1 −x
n+1

1 −x

1

1 −x
(11.2.9)

|x| < 1 k/(1 −x) k = 1 x = 1/2

= = = 2 − and = = 2.sn

1 −(1/2)n+1

1 −1/2

−12n+1

2n

1

2n
∑
n=0

∞ 1

2n

1

1 −1/2
(11.2.10)

,∑
∞
n=1

1
2n 1
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It is not hard to see that the following theorem follows from theorem 11.1.2.

Suppose that  and  are convergent series, and  is a constant. Then

1.  is convergent and 
2.  is convergent and .

The two parts of this theorem are subtly different. Suppose that  diverges; does  also diverge if  is non-zero? Yes:
suppose instead that  converges; then by the theorem,  converges, but this is the same as , which by
assumption diverges. Hence  also diverges. Note that we are applying the theorem with  replaced by  and  replaced by 

.

Now suppose that  and  diverge; does  also diverge? Now the answer is no: Let  and , so
certainly  and  diverge. But

Of course, sometimes  will also diverge, for example, if , then

diverges.

In general, the sequence of partial sums  is harder to understand and analyze than the sequence of terms , and it is difficult to
determine whether series converge and if so to what. Sometimes things are relatively simple, starting with the following.

If

converges then

Proof.

Since  converges,  and , because this really says the same thing but "renumbers'' the
terms. By theorem 11.1.2,

But

so as desired .

This theorem presents an easy divergence test: if given a series  the limit  does not exist or has a value other than
zero, the series diverges. Note well that the converse is not true: If  then the series does not necessarily converge.

Show that

= 1.∑
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diverges.

Solution

We compute the limit:

Looking at the first few terms perhaps makes it clear that the series has no chance of converging:

will just get larger and larger; indeed, after a bit longer the series starts to look very much like , and of
course if we add up enough 1's we can make the sum as large as we desire.

Show that

diverges.

Solution

Here the theorem does not apply: , so it looks like perhaps the series converges. Indeed, if you have the
fortitude (or the software) to add up the first 1000 terms you will find that

so it might be reasonable to speculate that the series converges to something in the neighborhood of 10. But in fact the partial
sums do go to infinity; they just get big very, very slowly. Consider the following:

and so on. By swallowing up more and more terms we can always manage to add at least another  to the sum, and by adding
enough of these we can make the partial sums as big as we like. In fact, it's not hard to see from this pattern that

so to make sure the sum is over 100, for example, we'd add up terms until we get to around , that is, about  terms.
This series, , is called the harmonic series.
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Example 11.2.5: Harmonic Series
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11.3: The Integral Test and Estimates of Sums
It is generally quite difficult, often impossible, to determine the value of a series exactly. In many cases it is possible at least to
determine whether or not the series converges, and so we will spend most of our time on this problem.

If all of the terms  in a series are non-negative, then clearly the sequence of partial sums  is non-decreasing. This means that if
we can show that the sequence of partial sums is bounded, the series must converge. We know that if the series converges, the
terms  approach zero, but this does not mean that  for every . Many useful and interesting series do have this
property, however, and they are among the easiest to understand. Let's look at an example.

Show that

converges.

Solution

The terms  are positive and decreasing, and since , the terms  approach zero. We seek an upper
bound for all the partial sums, that is, we want to find a number  so that  for every . The upper bound is provided
courtesy of integration, and is inherent in figure 11.3.1.

The figure shows the graph of  together with some rectangles that lie completely below the curve and that all have
base length one. Because the heights of the rectangles are determined by the height of the curve, the areas of the rectangles are 

, , , and so on---in other words, exactly the terms of the series. The partial sum  is simply the sum of the areas
of the first  rectangles. Because the rectangles all lie between the curve and the -axis, any sum of rectangle areas is less than
the corresponding area under the curve, and so of course any sum of rectangle areas is less than the area under the entire curve,
that is, all the way to infinity. There is a bit of trouble at the left end, where there is an asymptote, but we can work around that
easily. Here it is:

recalling that we computed this improper integral in section 9.7. Since the sequence of partial sums  is increasing and
bounded above by 2, we know that , and so the series converges to some number less than 2. In fact, it is
possible, though difficult, to show that .

We already know that  diverges. What goes wrong if we try to apply this technique to it? Here's the calculation:

The problem is that the improper integral doesn't converge. Note well that this does not prove that  diverges, just that
this particular calculation fails to prove that it converges. A slight modification, however, allows us to prove in a second way
that  diverges.

Consider a slightly altered version of figure 11.3.1, shown in figure 11.3.2.

Solution

The rectangles this time are above the curve, that is, each rectangle completely contains the corresponding area under the
curve. This means that

[(s_n = {1\over 1}+{1\over 2}+{1\over 3}+\cdots+{1\over n} > \int_1^{n+1} {1\over x}\,dx = \ln x\Big|_1^{n+1}=\ln(n+1).\]

As  gets bigger,  goes to infinity, so the sequence of partial sums  must also go to infinity, so the harmonic series
diverges.

an sn

an ≥an an+1 n
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The important fact that clinches this example is that  which we can rewrite as 
So these two examples taken together indicate that we can prove that a series converges or prove that it diverges with a
single calculation of an improper integral. This is known as the integral test, which we state as a theorem.

Suppose that  and is decreasing on the infinite interval  (for some ) and that . Then
the series

converges if and only if the improper integral

converges.

The two examples we have seen are called -series; a -series is any series of the form . If , 
, so the series diverges. For positive values of \)p\) we can determine precisely which series converge.

A -series with  converges if and only if .

Proof

We use the integral test; we have already done , so assume that .

If  then  and , so the integral converges. If  then  and 
, so the integral diverges.

Show that

converges.

Solution

We could of course use the integral test, but now that we have the theorem we may simply note that this is a -series
with .

Show that

converges.

Solution

dx = ∞,limn→∞ ∫ n+1
1

1
x

dx = ∞.∫ ∞
1

1
x

Theorem 11.3.3: The Integral Test
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p > 1 1 −p < 0 = 0limD→∞ D1−p 0 < p < 1 1 −p > 0
= ∞limD→∞ D1−p
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We know that if

converges then

also converges, by theorem 11.2.2. Since  is a convergent -series, then  converges also.

Show that

diverges.

Solution

This also follows from theorem 11.2.2: Since  is a -series with , it diverges, and so does .

Since it is typically difficult to compute the value of a series exactly, a good approximation is frequently required. In a real sense, a
good approximation is only as good as we know it is, that is, while an approximation may in fact be good, it is only valuable in
practice if we can guarantee its accuracy to some degree. This guarantee is usually easy to come by for series with decreasing
positive terms.

Approximate

to two decimal places.

Solution

Referring to figure 11.3.1, if we approximate the sum by , the error we make is the total area of the remaining
rectangles, all of which lie under the curve  from \)x=N\) out to infinity. So we know the true value of the series is larger
than the approximation, and no bigger than the approximation plus the area under the curve from  to infinity. Roughly, then,
we need to find  so that

We can compute the integral:  so  is a good starting point. Adding up the first 100 terms gives
approximately , and that plus  is , so approximating the series by the value halfway between
these will be at most  in error. The midpoint is , but while this is correct to , we can't tell if
the correct two-decimal approximation is  or .

We need to make  big enough to reduce the guaranteed error, perhaps to around  to be safe, so we would need 
, or . Now the sum of the first 125 terms is approximately , and that plus  is 

 and the point halfway between them is . The true value is then , and all
numbers in this range round to , so  is correct to two decimal places. We have mentioned that the true value of this
series can be shown to be  which rounds down to  (just barely) and is indeed below the upper bound
of , again just barely. Frequently approximations will be even better than the "guaranteed'' accuracy, but not
always, as this example demonstrates.
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11.4: The Comparison Tests
As we begin to compile a list of convergent and divergent series, new ones can sometimes be analyzed by comparing them to ones
that we already understand.

Does the following sum converge?

Solution

The obvious first approach, based on what we know, is the integral test. Unfortunately, we cannot compute the required
antiderivative. But looking at the series, it would appear that it must converge, because the terms we are adding are smaller
than the terms of a -series, that is,

when . Since adding up the terms  doesn't get "too big'', the new series "should'' also converge. Let's make this more
precise.

The series

converges if and only if

converges---all we've done is dropped the initial term. We know that

converges. Looking at two typical partial sums:

$$s_n={1\over 3^2\ln 3}+{1\over 4^2\ln 4}+{1\over 5^2\ln 5}+\cdots+ {1\over n^2\ln n} < {1\over 3^2}+{1\over 4^2}+
{1\over 5^2}+\cdots+{1\over n^2}=t_n.\]

Since the -series converges, say to , and since the terms are positive, . Since the terms of the new series are positive,
the  form an increasing sequence and  for all . Hence the sequence  is bounded and so converges.

Sometimes, even when the integral test applies, comparison to a known series is easier, so it's generally a good idea to think about
doing a comparison before doing the integral test.

Does the following sum converge?

Solution

We cannot apply the integral test here, because the terms of this series are not decreasing. Just as in the previous example,
however,

Example 11.5.1: Identifying if a Sum Converges
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because . Once again the partial sums are non-decreasing and bounded above by

so the new series converges.

Like the integral test, the comparison test can be used to show both convergence and divergence. In the case of the integral test, a
single calculation will confirm whichever is the case. To use the comparison test we must first have a good idea as to convergence
or divergence and pick the sequence for comparison accordingly.

Does the following sum converge?

Solution

We observe that the  should have little effect compared to the  inside the square root, and therefore guess that the terms
are enough like  that the series should diverge. We attempt to show this by comparison to the harmonic series.
We note that

so that

where  is 1 less than the corresponding partial sum of the harmonic series (because we start at  instead of ).
Since ,  as well.

So the general approach is this: If you believe that a new series is convergent, attempt to find a convergent series whose terms are
larger than the terms of the new series; if you believe that a new series is divergent, attempt to find a divergent series whose terms
are smaller than the terms of the new series.

Does the following sum converge?

Solution

Just as in the last example, we guess that this is very much like the harmonic series and so diverges. Unfortunately,

so we cannot compare the series directly to the harmonic series. A little thought leads us to

so if  diverges then the given series diverges. But since , theorem 11.2.2 implies that it
does indeed diverge.

≤ ,
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For reference we summarize the comparison test in a theorem.

Suppose that  and  are non-negative for all  and that  when , for some .

Proof

If  converges, so does . If  diverges, so does .
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11.5: Alternating Series
Next we consider series with both positive and negative terms, but in a regular pattern: they alternate, as in the alternating
harmonic series for example:

In this series the sizes of the terms decrease, that is,  forms a decreasing sequence, but this is not required in an alternating
series. As with positive term series, however, when the terms do have decreasing sizes it is easier to analyze the series, much easier,
in fact, than positive term series. Consider pictorially what is going on in the alternating harmonic series, shown in Figure 11.4.1.
Because the sizes of the terms  are decreasing, the partial sums , , , and so on, form a decreasing sequence that is bounded
below by , so this sequence must converge. Likewise, the partial sums , , , and so on, form an increasing sequence that is
bounded above by , so this sequence also converges. Since all the even numbered partial sums are less than all the odd numbered
ones, and since the "jumps'' (that is, the  terms) are getting smaller and smaller, the two sequences must converge to the same
value, meaning the entire sequence of partial sums  converges as well.

Figure 11.4.1. The alternating harmonic series.

There's nothing special about the alternating harmonic series---the same argument works for any alternating sequence with
decreasing size terms. The alternating series test is worth calling a theorem.

Suppose that  is a non-increasing sequence of positive numbers and . Then the alternating series 
 converges.

The odd numbered partial sums, , , , and so on, form a non-increasing sequence, because 
, since . This sequence is bounded below by , so it must converge,

say . Likewise, the partial sums , , , and so on, form a non-decreasing sequence that is bounded
above by , so this sequence also converges, say . Since  and ,

so , the two sequences of partial sums converge to the same limit, and this means the entire sequence of partial sums
also converges to .

Another useful fact is implicit in this discussion. Suppose that  and that we approximate  by a finite part of
this sum, say  Because the terms are decreasing in size, we know that the true value of  must be between
this approximation and the next one, that is, between  and  Depending on whether  is
odd or even, the second will be larger or smaller than the first.

= + + + +⋯ = − + − +⋯ .∑
n=1

∞ (−1)n−1

n

1

1

−1

2

1

3

−1

4

1

1

1

2

1

3

1

4
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Theorem 11.4.1: The Alternating Series Test
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k→∞
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Approximate the alternating harmonic series to one decimal place.

Solution

We need to go roughly to the point at which the next term to be added or subtracted is . Adding up the first nine and the
first ten terms we get approximately  and . These are  apart, but it is not clear how the correct value would be
rounded. It turns out that we are able to settle the question by computing the sums of the first eleven and twelve terms, which
give  and , so correct to one place the value is .

We have considered alternating series with first index 1, and in which the first term is positive, but a little thought shows this is
not crucial. The same test applies to any similar series, such as , , , etc.
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11.6: Absolute Convergence and the Ratio and Root Test
Roughly speaking there are two ways for a series to converge: As in the case of , the individual terms get small very
quickly, so that the sum of all of them stays finite, or, as in the case of , the terms do not get small fast enough (

 diverges), but a mixture of positive and negative terms provides enough cancellation to keep the sum finite. You might
guess from what we've seen that if the terms get small fast enough to do the job, then whether or not some terms are negative and
some positive the series converges.

If  converges, then  converges.

Proof. 
Note that  so by the comparison test  converges. Now

converges by theorem 11.2.2.

So given a series  with both positive and negative terms, you should first ask whether  converges. This may be an
easier question to answer, because we have tests that apply specifically to terms with non-negative terms. If  converges then
you know that  converges as well. If  diverges then it still may be true that  converges---you will have to do more
work to decide the question. Another way to think of this result is: it is (potentially) easier for  to converge than for  to
converge, because the latter series cannot take advantage of cancellation.

If  converges we say that  converges absolutely; to say that  converges absolutely is to say that any cancellation
that happens to come along is not really needed, as the terms already get small so fast that convergence is guaranteed by that alone.
If  converges but  does not, we say that  converges conditionally. For example  converges
absolutely, while  converges conditionally.

Does

converge?

Solution

In example 11.5.2 we saw that

converges, so the given series converges absolutely.

Does  converge?

Solution

Taking the absolute value,

∑1/n2

∑(−1 /n)n−1

∑1/n

Theorem 11.6.1

| |∑∞
n=0 an ∑∞

n=0 an

0 ≤ +| | ≤ 2| |an an an ( +| |)∑
∞
n=0 an an

( +| |) − | | = +| | −| | =∑
n=0

∞

an an ∑
n=0

∞

an ∑
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∞

an an an ∑
n=0

∞

an (11.6.1)

□
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∞
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Example 11.6.2
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∞
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diverges by comparison to

so if the series converges it does so conditionally. It is true that

so to apply the alternating series test we need to know whether the terms are decreasing. If we let

then

and it is not hard to see that this is negative for , so the series is decreasing and by the alternating series test it converges.

Contributors
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Does the series  converge? It is possible, but a bit unpleasant, to approach this with the integral test or the comparison
test, but there is an easier way. Consider what happens as we move from one term to the next in this series:

The denominator goes up by a factor of 5, , but the numerator goes up by much less:

which is much less than  when  is large, because  is much less than . So we might guess that in the long run it begins to
look as if each term is  of the previous term. We have seen series that behave like this:

a geometric series. So we might try comparing the given series to some variation of this geometric series. This is possible, but a bit
messy. We can in effect do the same thing, but bypass most of the unpleasant work.

The key is to notice that

This is really just what we noticed above, done a bit more officially: in the long run, each term is one fifth of the previous term.
Now pick some number between  and , say . Because

then when  is big enough, say  for some ,

So , , , and so on. The general form is 
. So if we look at the series

,∑
n=1

∞ 3

10n
(11.6.5)

(3n +4)/(2 +3n +5) = 0,lim
n→∞

n2 (11.6.6)

f(x) = (3x +4)/(2 +3x +5)x2 (11.6.7)

(x) = −(6 +16x −3)/(2 +3x +5 ,f ′ x2 x2 )2 (11.6.8)

x ≥ 1

∑
∞
n=0

n5

5n

⋯ + + +⋯
n5

5n

(n +1)5

5n+1
(11.6.9)

= 5 ⋅5n+1 5n

(n +1 = +5 +10 +10 +5n +1,)5 n5 n4 n3 n2 (11.6.10)
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n→∞
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1

5

1

5
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an

1
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n n ≥ N N
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its terms are less than or equal to the terms of the sequence

So by the comparison test,  converges, and this means that  converges, since we've just added the fixed
number .

Under what circumstances could we do this? What was crucial was that the limit of , say , was less than 1 so that we
could pick a value  so that . The fact that  (  in our example) means that we can compare the series 

 to , and the fact that  guarantees that  converges. That's really all that is required to make the argument
work. We also made use of the fact that the terms of the series were positive; in general we simply consider the absolute values of
the terms and we end up testing for absolute convergence.

Suppose that

If

the series  converges absolutely, if  the series diverges, and if  this test gives no information.

Proof. 
The example above essentially proves the first part of this, if we simply replace  by  and  by . Suppose that ,
and pick  so that . Then for , for some ,

This implies that

, but since  this means that

, which means also that

. By the divergence test, the series diverges.

To see that we get no information when , we need to exhibit two series with , one that converges and one that diverges.
It is easy to see that  and  do the job.

The ratio test is particularly useful for series involving the factorial function. Consider .

Since , the series converges.

= + + + +⋯ + +⋯ ,∑
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∞

aN+k aN aN+1 aN+2 aN+3 aN+k (11.6.15)
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Theroem 11.7.1: The Ratio Test
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A similar argument, which we will not do, justifies a similar test that is occasionally easier to apply.

Suppose that

If ,the series  converges absolutely, if  the series diverges, and if  this test gives no information.

The proof of the root test is actually easier than that of the ratio test, and is a good exercise.

Analyze .

Solution

The ratio test turns out to be a bit difficult on this series (try it). Using the root test:

Since , the series converges.

The root test is frequently useful when  appears as an exponent in the general term of the series.
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Theroem 11.7.3: The Root Test
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11.8: Power Series
We have seen that some functions can be represented as series, which may give valuable information about the function. So far, we
have seen only those examples that result from manipulation of our one fundamental example, the geometric series. We would like
to start with a given function and produce a series to represent it, if possible.

Suppose that  on some interval of convergence. Then we know that we can compute derivatives of  by taking
derivatives of the terms of the series. Let's look at the first few in general:

By examining these it's not hard to discern the general pattern. The th derivative must be

We can shrink this quite a bit by using factorial notation:

Now substitute :

and solve for :

Note the special case, obtained from the series for  itself, that gives .

So if a function  can be represented by a series, we know just what series it is. Given a function , the series

is called the Maclaurin series for .

Find the Maclaurin series for .

Solution

We need to compute the derivatives of  (and hope to spot a pattern).

f(x) =∑∞
n=0 anxn f

(x)f ′

(x)f ′′

(x)f ′′′

= n = +2 x +3 +4 +⋯∑
n=1

∞

anxn−1 a1 a2 a3x2 a4x3

= n(n −1) = 2 +3 ⋅ 2 x +4 ⋅ 3 +⋯∑
n=2

∞

anxn−2 a2 a3 a4x2

= n(n −1)(n −2) = 3 ⋅ 2 +4 ⋅ 3 ⋅ 2 x +⋯∑
n=3

∞

anxn−3 a3 a4

(11.8.1)

k

(x)f (k) = n(n −1)(n −2) ⋯ (n −k +1)∑
n=k

∞

anxn−k

= k(k −1)(k −2) ⋯ (2)(1) +(k +1)(k) ⋯ (2) x +ak ak+1

+(k +2)(k +1) ⋯ (3) +⋯ak+2x2

(11.8.2)
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n=k

∞ n!
(n −k)!

anxn−k ak ak+1
(k +2)!

2!
ak+2x2 (11.8.3)
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(0) = k! + = k! ,f (k) ak ∑
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∞ n!
(n −k)!

an0n−k ak (11.8.4)
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= .ak
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k!
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f f(0) = a0

f f
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Example 11.10.1: Maclaurin series

f(x) = 1/(1 −x)
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So

and the Maclaurin series is

the geometric series.

A warning is in order here. Given a function  we may be able to compute the Maclaurin series, but that does not mean we have
found a series representation for . We still need to know where the series converges, and if, where it converges, it converges to 

. While for most commonly encountered functions the Maclaurin series does indeed converge to  on some interval, this is not
true of all functions, so care is required.

As a practical matter, if we are interested in using a series to approximate a function, we will need some finite number of terms of
the series. Even for functions with messy derivatives we can compute these using computer software like Sage. If we want to know
the whole series, that is, a typical term in the series, we need a function whose derivatives fall into a pattern that we can discern. A
few of the most important functions are fortunately very easy.

Find the Maclaurin series for .

Solution

The derivatives are quite easy: , , , , and then the pattern
repeats. We want to know the derivatives at zero: 1, 0, , 0, 1, 0, , 0,…, and so the Maclaurin series is

We should always determine the radius of convergence:

so the series converges for every . Since it turns out that this series does indeed converge to  everywhere, we have a
series representation for  for every .

Sometimes the formula for the th derivative of a function  is difficult to discover, but a combination of a known Maclaurin series
and some algebraic manipulation leads easily to the Maclaurin series for .

f(x)

(x)f ′

(x)f ′′

(x)f ′′′

(x)f (4)

(x)f (n)

= (1 −x)−1

= (1 −x)−2

= 2(1 −x)−3

= 6(1 −x)−4

= 4!(1 −x)−5

⋮

= n!(1 −x)−n−1

(11.8.7)

= = 1
(0)f (n)

n!
n!(1 −0)−n−1

n!
(11.8.8)

1 ⋅ = ,∑
n=0

∞

xn ∑
n=0

∞

xn (11.8.9)

f

f

f(x) f

Example 11.10.2: Maclaurin series

sinx

(x) = cos xf ′ (x) = −sinxf ′′ (x) = −cos xf ′′′ (x) = sinxf (4)

−1 −1

x − + −⋯ = (−1 .
x3

3!
x5

5!
∑
n=0

∞

)n x2n+1

(2n +1)!
(11.8.10)

= = 0,lim
n→∞

|x|2n+3

(2n +3)!

(2n +1)!

|x|2n+1
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|x|2
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Find the Maclaurin series for .

Solution

To get from  to  we substitute  for  and then multiply by . We can do the same thing to the series for :

As we have seen, a general power series can be centered at a point other than zero, and the method that produces the Maclaurin
series can also produce such series.

Find a series centered at  for .

Solution

If the series is

then looking at the th derivative:

and substituting  we get

and

so the series is

We've already seen this, in Section 11.8. Such a series is called the Taylor series for the function, and the general term has the
form

A Maclaurin series is simply a Taylor series with .
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Example 11.10.3: Maclaurin series

x sin(−x)

sinx x sin(−x) −x x x sinx

x (−1 = x (−1 (−1 = (−1 .∑
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∞

)n (−x)2n+1
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∑
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∞

)n )2n+1 x2n+1

(2n +1)!
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(11.8.12)

Taylor series

−2 1/(1 −x)
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∞

an )n (11.8.13)
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11.9: Representations of Functions as Power Series
Now we know that some functions can be expressed as power series, which look like infinite polynomials. Since calculus, that is,
computation of derivatives and antiderivatives, is easy for polynomials, the obvious question is whether the same is true for infinite
series. The answer is yes:

Suppose the power series

has radius of convergence . Then

and these two series have radius of convergence  as well.

when . The series does not converge when  but does converge when  or . The interval of
convergence is , or , so we can use the series to represent  when .

For example

and so

Because this is an alternating series with decreasing terms, we know that the true value is between  and 
, so correct to two decimal places the value is .

What about ? Since  is larger than 2 we cannot use the series directly, but 
 so in fact we get a lot more from this one calculation than first meets the eye. To

estimate the true value accurately we actually need to be a bit more careful. When we multiply by two we know that the true
value is between  and , so rounded to two decimal places the true value is .

Contributors
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Theorem 11.9.1

f(x) = (x−a∑
n=0

∞

an )n (11.9.1)

R

(x)f ′

∫ f(x)dx

= n (x−a ,∑
n=0

∞

an )n−1

= C + (x−a ,∑
n=0

∞ an

n+1
)n+1

(11.9.2)

R

Example 11.9.2

1

1 −x

∫ dx
1

1 −x

ln |1 −x|

=∑
n=0

∞

xn

= −ln|1 −x| =∑
n=0

∞ 1

n+1
xn+1

= −∑
n=0

∞ 1

n+1
xn+1

(11.9.3)

|x| < 1 x = 1 x = −1 1 −x = 2

[−1, 1) 0 < 1 −x ≤ 2 ln(x) 0 < x ≤ 2

ln(3/2) = ln(1 −−1/2) = (−1∑
n=0

∞

)n
1

n+1

1

2n+1
(11.9.4)

ln(3/2) ≈ − + − + − + = ≈ 0.406.
1

2

1

8

1

24

1

64

1

160

1

384

1

896

909

2240
(11.9.5)

909/2240

909/2240 −1/2048 = 29053/71680 ≈ .4053 0.41

ln(9/4) 9/4

ln(9/4) = ln((3/2 ) = 2 ln(3/2) ≈ 0.82,)2

0.8106 0.812 0.81
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11.10: Taylor and Maclaurin Series

Describe the procedure for finding a Taylor polynomial of a given order for a function.
Explain the meaning and significance of Taylor’s theorem with remainder.
Estimate the remainder for a Taylor series approximation of a given function.

In the previous two sections we discussed how to find power series representations for certain types of functions––specifically, functions related to
geometric series. Here we discuss power series representations for other types of functions. In particular, we address the following questions: Which
functions can be represented by power series and how do we find such representations? If we can find a power series representation for a particular
function  and the series converges on some interval, how do we prove that the series actually converges to ?

Overview of Taylor/Maclaurin Series
Consider a function  that has a power series representation at . Then the series has the form

What should the coefficients be? For now, we ignore issues of convergence, but instead focus on what the series should be, if one exists. We return to
discuss convergence later in this section. If the series Equation  is a representation for  at , we certainly want the series to equal 
at . Evaluating the series at , we see that

Thus, the series equals  if the coefficient . In addition, we would like the first derivative of the power series to equal  at .
Differentiating Equation  term-by-term, we see that

Therefore, at  the derivative is

Therefore, the derivative of the series equals  if the coefficient  Continuing in this way, we look for coefficients  such that all the
derivatives of the power series Equation  will agree with all the corresponding derivatives of  at . The second and third derivatives of
Equation  are given by

and

Therefore, at , the second and third derivatives

and

equal  and , respectively, if  and . More generally, we see that if  has a power series representation at ,

then the coefficients should be given by . That is, the series should be

 Learning Objectives

f f

f x = a

(x−a = + (x−a) + (x−a +… .∑
n=0

∞

cn )n c0 c1 c2 )2 (11.10.1)

11.10.1 f x = a f(a)
x = a x = a

(x−a = + (a−a) + (a−a +⋯ = .∑
n=0

∞

cn )n c0 c1 c2 )2 c0 (11.10.2)

f(a) = f(a)c0 f '(a) x = a

11.10.2

( (x−a ) = +2 (x−a) +3 (x−a +… .
d

dx
∑
n=0

∞

cn )n c1 c2 c3 )2 (11.10.3)

x = a,

( (x−a ) = +2 (a−a) +3 (a−a +⋯ = .
d

dx
∑
n=0

∞

cn )n c1 c2 c3 )2 c1 (11.10.4)

f '(a) = f '(a).c1 cn
11.10.4 f x = a

11.10.3

( (x−a ) = 2 +3 ⋅ 2 (x−a) +4 ⋅ 3 (x−a +…
d2

dx2
∑
n=0

∞

cn )n c2 c3 c4 )2 (11.10.5)

( (x−a ) = 3 ⋅ 2 +4 ⋅ 3 ⋅ 2 (x−a) +5 ⋅ 4 ⋅ 3 (x−a +⋯ .
d3

dx3
∑
n=0

∞

cn )n c3 c4 c5 )2 (11.10.6)

x = a

( (x−a ) = 2 +3 ⋅ 2 (a−a) +4 ⋅ 3 (a−a +⋯ = 2
d2

dx2
∑
n=0

∞

cn )n c2 c3 c4 )2 c2 (11.10.7)

( (x−a ) = 3 ⋅ 2 +4 ⋅ 3 ⋅ 2 (a−a) +5 ⋅ 4 ⋅ 3 (a−a +⋯ = 3 ⋅ 2
d3

dx3
∑
n=0

∞

cn )n c3 c4 c5 )2 c3 (11.10.8)

(a)f ′′ (a)f ′′′ =c2
(a)f ′′

2
=c3

(a)f ′′′

3 ⋅ 2
f x = a

=cn
(a)f (n)

n!
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This power series for  is known as the Taylor series for  at  If , then this series is known as the Maclaurin series for .

If  has derivatives of all orders at , then the Taylor series for the function  at  is

The Taylor series for  at 0 is known as the Maclaurin series for .

Later in this section, we will show examples of finding Taylor series and discuss conditions under which the Taylor series for a function will
converge to that function. Here, we state an important result. Recall that power series representations are unique. Therefore, if a function  has a
power series at , then it must be the Taylor series for  at .

If a function  has a power series at a that converges to  on some open interval containing , then that power series is the Taylor series for  at 
.

The proof follows directly from that discussed previously.

To determine if a Taylor series converges, we need to look at its sequence of partial sums. These partial sums are finite polynomials, known as
Taylor polynomials.

Taylor Polynomials
The  partial sum of the Taylor series for a function  at  is known as the -degree Taylor polynomial. For example, the 0 , 1 , 2 , and 3
partial sums of the Taylor series are given by

respectively. These partial sums are known as the 0 , 1 , 2 , and 3  degree Taylor polynomials of  at , respectively. If , then these
polynomials are known as Maclaurin polynomials for . We now provide a formal definition of Taylor and Maclaurin polynomials for a function .

If  has  derivatives at , then the -degree Taylor polynomial of  at  is

The -degree Taylor polynomial for  at  is known as the -degree Maclaurin polynomial for .

We now show how to use this definition to find several Taylor polynomials for  at .

Find the Taylor polynomials  and  for  at . Use a graphing utility to compare the graph of  with the graphs of 
 and .

Solution

To find these Taylor polynomials, we need to evaluate  and its first three derivatives at .

(x−a = f(a) +f '(a)(x−a) + (x−a + (x−a +⋯∑
n=0

∞ (a)f (n)

n!
)n

(a)f ′′

2!
)2 (a)f ′′′

3!
)3

f f a. x = 0 f

 Definition : Maclaurin and Taylor series11.10.1

f x = a f a

(x−a = f(a) +f '(a)(x−a) + (x−a +⋯ + (x−a +⋯∑
n=0

∞ (a)f (n)

n!
)n

(a)f ′′

2!
)2 (a)f (n)

n!
)n

f f

f

a f a

 Uniqueness of Taylor Series

f f a f

a

nth f a nth th st nd rd

(x)p0

(x)p1

(x)p2

(x)p3

= f(a)

= f(a) +f '(a)(x−a)

= f(a) +f '(a)(x−a) + (x−a  
(a)f ′′

2!
)2

= f(a) +f '(a)(x−a) + (x−a + (x−a
(a)f ′′

2!
)2 (a)f ′′′

3!
)3

th st nd rd f a x = a

f f

 Definition : Maclaurin polynomial11.10.2

f n x = a nth f a

(x) = f(a) +f '(a)(x−a) + (x−a + (x−a +⋯ + (x−a .pn
(a)f ′′

2!
)2 (a)f ′′′

3!
)3 (a)f (n)

n!
)n

nth f 0 nth f

f(x) = lnx x = 1

 Example : Finding Taylor Polynomials11.10.1

, ,p0 p1 p2 p3 f(x) = lnx x = 1 f

, ,p0 p1 p2 p3

f x = 1
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Therefore,

The graphs of  and the first three Taylor polynomials are shown in Figure .

Figure : The function  and the Taylor polynomials  and  at  are plotted on this graph.

Find the Taylor polynomials  and  for  at .

Hint

Find the first three derivatives of  and evaluate them at 

Answer

We now show how to find Maclaurin polynomials for  and . As stated above, Maclaurin polynomials are Taylor polynomials centered
at zero.

For each of the following functions, find formulas for the Maclaurin polynomials  and . Find a formula for the -degree Maclaurin
polynomial and write it using sigma notation. Use a graphing utility to compare the graphs of  and  with .

a. 
b. 
c. 

Solution

f(x)

f '(x)

(x)f ′′

(x)f ′′′

= lnx

=
1

x

= −
1

x2

=
2

x3

f(1)

f '(1)

(1)f ′′

(1)f ′′′

= 0

= 1

= −1

= 2

(x)p0

(x)p1

(x)p2

(x)p3

= f(1) = 0,

= f(1) +f '(1)(x−1) = x−1,

= f(1) +f '(1)(x−1) + (x−1 = (x−1) − (x−1
(1)f ′′

2
)2 1

2
)2

= f(1) +f '(1)(x−1) + (x−1 + (x−1 = (x−1) − (x−1 + (x−1
(1)f ′′

2
)2 (1)f ′′′

3!
)3 1

2
)2 1

3
)3

y = f(x) 11.10.1

11.10.1 y = ln x , ,p0 p1 p2 p3 x = 1

 Exercise 11.10.1

, ,p0 p1 p2 p3 f(x) =
1

x2
x = 1

f x = 1.

(x)p0

(x)p1

(x)p2

(x)p3

= 1

= 1 −2(x−1)

= 1 −2(x−1) +3(x−1)2

= 1 −2(x−1) +3(x−1 −4(x−1)2 )3

, sinx,ex cosx

 Example : Finding Maclaurin Polynomials11.10.2

, ,p0 p1 p2 p3 nth

, ,p0 p1 p2 p3 f

f(x) = ex

f(x) = sinx
f(x) = cosx
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Since ,we know that  for all positive integers . Therefore,

for all positive integers . Therefore, we have

 

.

The function and the first three Maclaurin polynomials are shown in Figure .

Figure : The graph shows the function  and the Maclaurin polynomials  and .

b. For , the values of the function and its first four derivatives at  are given as follows:

Since the fourth derivative is  the pattern repeats. That is,  and  for  Thus, we have

and for ,

f(x) = ex f(x) = f '(x) = (x) = ⋯ = (x) =f ′′ f (n) ex n

f(0) = f '(0) = (0) = ⋯ = (0) = 1f ′′ f (n)

n

(x)p0

(x)p1

(x)p2

(x)p3

= f(0) = 1,

= f(0) +f '(0)x = 1 +x,

= f(0) +f '(0)x+ = 1 +x+ ,
(0)f ′′

2!
x2 1

2
x2

= f(0) +f '(0)x+ + = 1 +x+ + ,
(0)f ′′

2
x2 (0)f ′′′

3!
x3 1

2
x2 1

3!
x3

(x)pn = f(0) +f '(0)x+ + +⋯ +
(0)f ′′

2
x2 (0)f ′′′

3!
x3 (0)f (n)

n!
xn

= 1 +x+ + +⋯ +
x2

2!

x3

3!

xn

n!

=∑
k=0

n
xk

k!

11.10.2

11.10.2 y = ex , ,p0 p1 p2 p3

f(x) = sinx x = 0

f(x)

f '(x)

(x)f ′′

(x)f ′′′

(x)f (4)

= sinx

= cosx

= −sinx

= −cosx

= sinx

f(0)

f '(0)

(0)f ′′

(0)f ′′′

(0)f (4)

= 0

= 1

= 0

= −1

= 0.

sinx, (0) = 0f (2m) (0) = (−1f (2m+1) )m m ≥ 0.

(x)p0

(x)p1

(x)p2

(x)p3

(x)p4

(x)p5

= 0,

= 0 +x = x,

= 0 +x+0 = x,

= 0 +x+0 − = x− ,
1

3!
x3 x3

3!

= 0 +x+0 − +0 = x− ,
1

3!
x3 x3

3!

= 0 +x+0 − +0 + = x− + ,
1

3!
x3 1

5!
x5 x3

3!

x5

5!

m ≥ 0
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Graphs of the function and its Maclaurin polynomials are shown in Figure .

Figure : The graph shows the function  and the Maclaurin polynomials  and .

c. For , the values of the function and its first four derivatives at  are given as follows:

Since the fourth derivative is , the pattern repeats. In other words,  and  for . Therefore,

and for ,

Graphs of the function and the Maclaurin polynomials appear in Figure .

(x) = (x)p2m+1 p2m+2 = x− + −⋯ +(−1
x3

3!

x5

5!
)m

x2m+1

(2m+1)!

= (−1 .∑
k=0

m

)k
x2k+1

(2k+1)!

11.10.3

11.10.3 y = sin x ,p1 p3 p5

f(x) = cosx x = 0

f(x)

f '(x)

(x)f ′′

(x)f ′′′

(x)f (4)

= cosx

= −sinx

= −cosx

= sinx

= cosx

f(0)

f '(0)

(0)f ′′

(0)f ′′′

(0)f (4)

= 1

= 0

= −1

= 0

= 1.

sinx (0) = (−1f (2m) )m = 0f (2m+1) m ≥ 0

(x)p0

(x)p1

(x)p2

(x)p3

(x)p4

(x)p5

= 1,

= 1 +0 = 1,

= 1 +0 − = 1 − ,
1

2!
x2 x2

2!

= 1 +0 − +0 = 1 − ,
1

2!
x2 x2

2!

= 1 +0 − +0 + = 1 − + ,
1

2!
x2 1

4!
x4 x2

2!

x4

4!

= 1 +0 − +0 + +0 = 1 − + ,
1

2!
x2 1

4!
x4 x2

2!

x4

4!

n ≥ 0

(x)p2m = (x)p2m+1

= 1 − + −⋯ +(−1
x2

2!

x4

4!
)m

x2m

(2m)!

= (−1 .∑
k=0

m

)k
x2k

(2k)!

11.10.4
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Figure : The function  and the Maclaurin polynomials  and  are plotted on this graph.

Find formulas for the Maclaurin polynomials  and  for .

Find a formula for the -degree Maclaurin polynomial. Write your answer using sigma notation.

Hint

Evaluate the first four derivatives of  and look for a pattern.

Answer

Taylor’s Theorem with Remainder
Recall that the -degree Taylor polynomial for a function  at  is the  partial sum of the Taylor series for  at . Therefore, to determine if the
Taylor series converges, we need to determine whether the sequence of Taylor polynomials  converges. However, not only do we want to know if
the sequence of Taylor polynomials converges, we want to know if it converges to . To answer this question, we define the remainder  as

For the sequence of Taylor polynomials to converge to , we need the remainder  to converge to zero. To determine if  converges to zero, we
introduce Taylor’s theorem with remainder. Not only is this theorem useful in proving that a Taylor series converges to its related function, but it
will also allow us to quantify how well the -degree Taylor polynomial approximates the function.

Here we look for a bound on  Consider the simplest case: . Let  be the 0  Taylor polynomial at  for a function . The remainder 
satisfies

If  is differentiable on an interval  containing  and , then by the Mean Value Theorem there exists a real number  between  and  such that 
. Therefore,

Using the Mean Value Theorem in a similar argument, we can show that if  is  times differentiable on an interval  containing  and , then the 
 remainder  satisfies

for some real number  between  and . It is important to note that the value  in the numerator above is not the center , but rather an unknown
value  between  and . This formula allows us to get a bound on the remainder . If we happen to know that  is bounded by some
real number  on this interval , then

for all  in the interval .

We now state Taylor’s theorem, which provides the formal relationship between a function  and its -degree Taylor polynomial . This
theorem allows us to bound the error when using a Taylor polynomial to approximate a function value, and will be important in proving that a Taylor
series for  converges to .

11.10.4 y = cos x ,p0 p2 p4

 Exercise 11.10.2

, ,p0 p1 p2 p3 f(x) =
1

1 +x

nth

f

(x) = 1; (x) = 1 −x; (x) = 1 −x+ ; (x) = 1 −x+ − ; (x) = 1 −x+ − +⋯ +(−1 = (−1p0 p1 p2 x2 p3 x2 x3 pn x2 x3 )nxn ∑
k=0

n

)kxk

nth f a nth f a

pn
f (x)Rn

(x) = f(x) − (x).Rn pn

f Rn Rn

nth

| |.Rn n = 0 p0
th a f R0

(x) = f(x) − (x) = f(x) −f(a).R0 p0

f I a x c a x

f(x) −f(a) = f '(c)(x−a)

(x) = f '(c)(x−a).R0

f n I a x

nth Rn

(x) = (x−aRn

(c)f (n+1)

(n+1)!
)n+1

c a x c a

c a x Rn (x)∣∣f
(n+1) ∣∣

M I

| (x)| ≤ |x−aRn

M

(n+1)!
|
n+1

x I

f nth (x)pn

f f
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Let  be a function that can be differentiated  times on an interval  containing the real number . Let  be the -degree Taylor
polynomial of  at  and let

be the  remainder. Then for each  in the interval , there exists a real number  between  and  such that

.

If there exists a real number  such that  for all , then

for all  in .

Fix a point  and introduce the function  such that

We claim that  satisfies the criteria of Rolle’s theorem. Since  is a polynomial function (in ), it is a differentiable function. Also,  is zero at 
 and  because

Therefore,  satisfies Rolle’s theorem, and consequently, there exists  between  and  such that  We now calculate . Using the
product rule, we note that

Consequently,

.

Notice that there is a telescoping effect. Therefore,

.

By Rolle’s theorem, we conclude that there exists a number  between  and  such that  Since

we conclude that

 Taylor’s Theorem with Remainder

f n+1 I a pn nth

f a

(x) = f(x) − (x)Rn pn

nth x I c a x

(x) = (x−aRn

(c)f (n+1)

(n+1)!
)n+1

M (x) ∣≤ M∣∣f (n+1) x ∈ I

| (x)| ≤ |x−aRn

M

(n+1)!
|n+1

x I

Proof

x ∈ I g

g(t) = f(x) −f(t) −f '(t)(x− t) − (x− t −⋯ − (x− t − (x) .
(t)f ′′

2!
)2

(t)f (n)

n!
)n Rn

(x− t)n+1

(x−a)n+1

g g t g

t = a t = x

g(a)

g(x)

= f(x) −f(a) −f '(a)(x−a) − (x−a +⋯ + (x−a − (x)
(a)f ′′

2!
)2

(a)f (n)

n!
)n Rn

= f(x) − (x) − (x)pn Rn

= 0,

= f(x) −f(x) −0 −⋯ −0

= 0.

g c a x g'(c) = 0. g'

[ (x− t ] = − (x− t + (x− t .
d

dt

(t)f (n)

n!
)n

(t)f (n)

(n−1)!
)n−1

(t)f (n+1)

n!
)n

g'(t) = −f '(t) +[f '(t) − (t)(x− t)] +[ (t)(x− t) − (x− t ]+⋯f ′′ f ′′ (t)f ′′′

2!
)2

+[ (x− t − (x− t ]+(n+1) (x)
(t)f (n)

(n−1)!
)n−1 (t)f (n+1)

n!
)n Rn

(x− t)n

(x−a)n+1
(11.10.9)

(t) = − (x− t +(n+1) (x)g′ (t)f (n+1)

n!
)n Rn

(x− t)n

(x−a)n+1

c a x g'(c) = 0.

g'(c) = − (x−c +(n+1) (x)
)(c)f (n+1

n!
)n Rn

(x−c)n

(x−a)n+1
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Adding the first term on the left-hand side to both sides of the equation and dividing both sides of the equation by  we conclude that

as desired. From this fact, it follows that if there exists  such that  for all  in , then

.

□

Not only does Taylor’s theorem allow us to prove that a Taylor series converges to a function, but it also allows us to estimate the accuracy of Taylor
polynomials in approximating function values. We begin by looking at linear and quadratic approximations of  at  and determine
how accurate these approximations are at estimating .

Consider the function .

a. Find the first and second Taylor polynomials for  at . Use a graphing utility to compare these polynomials with  near 
b. Use these two polynomials to estimate .
c. Use Taylor’s theorem to bound the error.

Solution:

a. For , the values of the function and its first two derivatives at  are as follows:

Thus, the first and second Taylor polynomials at  are given by

The function and the Taylor polynomials are shown in Figure .

Figure : The graphs of  and the linear and quadratic approximations  and 

− (x−c +(n+1) (x) = 0.
(c)f (n+1)

n!
)n Rn

(x−c)n

(x−a)n+1

n+1,

(x) = (x−aRn

(c)f (n+1)

(n+1)!
)n+1

M (x) ∣≤ M∣∣f
(n+1) x I

| (x)| ≤ |x−aRn

M

(n+1)!
|n+1

f(x) = x−−√3 x = 8
11
−−

√3

 Example : Using Linear and Quadratic Approximations to Estimate Function Values11.10.3

f(x) = x−−√3

f x = 8 f x = 8.
11
−−

√3

f(x) = x−−√3 x = 8

f(x)

f '(x)

(x)f ′′

= ,x−−√3

= ,
1

3x2/3

= ,
−2

9x5/3

f(8)

f '(8)

(8)f ′′

= 2

=
1

12

= −
1

144.

x = 8

(x)p1 = f(8) +f '(8)(x−8)

= 2 + (x−8)
1

12

(x)p2 = f(8) +f '(8)(x−8) + (x−8
(8)f ′′

2!
)2

= 2 + (x−8) − (x−8 .
1

12

1

288
)2

11.10.5

11.10.5 f(x) = x−−√3 (x)p1 (x)p2
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b. Using the first Taylor polynomial at , we can estimate

Using the second Taylor polynomial at , we obtain

c. By Note, there exists a c in the interval  such that the remainder when approximating  by the first Taylor polynomial satisfies

We do not know the exact value of  so we find an upper bound on  by determining the maximum value of  on the interval .

Since , the largest value for  on that interval occurs at . Using the fact that , we obtain

Similarly, to estimate , we use the fact that

.

Since , the maximum value of  on the interval  is . Therefore, we have

Find the first and second Taylor polynomials for  at . Use these polynomials to estimate . Use Taylor’s theorem to bound
the error.

Hint

Evaluate  and 

Answer

From Example , the Maclaurin polynomials for  are given by

for 

a. Use the fifth Maclaurin polynomial for  to approximate  and bound the error.

b. For what values of  does the fifth Maclaurin polynomial approximate  to within ?

Solution

a.

The fifth Maclaurin polynomial is

.

Using this polynomial, we can estimate as follows:

x = 8

≈ (11) = 2 + (11 −8) = 2.25.11
−−

√3 p1
1

12

x = 8

≈ (11) = 2 + (11 −8) − (11 −8 = 2.21875.11
−−

√3 p2
1

12

1

288
)2

(8, 11) 11
−−

√3

(11) = (11 −8 .R1
(c)f ′′

2!
)2

c, (11)R1 f ′′ (8, 11)

(x) = −f ′′ 2

9x5/3
| (x)|f ′′ x = 8 (8) = −f ′′ 1

144

| (11)| ≤ (11 −8 = 0.03125.R1
1

144 ⋅ 2!
)2

(11)R2

(11) = (11 −8R2
(c)f ′′′

3!
)3

(x) =f ′′′ 10

27x8/3
f ′′′ (8, 11) (8) ≈ 0.0014468f ′′′

| (11)| ≤ (11 −8 ≈ 0.0065104.R2
0.0011468

3!
)3

 Exercise :11.10.3

f(x) = x−−√ x = 4 6
–

√

f(4), f '(4), (4).f ′′

(x) = 2 + (x−4); (x) = 2 + (x−4) − (x−4 ; (6) = 2.5; (6) = 2.4375;p1
1

4
p2

1

4

1

64
)2 p1 p2

| (6)| ≤ 0.0625; | (6)| ≤ 0.015625R1 R2

 Example : Approximating  Using Maclaurin Polynomials11.10.4 sin x

11.10.2b sinx

(x) = (x) = x− + − +⋯ +(−1p2m+1 p2m+2
x3

3!

x5

5!

x7

7!
)m

x2m+1

(2m+1)!

m = 0, 1, 2, … .

sinx sin( )
π

18
x sinx 0.0001

(x) = x− +p5
x3

3!

x5

5!

sin( )≈ ( )= − + ≈ 0.173648.
π

18
p5

π

18

π

18

1

3!
( )
π

18

3 1

5!
( )
π

18

5
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To estimate the error, use the fact that the sixth Maclaurin polynomial is  and calculate a bound on . By Note, the

remainder is

for some  between 0 and . Using the fact that  for all , we find that the magnitude of the error is at most

b.

We need to find the values of  such that

Solving this inequality for , we have that the fifth Maclaurin polynomial gives an estimate to within  as long as 

Use the fourth Maclaurin polynomial for  to approximate 

Hint

The fourth Maclaurin polynomial is .

Answer

0.96593

Now that we are able to bound the remainder , we can use this bound to prove that a Taylor series for  at a converges to .

Representing Functions with Taylor and Maclaurin Series

We now discuss issues of convergence for Taylor series. We begin by showing how to find a Taylor series for a function, and how to find its interval
of convergence.

Find the Taylor series for  at . Determine the interval of convergence.

Solution

For  the values of the function and its first four derivatives at  are

That is, we have  for all . Therefore, the Taylor series for  at  is given by

.

To find the interval of convergence, we use the ratio test. We find that

(x) = (x)p6 p5 ( )R6
π

18

( )=R6
π

18

(c)f (7)

7!
( )
π

18

7

c
π

18
(x) ∣≤ 1∣∣f (7) x

⋅ ≤ 9.8 × .
1

7!
( )
π

18

7
10−10

x

|x ≤ 0.0001.
1

7!
|
7

x 0.0001 |x| < 0.907.

 Exercise 11.10.4

cosx cos( ).
π

12

(x) = 1 − +p4
x2

2!

x4

4!

(x)Rn f f

 Example : Finding a Taylor Series11.10.5

f(x) =
1

x
x = 1

f(x) = ,
1

x
x = 1

f(x)

f '(x)

(x)f ′′

(x)f ′′′

(x)f (4)

=
1

x

= −
1

x2

=
2

x3

= −
3 ⋅ 2

x4

=
4 ⋅ 3 ⋅ 2

x5

f(1)

f '(1)

(1)f ′′

(1)f ′′′

(1)f (4)

= 1

= −1

= 2!

= −3!

= 4!.

(1) = (−1 n!f (n) )n n ≥ 0 f x = 1

(x−1 = (−1 (x−1∑
n=0

∞ (1)f (n)

n!
)n ∑

n=0

∞

)n )n
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.

Thus, the series converges if  That is, the series converges for . Next, we need to check the endpoints. At , we see
that

diverges by the divergence test. Similarly, at 

diverges. Therefore, the interval of convergence is .

Find the Taylor series for  at  and determine its interval of convergence.

Hint

Answer

. The interval of convergence is .

We know that the Taylor series found in this example converges on the interval , but how do we know it actually converges to ? We consider
this question in more generality in a moment, but for this example, we can answer this question by writing

That is,  can be represented by the geometric series . Since this is a geometric series, it converges to  as long as 

Therefore, the Taylor series found in Example does converge to  on 

We now consider the more general question: if a Taylor series for a function  converges on some interval, how can we determine if it actually
converges to ? To answer this question, recall that a series converges to a particular value if and only if its sequence of partial sums converges to
that value. Given a Taylor series for  at , the  partial sum is given by the -degree Taylor polynomial . Therefore, to determine if the
Taylor series converges to , we need to determine whether

.

Since the remainder , the Taylor series converges to  if and only if

We now state this theorem formally.

Suppose that  has derivatives of all orders on an interval  containing . Then the Taylor series

converges to  for all  in  if and only if

for all  in .

= = |x−1|
| |an+1

| |an

(−1 (x−1)∣∣ )n+1 n+1 ∣∣

|(−1 (x−1 |)n )n

|x−1| < 1. 0 < x < 2 x = 2

(−1 (2 −1 = (−1∑
n=0

∞

)n )n ∑
n=0

∞

)n

x = 0,

(−1 (0 −1 = (−1 = 1∑
n=0

∞

)n )n ∑
n=0

∞

)2n ∑
n=0

∞

(0, 2)

 Exercise 11.10.5

f(x) =
1

2
x = 2

(2) =f (n)
(−1 n!)n

2n+1

1

2
∑
n=0

∞

( )
2 −x

2

n

(0, 4)

(0, 2) f

f(x) = = .
1

x

1

1 −(1 −x)

f (1 −x∑
n=0

∞

)n
1

x
|1 −x| < 1.

f(x) =
1

x
(0, 2).

f

f

f a nth nth pn
f

(x) = f(x)lim
n→∞

pn

(x) = f(x) − (x)Rn pn f

(x) = 0.lim
n→∞

Rn

 Convergence of Taylor Series

f I a

(x−a∑
n=0

∞ (a)f (n)

n!
)n

f(x) x I

(x) = 0lim
n→∞

Rn

x I
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With this theorem, we can prove that a Taylor series for  at a converges to  if we can prove that the remainder . To prove that 
, we typically use the bound

from Taylor’s theorem with remainder.

In the next example, we find the Maclaurin series for  and  and show that these series converge to the corresponding functions for all real
numbers by proving that the remainders  for all real numbers .

For each of the following functions, find the Maclaurin series and its interval of convergence. Use Note to prove that the Maclaurin series for 
converges to  on that interval.

a. 
b. 

Solution

a. Using the -degree Maclaurin polynomial for  found in Example a., we find that the Maclaurin series for  is given by

.

To determine the interval of convergence, we use the ratio test. Since

,

we have

for all . Therefore, the series converges absolutely for all , and thus, the interval of convergence is . To show that the series
converges to  for all , we use the fact that  for all  and  is an increasing function on . Therefore, for any
real number , the maximum value of  for all  is . Thus,

.

Since we just showed that

converges for all , by the divergence test, we know that

for any real number . By combining this fact with the squeeze theorem, the result is 

b. Using the -degree Maclaurin polynomial for  found in Example b., we find that the Maclaurin series for  is given by

.

In order to apply the ratio test, consider

Since

f f (x) → 0Rn

(x) → 0Rn

| (x)| ≤ |x−aRn

M

(n+1)!
|
n+1

ex sinx
(x) → 0Rn x

 Example : Finding Maclaurin Series11.10.6

f

f

ex

sinx

nth ex ex

∑
n=0

∞
xn

n!

= ⋅ =
| |an+1

| |an

|x|
n+1

(n+1)!

n!

|x|n
|x|

n+1

= = 0lim
n→∞

| |an+1

| |an
lim
n→∞

|x|

n+1

x x (−∞, ∞)
ex x (x) =f (n) ex n ≥ 0 ex (−∞, ∞)
b ex |x| ≤ b eb

| (x)| ≤ |xRn

eb

(n+1)!
|n+1

∑
n=0

∞ |x|n

n!

x

= 0lim
n→∞

|x|
n+1

(n+1)!

x (x) = 0.lim
n→∞

Rn

nth sinx sinx

(−1∑
n=0

∞

)n
x2n+1

(2n+1)!

.

| |an+1

| |an
= ⋅

|x|
2n+3

(2n+3)!

(2n+1)!

|x|2n+1

=
|x|2

(2n+3)(2n+2)

= 0lim
n→∞

|x|2

(2n+3)(2n+2)
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for all , we obtain the interval of convergence as  To show that the Maclaurin series converges to , look at . For each 
there exists a real number  between  and  such that

.

Since  for all integers  and all real numbers , we have

for all real numbers . Using the same idea as in part a., the result is  for all , and therefore, the Maclaurin series for 

converges to  for all real .

Find the Maclaurin series for . Use the ratio test to show that the interval of convergence is . Show that the Maclaurin
series converges to  for all real numbers .

Hint

Use the Maclaurin polynomials for 

Answer

By the ratio test, the interval of convergence is  Since , the series converges to  for all real .

In this project, we use the Maclaurin polynomials for  to prove that  is irrational. The proof relies on supposing that  is rational and arriving
at a contradiction. Therefore, in the following steps, we suppose  for some integers  and  where 

1. Write the Maclaurin polynomials  for . Evaluate  to estimate .
2. Let  denote the remainder when using  to estimate . Therefore, , and . Assuming that

 for integers  and , evaluate 

3. Using the results from part 2, show that for each remainder  we can find an integer  such that 
is an integer for 

4. Write down the formula for the -degree Maclaurin polynomial  for  and the corresponding remainder  Show that 
 is an integer.

5. Use Taylor’s theorem to write down an explicit formula for . Conclude that , and therefore, .
6. Use Taylor’s theorem to find an estimate on . Use this estimate combined with the result from part 5 to show that 

. Conclude that if  is large enough, then . Therefore,  is an integer with magnitude less than

1. Thus, . But from part 5, we know that . We have arrived at a contradiction, and consequently, the original
supposition that e is rational must be false.

Key Concepts
Taylor polynomials are used to approximate functions near a value . Maclaurin polynomials are Taylor polynomials at .
The -degree Taylor polynomials for a function  are the partial sums of the Taylor series for .
If a function  has a power series representation at , then it is given by its Taylor series at .
A Taylor series for  converges to  if and only if  where .

The Taylor series for , and  converge to the respective functions for all real x.

Key Equations
Taylor series for the function  at the point 

x (−∞, ∞). sinx (x)Rn x

c 0 x

(x) =Rn

(c)f (n+1)

(n+1)!
xn+1

(c) ∣≤ 1∣∣f (n+1) n c

| (x)| ≤Rn

|x|n+1

(n+1)!

x (x) = 0lim
n→∞

Rn x sinx

sinx x

 Exercise 11.10.6

f(x) = cosx (−∞, ∞)
cosx x

cosx.

∑
n=0

∞ (−1)nx2n

(2n)!

(−∞, ∞). | (x)| ≤Rn

|x|n+1

(n+1)!
cosx x

 Proving that  is Irrationale

ex e e

e = r/s r s s ≠ 0.

(x), (x), (x), (x), (x)p0 p1 p2 p3 p4 ex (1), (1), (1), (1), (1)p0 p1 p2 p3 p4 e

(x)Rn (x)pn ex (x) = − (x)Rn ex pn (1) = e− (1)Rn pn

e =
r

s
r s (1), (1), (1), (1), (1).R0 R1 R2 R3 R4

(1), (1), (1), (1), (1),R0 R1 R2 R3 R4 k k (1)Rn

n = 0, 1, 2, 3, 4.
nth (x)pn ex (x).Rn

sn! (1)Rn

(1)Rn (1) ≠ 0Rn sn! (1) ≠ 0Rn

(1)Rn

|sn! (1)| <Rn

se

n+1
n |sn! (1)| < 1Rn sn! (1)Rn

sn! (1) = 0Rn sn! (1) ≠ 0Rn

x = a x = 0
nth f f

f x = a x = a

f f (x) = 0lim
n→∞

Rn (x) = f(x) − (x)Rn pn

, sinxex cosx

f x = a

(x−a = f(a) +f '(a)(x−a) + (x−a +⋯ + (x−a +⋯∑
n=0

∞ (a)f (n)

n!
)n

(a)f ′′

2!
)2 (a)f (n)

n!
)n
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Glossary

Maclaurin polynomial
a Taylor polynomial centered at ; the -degree Taylor polynomial for  at  is the -degree Maclaurin polynomial for 

Maclaurin series
a Taylor series for a function  at  is known as a Maclaurin series for 

Taylor polynomials

the -degree Taylor polynomial for  at  is 

Taylor series
a power series at  that converges to a function  on some open interval containing .

Taylor’s theorem with remainder

for a function  and the -degree Taylor polynomial for  at , the remainder  satisfies 

for some  between  and ; if there exists an interval  containing  and a real number  such that  for all  in , then 

11.10: Taylor and Maclaurin Series is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

10.3: Taylor and Maclaurin Series by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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11.11: Applications of Taylor Polynomials

Write the terms of the binomial series.
Recognize the Taylor series expansions of common functions.
Recognize and apply techniques to find the Taylor series for a function.
Use Taylor series to solve differential equations.
Use Taylor series to evaluate non-elementary integrals.

In the preceding section, we defined Taylor series and showed how to find the Taylor series for several common functions by
explicitly calculating the coefficients of the Taylor polynomials. In this section we show how to use those Taylor series to derive
Taylor series for other functions. We then present two common applications of power series. First, we show how power series can
be used to solve differential equations. Second, we show how power series can be used to evaluate integrals when the antiderivative

of the integrand cannot be expressed in terms of elementary functions. In one example, we consider  an integral that

arises frequently in probability theory.

The Binomial Series
Our first goal in this section is to determine the Maclaurin series for the function  for all real numbers . The
Maclaurin series for this function is known as the binomial series. We begin by considering the simplest case:  is a nonnegative
integer. We recall that, for  can be written as

The expressions on the right-hand side are known as binomial expansions and the coefficients are known as binomial coefficients.
More generally, for any nonnegative integer , the binomial coefficient of  in the binomial expansion of  is given by

and

For example, using this formula for , we see that

 Learning Objectives

∫ dx,e−x2

f(x) = (1 +x)r r

r

r = 0, 1, 2, 3, 4, f(x) = (1 +x)r

f(x)

f(x)

f(x)

f(x)

f(x)

= (1 +x = 1,)0

= (1 +x = 1 +x,)1

= (1 +x = 1 +2x+ ,)2 x2

= (1 +x = 1 +3x+3 +)3 x2 x3

= (1 +x = 1 +4x+6 +4 + .)4 x2 x3 x4

r xn (1 +x)r

( ) =
r

n

r!

n!(r−n)!
(11.11.1)

f(x) = (1 +x)r

=( )+( )x+( ) +( ) +⋯ +( ) +( )
r

0
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1

r

2
x2 r

3
x3 r

r−1
xr−1 r

r
xr

= ( ) .∑
n=0

r r

n
xn (11.11.2)

r = 5
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x2 5
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x3 5
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We now consider the case when the exponent 

is any real number, not necessarily a nonnegative integer. If  is not a nonnegative integer, then  cannot be written
as a finite polynomial. However, we can find a power series for . Specifically, we look for the Maclaurin series for . To do this,
we find the derivatives of  and evaluate them at .

We conclude that the coefficients in the binomial series are given by

We note that if  is a nonnegative integer, then the  derivative  is the zero function, and the series terminates. In
addition, if  is a nonnegative integer, then Equation  for the coefficients agrees with Equation  for the coefficients,
and the formula for the binomial series agrees with Equation  for the finite binomial expansion. More generally, to denote
the binomial coefficients for any real number , we define

With this notation, we can write the binomial series for  as

We now need to determine the interval of convergence for the binomial series Equation . We apply the ratio test.
Consequently, we consider

.

Since

if and only if , we conclude that the interval of convergence for the binomial series is . The behavior at the endpoints
depends on . It can be shown that for  the series converges at both endpoints; for , the series converges at 
and diverges at ; and for , the series diverges at both endpoints. The binomial series does converge to  in 

 for all real numbers , but proving this fact by showing that the remainder  is difficult.

For any real number , the Maclaurin series for  is the binomial series. It converges to  for , and we
write

r.

r f(x) = (1 +x)r

f f

f x = 0

f(x)

f '(x)

(x)f ′′

(x)f ′′′

(x)f (n)

= (1 +x)r

= r(1 +x)r−1

= r(r−1)(1 +x)r−2

= r(r−1)(r−2)(1 +x)r−3

= r(r−1)(r−2) ⋯ (r−n+1)(1 +x)r−n

f(0)

(0)f ′

(0)f ′′

(0)f ′′′

(0)f (n)

= 1

= r

= r(r−1)

= r(r−1)(r−2)

= r(r−1)(r−2) ⋯ (r−n+1)

= .
(0)f (n)

n!

r(r−1)(r−2) ⋯ (r−n+1)

n!
(11.11.3)

r (r+1)st f (r+1)

r 11.11.3 11.11.1
11.11.2

r

( ) = .
r

n

(r−1)(r−2) ⋯ (r−n+1)

n!

(1 +x)r

( ) = 1 +rx+ +⋯ + +⋯ .∑
n=0

∞
r

n
xn

r(r−1)

2!
x2 r(r−1) ⋯ (r−n+1)

n!
xn (11.11.4)

11.11.4

| |an+1

| |an
= ⋅

|r(r−1)(r−2) ⋯ (r−n)|x||n+1

(n+1)!

n

|r(r−1)(r−2) ⋯ (r−n+1)||x|n

=
|r−n||x|

|n+1|

= |x| < 1lim
n→∞

| |an+1

| |an

|x| < 1 (−1, 1)
r r ≥ 0 −1 < r < 0 x = 1

x = −1 r < −1 (1 +x)r

(−1, 1) r (x) → 0Rn

 Definition: binomial series

r f(x) = (1 +x)r f |x| < 1

(1 +x = ( ) = 1 +rx+ +⋯ +r +⋯)r ∑
n=0

∞ r

n
xn

r(r−1)

2!
x2 (r−1) ⋯ (r−n+1)

n!
xn

https://libretexts.org/
https://math.libretexts.org/@go/page/4513?pdf


11.11.3 https://math.libretexts.org/@go/page/4513

for .

We can use this definition to find the binomial series for  and use the series to approximate .

a. Find the binomial series for .
b. Use the third-order Maclaurin polynomial  to estimate . Use Taylor’s theorem to bound the error. Use a graphing

utility to compare the graphs of  and .

Solution

a. Here . Using the definition for the binomial series, we obtain

b. From the result in part a. the third-order Maclaurin polynomial is

.

Therefore,

From Taylor’s theorem, the error satisfies

for some  between  and . Since , and the maximum value of  on the interval 

occurs at , we have

The function and the Maclaurin polynomial  are graphed in Figure .

Figure : The third-order Maclaurin polynomial  provides a good approximation for  for  near
zero.

Find the binomial series for .

Hint

|x| < 1

f(x) = 1 +x
− −−−−

√ 1.5
−−−

√

 Example : Finding Binomial Series11.11.1

f(x) = 1 +x
− −−−−

√
(x)p3 1.5

−−−
√

f p3

r =
1

2

1 +x
− −−−−

√ = 1 + x+ + +⋯
1

2

(1/2)(−1/2)

2!
x2 (1/2)(−1/2)(−3/2)

3!
x3

= 1 + x− + −⋯ + +⋯
1

2

1

2!

1

22
x2 1

3!

1 ⋅ 3

23
x3 (−1)n+1

n!

1 ⋅ 3 ⋅ 5 ⋯ (2n−3)

2n
xn

= 1 + .∑
n=1

∞ (−1)n+1

n!

1 ⋅ 3 ⋅ 5 ⋯ (2n−3)

2n
xn

(x) = 1 + x− +p3
1

2

1

8
x2 1

16
x3

= ≈ 1 + (0.5) − (0.5 + (0.5 ≈ 1.2266.1.5
−−−

√ 1 +0.5
− −−−−−

√
1

2

1

8
)2 1

16
)3

(0.5) = (0.5R3
(c)f (4)

4!
)4

c 0 0.5 (x) = −f (4) 15

(1 +x24 )7/2
(x)∣∣f

(4) ∣∣ (0, 0.5)

x = 0

| (0.5)| ≤ (0.5 ≈ 0.00244.R3
15

4!24
)4

p3 11.11.1

11.11.1 (x)p3 f(x) = 1 +x
− −−−−

√ x

 Exercise 11.11.1

f(x) =
1

(1 +x)2
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Use the definition of binomial series for .

Answer

Common Functions Expressed as Taylor Series
At this point, we have derived Maclaurin series for exponential, trigonometric, and logarithmic functions, as well as functions of the
form . In Table , we summarize the results of these series. We remark that the convergence of the
Maclaurin series for  at the endpoint  and the Maclaurin series for  at the endpoints 
and  relies on a more advanced theorem than we present here. (Refer to Abel’s theorem for a discussion of this more
technical point.)

Table : Maclaurin Series for Common Functions
Function Maclaurin Series Interval of Convergence

Earlier in the chapter, we showed how you could combine power series to create new power series. Here we use these properties,
combined with the Maclaurin series in Table , to create Maclaurin series for other functions.

Find the Maclaurin series of each of the following functions by using one of the series listed in Table .

a. 
b. 

Solution

a. Using the Maclaurin series for  we find that the Maclaurin series for  is given by

This series converges to  for all  in the domain of ; that is, for all .

b. To find the Maclaurin series for  we use the fact that

Using the Maclaurin series for , we see that the  term in the Maclaurin series for  is given by

r = −2

(−1 (n+1)∑
n=0

∞

)n xn

f(x) = (1 +x)r 11.11.1
f(x) = ln(1 +x) x = 1 f(x) = xtan−1 x = 1

x = −1

11.11.1

f(x) =
1

1 − x
∑
n=0

∞

xn −1 < x < 1

f(x) = ex ∑
n=0

∞ xn

n!
−∞ < x < ∞

f(x) = sinx (−1∑
n=0

∞

)n
x2n+1

(2n+ 1)!
−∞ < x < ∞

f(x) = cosx (−1∑
n=0

∞

)n
x2n

(2n)!
−∞ < x < ∞

f(x) = ln(1 + x) (−1∑
n=0

∞

)n+1 x
n

n
−1 < x < 1

f(x) = xtan−1 (−1∑
n=0

∞

)n
x2n+1

2n+ 1
−1 < x < 1

f(x) = (1 + x)r ( )∑
n=0

∞ r

n
xn −1 < x < 1

11.11.1

 Example : Deriving Maclaurin Series from Known Series11.11.2

11.11.1

f(x) = cos x−−√
f(x) = sinhx

cosx cos x−−√

= = 1 − + − + −⋯ .∑
n=0

∞ (−1 ()n x−−√ )2n

(2n)!
∑
n=0

∞ (−1)nxn

(2n)!

x

2!

x2

4!

x3

6!

x4

8!

cos x−−√ x cos x−−√ x ≥ 0

sinhx,

sinhx = .
−ex e−x

2

ex nth sinhx

https://libretexts.org/
https://math.libretexts.org/@go/page/4513?pdf


11.11.5 https://math.libretexts.org/@go/page/4513

For  even, this term is zero. For  odd, this term is . Therefore, the Maclaurin series for  has only odd-order terms

and is given by

Find the Maclaurin series for 

Hint

Use the Maclaurin series for 

Answer

We also showed previously in this chapter how power series can be differentiated term by term to create a new power series. In

Example , we differentiate the binomial series for  term by term to find the binomial series for . Note that

we could construct the binomial series for  directly from the definition, but differentiating the binomial series for 

is an easier calculation.

Use the binomial series for  to find the binomial series for .

Solution

The two functions are related by

,

so the binomial series for  is given by

Find the binomial series for 

Hint

Differentiate the series for 

Answer

− .
xn

n!

(−x)n

n!

n n
2xn

n!
sinhx

= x+ + +⋯ .∑
n=0

∞
x2n+1

(2n+1)!

x3

3!

x5

5!

 Exercise 11.11.2

sin( ).x2

sinx.

∑
n=0

∞ (−1)nx4n+2

(2n+1)!

11.11.3 1 +x
− −−−−

√
1

1 +x
− −−−−

√
1

1 +x
− −−−−

√
1 +x
− −−−−

√

 Example : Differentiating a Series to Find a New Series11.11.3

1 +x
− −−−−

√
1

1 +x
− −−−−

√

=
d

dx
1 +x
− −−−−

√
1

2 1 +x
− −−−−

√

1

1 +x
− −−−−

√

= 2 = 1 + .
1

1 +x
− −−−−

√

d

dx
1 +x
− −−−−

√ ∑
n=1

∞ (−1)n

n!

1 ⋅ 3 ⋅ 5 ⋯ (2n−1)

2n
xn

 Exercise 11.11.3

f(x) =
1

(1 +x)3/2

1

1 +x
− −−−−

√

https://libretexts.org/
https://math.libretexts.org/@go/page/4513?pdf


11.11.6 https://math.libretexts.org/@go/page/4513

In this example, we differentiated a known Taylor series to construct a Taylor series for another function. The ability to differentiate
power series term by term makes them a powerful tool for solving differential equations. We now show how this is accomplished.

Solving Differential Equations with Power Series
Consider the differential equation

Recall that this is a first-order separable equation and its solution is . This equation is easily solved using techniques
discussed earlier in the text. For most differential equations, however, we do not yet have analytical tools to solve them. Power
series are an extremely useful tool for solving many types of differential equations. In this technique, we look for a solution of the

form  and determine what the coefficients would need to be. In the next example, we consider an initial-value

problem involving  to illustrate the technique.

Use power series to solve the initial-value problem 

Solution

Suppose that there exists a power series solution

Differentiating this series term by term, we obtain

If  satisfies the differential equation, then

Using the uniqueness of power series representations, we know that these series can only be equal if their coefficients are equal.
Therefore,

⋮

Using the initial condition  combined with the power series representation

,

we find that . We are now ready to solve for the rest of the coefficients. Using the fact that , we have

∑
n=1

∞ (−1)n

n!

1 ⋅ 3 ⋅ 5 ⋯ (2n−1)

2n
xn

y'(x) = y.

y = Cex

y =∑
n=0

∞

cnx
n

y' = y

 Example : Power Series Solution of a Differential Equation11.11.4

y' = y, y(0) = 3.

y(x) = = + x+ + + +⋯ .∑
n=0

∞

cnx
n c0 c1 c2x

2 c3x
3 c4x

4

y' = +2 x+3 +4 +⋯ .c1 c2 c3x
2 c4x

3

y

+ x+ + +⋯ = +2 x+3 +4 +⋯ .c0 c1 c2x
2 c3x

3 c1 c2 c3x
2 c3x

3

= ,c0 c1

= 2 ,c1 c2

= 3 ,c2 c3

= 4 ,c3 c4

y(0) = 3

y(x) = + x+ + +⋯c0 c1 c2x
2 c3x

3

= 3c0 = 3c0
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Therefore,

You might recognize

as the Taylor series for . Therefore, the solution is .

Use power series to solve 

Hint

The equations for the first several coefficients  will satisfy  In general, for all 
.

Answer

We now consider an example involving a differential equation that we cannot solve using previously discussed methods. This
differential equation

is known as Airy’s equation. It has many applications in mathematical physics, such as modeling the diffraction of light. Here we
show how to solve it using power series.

Use power series to solve  with the initial conditions  and 

Solution

We look for a solution of the form

Differentiating this function term by term, we obtain

If  satisfies the equation , then

c1

c2

c3

c4

= = 3 = ,c0
3

1!

= = = ,
c1

2

3

2

3

2!

= = = ,
c2

3

3

3 ⋅ 2

3

3!

= = = .
c3

4

3

4 ⋅ 3 ⋅ 2

3

4!

y = 3 [1 + x+ + +⋯] = 3 .
1

1!

1

2!
x2 1

3!
x3 1

4!
x4 ∑

n=0

∞
xn

n!

∑
n=0

∞ xn

n!

ex y = 3ex

 Exercise 11.11.4

y' = 2y, y(0) = 5.

cn = 2 , = 2 ⋅ 2 , = 2 ⋅ 3 , … .c0 c1 c1 c2 c2 c3

n ≥ 0, = 2(n+1)cn Cn+1

y = 5e2x

y' −xy = 0

 Example : Power Series Solution of Airy’s Equation11.11.5

−xy = 0y′′ y(0) = a (0) = b.y′

y = = + x+ + + +⋯∑
n=0

∞

cnx
n c0 c1 c2x

2 c3x
3 c4x

4

y'

y′′

= +2 x+3 +4 +⋯ ,c1 c2 c3x
2 c4x

3

= 2 ⋅ 1 +3 ⋅ 2 x+4 ⋅ 3 +⋯ .c2 c3 c4x
2

y = xyy′′
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Using [link] on the uniqueness of power series representations, we know that coefficients of the same degree must be equal.
Therefore,

⋮

More generally, for , we have . In fact, all coefficients can be written in terms of  and . To see
this, first note that . Then

,

.

For , we see that

Therefore, the series solution of the differential equation is given by

The initial condition  implies . Differentiating this series term by term and using the fact that , we
conclude that .

Therefore, the solution of this initial-value problem is

Use power series to solve  with the initial condition  and .

Hint

The coefficients satisfy  and for .

Answer

Evaluating Non-elementary Integrals

Solving differential equations is one common application of power series. We now turn to a second application. We show how
power series can be used to evaluate integrals involving functions whose antiderivatives cannot be expressed using elementary
functions.

2 ⋅ 1 +3 ⋅ 2 x+4 ⋅ 3 +⋯ = x( + x+ + +⋯).c2 c3 c4x
2 c0 c1 c2x

2 c3x
3

2 ⋅ 1 = 0,c2

3 ⋅ 2 = ,c3 c0

4 ⋅ 3 = ,c4 c1

5 ⋅ 4 = ,c5 c2

n ≥ 3 n ⋅ (n−1) =cn cn−3 c0 c1

= 0c2

=c3
c0

3 ⋅ 2

=c4
c1

4 ⋅ 3

, ,c5 c6 c7

c5

c6

c7

= = 0,
c2

5 ⋅ 4

= = ,
c3

6 ⋅ 5

c0

6 ⋅ 5 ⋅ 3 ⋅ 2

= = .
c4

7 ⋅ 6

c1

7 ⋅ 6 ⋅ 4 ⋅ 3

y = + x+0 ⋅ + + +0 ⋅ + + +⋯ .c0 c1 x2 c0

3 ⋅ 2
x3 c1

4 ⋅ 3
x4 x5 c0

6 ⋅ 5 ⋅ 3 ⋅ 2
x6 c1

7 ⋅ 6 ⋅ 4 ⋅ 3
x7

y(0) = a = ac0 y'(0) = b

= bc1

y = a(1 + + +⋯)+b(x+ + +⋯) .
x3

3 ⋅ 2

x

6 ⋅ 5 ⋅ 3 ⋅ 2

x4

4 ⋅ 3

x7

7 ⋅ 6 ⋅ 4 ⋅ 3

 Exercise 11.11.5

+ y = 0y′′ x2 y(0) = a y'(0) = b

= a, = b, = 0, = 0,c0 c1 c2 c3 n ≥ 4, n(n−1) = −cn cn−4

y = a(1 − + −⋯)+b(x− + −⋯)
x4

3 ⋅ 4

x8

3 ⋅ 4 ⋅ 7 ⋅ 8

x5

4 ⋅ 5

x9

4 ⋅ 5 ⋅ 8 ⋅ 9
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One integral that arises often in applications in probability theory is  Unfortunately, the antiderivative of the integrand 

 is not an elementary function. By elementary function, we mean a function that can be written using a finite number of
algebraic combinations or compositions of exponential, logarithmic, trigonometric, or power functions. We remark that the term
“elementary function” is not synonymous with noncomplicated function. For example, the function 

 is an elementary function, although not a particularly simple-looking function. Any

integral of the form  where the antiderivative of  cannot be written as an elementary function is considered a non-

elementary integral.

non-elementary integrals cannot be evaluated using the basic integration techniques discussed earlier. One way to evaluate such
integrals is by expressing the integrand as a power series and integrating term by term. We demonstrate this technique by

considering 

a. Express  as an infinite series.

b. Evaluate  to within an error of .

Solution

a. The Maclaurin series for  is given by

Therefore,

b. Using the result from part a. we have

The sum of the first four terms is approximately . By the alternating series test, this estimate is accurate to within an

error of less than 

Express  as an infinite series. Evaluate  to within an error of .

Hint

Use the series found in Example .

∫ dx.e−x2

e−x2

f(x) = + −sin(5x+4)−3xx2
− −−−−−

√ ex
3

∫ f(x)dx f

∫ dx.e−x2

 Example : Using Taylor Series to Evaluate a Definite Integral11.11.6

∫ dxe−x2

dx∫
1

0
e−x2

0.01

e−x2

e−x2

=∑
n=0

∞ (−x2)n

n!

= 1 − + − +⋯ +(−1 +⋯x2 x4

2!

x6

3!
)n

x2n

n!

= (−1 .∑
n=0

∞

)n
x2n

n!

∫ dxe−x2

= ∫ (1 − + − +⋯ +(−1 +⋯) dxx2 x4

2!

x6

3!
)n

x2n

n!

= C +x− + − +⋯ +(−1 +⋯ .
x3

3

x5

5.2!

x7

7.3!
)n

x2n+1

(2n+1)n!

dx = 1 − + − + −⋯ .∫
1

0
e−x2 1

3

1

10

1

42

1

216

0.74

≈ 0.0046296 < 0.01.
1

216

 Exercise 11.11.6

∫ cos dxx−−√ cos dx∫
1

0
x−−√ 0.01

11.11.6
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Answer

 The definite integral is approximately  to within an error of .

As mentioned above, the integral  arises often in probability theory. Specifically, it is used when studying data sets that

are normally distributed, meaning the data values lie under a bell-shaped curve. For example, if a set of data values is normally
distributed with mean  and standard deviation , then the probability that a randomly chosen value lies between  and 
is given by

(See Figure .)

Figure : If data values are normally distributed with mean  and standard deviation , the probability that a randomly

selected data value is between  and  is the area under the curve  between  and .

To simplify this integral, we typically let . This quantity  is known as the  score of a data value. With this

simplification, integral Equation  becomes

In Example , we show how we can use this integral in calculating probabilities.

Suppose a set of standardized test scores are normally distributed with mean  and standard deviation . Use
Equation  and the first six terms in the Maclaurin series for  to approximate the probability that a randomly
selected test score is between  and . Use the alternating series test to determine how accurate your
approximation is.

Solution

Since  and we are trying to determine the area under the curve from  to , integral Equation 
 becomes

The Maclaurin series for  is given by

C + (−1∑
n=1

∞

)n+1 xn

n(2n−2)!
0.514 0.01

∫ dxe−x2

μ σ x = a x = b

dx.
1

σ 2π
−−

√
∫

b

a

e−(x−μ /(2 ))2 σ2

(11.11.5)

11.11.2

11.11.2 μ σ

a b y =
1

σ 2π
−−

√
e−(x−μ /(2 ))2

σ2
x = a x = b

z =
x−μ

σ
z z

11.11.5

dz.
1

2π
−−

√
∫

(b−μ)/σ

(a−μ)/σ
e− /2z2

11.11.7

 Example : Using Maclaurin Series to Approximate a Probability11.11.7

μ = 100 σ = 50

11.11.5 e− /2x2

x = 100 x = 200

μ = 100, σ = 50, a = 100 b = 200
11.11.5

dz.
1

2π
−−

√
∫

2

0
e− /2z2

e− /2x2
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Therefore,

 

Using the first five terms, we estimate that the probability is approximately 0.4922. By the alternating series test, we see
that this estimate is accurate to within

Analysis

If you are familiar with probability theory, you may know that the probability that a data value is within two standard
deviations of the mean is approximately  Here we calculated the probability that a data value is between the mean and two
standard deviations above the mean, so the estimate should be around . The estimate, combined with the bound on the
accuracy, falls within this range.

Use the first five terms of the Maclaurin series for  to estimate the probability that a randomly selected test score is
between  and . Use the alternating series test to determine the accuracy of this estimate.

Hint

Evaluate  using the first five terms of the Maclaurin series for .

Answer

The estimate is approximately  This estimate is accurate to within 

Another application in which a non-elementary integral arises involves the period of a pendulum. The integral is

.

An integral of this form is known as an elliptic integral of the first kind. Elliptic integrals originally arose when trying to calculate
the arc length of an ellipse. We now show how to use power series to approximate this integral.

e− /2x2

=∑
n=0

∞ (− )
x2

2

n

n!

= 1 − + − +⋯ +(−1 ! +⋯
x2

⋅ 1!21

x4

⋅ 2!22

x6

⋅ 3!23
)n

x2n

⋅n2n

= (−1 .∑
n=0

∞

)n
x2n

⋅n!2n

∫ dz
1

2π
−−

√
e− /2z2

= ∫ (1 − + − +⋯ +(−1 +⋯) dz
1

2π
−−

√

z2

⋅ 1!21

z4

⋅ 2!22

z6

⋅ 3!23
)n

z2n

⋅n!2n

= (C +z− + − +⋯ +(−1 +⋯)
1

2π
−−

√

z3

3 ⋅ ⋅ 1!21

z5

5 ⋅ ⋅ 2!22

z7

7 ⋅ ⋅ 3!23
)n

z2n+1

(2n+1) ⋅n!2n

dz = (2 − + − + − +⋯)
1

2π
−−

√
∫

2

0
e− /2z2 1

2π
−−

√

8

6

32

40

128

336

512

3456

211

11 ⋅ ⋅ 5!25

≈ 0.00546.
1

2π
−−

√

213

13 ⋅ ⋅ 6!26

95%.
47.5%

 Exercise 11.11.7

e− /2x2

100 150

dz∫
1

0
e− /2z2

e− /2z2

0.3414. 0.0000094.

∫
π/2

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√
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The period of a pendulum is the time it takes for a pendulum to make one complete back-and-forth swing. For a pendulum with
length  that makes a maximum angle  with the vertical, its period  is given by

where  is the acceleration due to gravity and  (see Figure ). (We note that this formula for the period

arises from a non-linearized model of a pendulum. In some cases, for simplification, a linearized model is used and  is
approximated by .)

Figure : This pendulum has length  and makes a maximum angle  with the vertical.

Use the binomial series

to estimate the period of this pendulum. Specifically, approximate the period of the pendulum if

a. you use only the first term in the binomial series, and
b. you use the first two terms in the binomial series.

Solution

We use the binomial series, replacing x with  Then we can write the period as

a. Using just the first term in the integrand, the first-order estimate is

If  is small, then  is small. We claim that when  is small, this is a good estimate. To justify

this claim, consider

 Example : Period of a Pendulum11.11.8

L θmax T

T = 4
L

g

−−

√ ∫
π/2

0

dθ

1 − θk2 sin2
− −−−−−−−−−

√

g k = sin( )
θmax

2
11.11.3

sinθ
θ

11.11.3 L θmax

= 1 +
1

1 +x
− −−−−

√
∑
n=1

∞ (−1)n

n!

1 ⋅ 3 ⋅ 5 ⋯ (2n−1)

2n
xn

− θ.k2 sin2

T = 4 (1 + θ+ θ+⋯) dθ.
L

g

−−

√ ∫
π/2

0

1

2
k2 sin2 1 ⋅ 3

2!22
k4 sin4

T ≈ 4 dθ = 2π .
L

g

−−

√ ∫
π/2

0

L

g

−−

√

θmax k = sin( )
θmax

2
k

(1 + θ+ θ+⋯) dθ.∫
π/2

0

1

2
k2 sin2 1 ⋅ 3

2!22
k4 sin4
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Since , this integral is bounded by

Furthermore, it can be shown that each coefficient on the right-hand side is less than  and, therefore, that this
expression is bounded by

,

which is small for  small.

b. For larger values of , we can approximate  by using more terms in the integrand. By using the first two terms in
the integral, we arrive at the estimate

The applications of Taylor series in this section are intended to highlight their importance. In general, Taylor series are useful
because they allow us to represent known functions using polynomials, thus providing us a tool for approximating function values
and estimating complicated integrals. In addition, they allow us to define new functions as power series, thus providing us with a
powerful tool for solving differential equations.

Key Concepts
The binomial series is the Maclaurin series for . It converges for .
Taylor series for functions can often be derived by algebraic operations with a known Taylor series or by differentiating or
integrating a known Taylor series.
Power series can be used to solve differential equations.
Taylor series can be used to help approximate integrals that cannot be evaluated by other means.

Glossary

binomial series
the Maclaurin series for ; it is given by 

 for 

non-elementary integral
an integral for which the antiderivative of the integrand cannot be expressed as an elementary function

11.11: Applications of Taylor Polynomials is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

10.4: Working with Taylor Series by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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12.1: Three-Dimensional Coordinate Systems
In single-variable calculus, the functions that one encounters are functions of a variable (usually  or ) that varies over some
subset of the real number line (which we denote by ). For such a function, say, , the  of the function  consists of
the points . These points lie in the , which, in the  or  coordinate
system, consists of all ordered pairs of real numbers . We use the word ``Euclidean'' to denote a system in which all the usual
rules of Euclidean geometry hold. We denote the Euclidean plane by ; the "2'' represents the number of  of the
plane. The Euclidean plane has two perpendicular : the -axis and the -axis.

In vector (or multivariable) calculus, we will deal with functions of two or three variables (usually  or , respectively). The
graph of a function of two variables, say, , lies in Euclidean space, which in the Cartesian coordinate system consists
of all ordered triples of real numbers . Since Euclidean space is 3-dimensional, we denote it by . The graph of  consists
of the points . The 3-dimensional coordinate system of Euclidean space can be represented on a flat
surface, such as this page or a blackboard, only by giving the illusion of three dimensions, in the manner shown in Figure   .
Euclidean space has three mutually perpendicular coordinate axes (  and ), and three mutually perpendicular coordinate
planes\index{plane!coordinate}: the -plane, -plane and -plane (Figure   ).

Figure                                                         Figure    

The coordinate system shown in Figure   is known as a , because it is possible,
using the right hand, to point the index finger in the positive direction of the -axis, the middle finger in the positive direction of
the -axis, and the thumb in the positive direction of the -axis, as in Figure  

Fig   : Right-handed coordinate system.

An equivalent way of defining a right-handed system is if you can point your thumb upwards in the positive -axis direction while
using the remaining four fingers to rotate the -axis towards the -axis. Doing the same thing with the left hand is what defines a 

. Notice that switching the - and -axes in a right-handed system results in a left-handed
system, and that rotating either type of system does not change its ``handedness''. Throughout the book we will use a right-handed
system.

For functions of three variables, the graphs exist in 4-dimensional space (i.e. ), which we can not see in our 3-dimensional space,
let alone simulate in 2-dimensional space. So we can only think of 4-dimensional space abstractly. For an entertaining discussion of
this subject, see the book by ABBOT.

So far, we have discussed the  of an object in 2-dimensional or 3-dimensional space. But what about something such as the
velocity of the object, or its acceleration? Or the gravitational force acting on the object? These phenomena all seem to involve
motion and  in some way. This is where the idea of a  comes in.

x t

R y = f(x) graph f

(x, y) = (x, f(x)) Euclidean plane Cartesian rectangular

(a, b)
R2 dimensions

coordinate axes x y

x, y x, y, z
z = f(x, y)

(a, b, c) R
3 f

(x, y, z) = (x, y, f(x, y))
12.1.1

x, y z

xy yz xz 12.1.2

12.1.1 12.1.2

12.1.1 right-handed coordinate system

x

y z 12.1.3

12.1.3
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x y
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R4
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You have already dealt with velocity and acceleration in single-variable calculus. For example, for motion along a straight line, if 
 gives the displacement of an object after time , then  is the velocity of the object at time . The derivative

 is just a number, which is positive if the object is moving in an agreed-upon "positive'' direction, and negative if it moves in
the opposite of that direction. So you can think of that number, which was called the velocity of the object, as having two
components: a , indicated by a nonnegative number, preceded by a direction, indicated by a plus or minus symbol
(representing motion in the positive direction or the negative direction, respectively), i.e.  for some number .
Then  is the magnitude of the velocity (normally called the  of the object), and the  represents the direction of the velocity
(though the  is usually omitted for the positive direction).

For motion along a straight line, i.e. in a 1-dimensional space, the velocities are also contained in that 1-dimensional space, since
they are just numbers. For general motion along a curve in 2- or 3-dimensional space, however, velocity will need to be represented
by a multidimensional object which should have both a magnitude and a direction. A geometric object which has those features is
an arrow, which in elementary geometry is called a ``directed line segment''. This is the motivation for how we will define a vector.

A (nonzero)  is a directed line segment drawn from a point  (called its ) to a point  (called its 

), with  and  being distinct points. The vector is denoted by . Its  is the length of the

line segment, denoted by , and its  is the same as that of the directed line segment. The  is just
a point, and it is denoted by .

To indicate the direction of a vector, we draw an arrow from its initial point to its terminal point. We will often denote a vector by a
single bold-faced letter (e.g. ) and use the terms ``magnitude" and ``length'' interchangeably. Note that our definition could apply
to systems with any number of dimensions (Figure 1.1.4 (a)-(c)).

Figure   Vectors in different dimensions

A few things need to be noted about the zero vector. Our motivation for what a vector is included the notions of magnitude and
direction. What is the magnitude of the zero vector? We define it to be zero, i.e. . This agrees with the definition of the
zero vector as just a point, which has zero length. What about the direction of the zero vector? A single point really has no well-
defined direction. Notice that we were careful to only define the direction of a  vector, which is well-defined since the
initial and terminal points are distinct. Not everyone agrees on the direction of the zero vector. Some contend that the zero vector
has  direction (i.e. can take any direction), some say that it has  direction (i.e. the direction cannot be
determined), while others say that it has  direction. Our definition of the zero vector, however, does not require it to have a
direction, and we will leave it at that.

Now that we know what a vector is, we need a way of determining when two vectors are equal. This leads us to the following
definition.

Two nonzero vectors are  if they have the same magnitude and the same direction. Any vector with zero magnitude is
equal to the zero vector.

y = f(t) t dy/dt = f (t)′ t

f (t)′

magnitude

f (t) = ±a′ a ≥ 0
a speed ±

+

Definition 12.1.1

vector P initial point Q

terminal point P Q PQ
−→−

magnitude

∥ ∥PQ
−→−

direction zero vector

0

v

12.1.4

∥0∥ = 0

nonzero

arbitrary indeterminate

no

Definition 12.1.2

equal
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By this definition, vectors with the same magnitude and direction but with different initial points would be equal. For example, in
Figure 1.1.5 the vectors ,  and  all have the same magnitude  (by the Pythagorean Theorem). And we see that  and  are
parallel, since they lie on lines having the same slope , and they point in the same direction. So , even though they have
different initial points. We also see that  is parallel to  but points in the opposite direction. So .

Figure  

So we can see that there are an infinite number of vectors for a given magnitude and direction, those vectors all being equal and
differing only by their initial and terminal points. Is there a single vector which we can choose to represent all those equal vectors?
The answer is yes, and is suggested by the vector  in Figure .

Unless otherwise indicated, when speaking of "the vector" with a given magnitude and direction, we will mean the one whose
initial point is at the origin of the coordinate system.

Thinking of vectors as starting from the origin provides a way of dealing with vectors in a standard way, since every coordinate
system has an origin. But there will be times when it is convenient to consider a different initial point for a vector (for example,
when adding vectors, which we will do in the next section). Another advantage of using the origin as the initial point is that it
provides an easy correspondence between a vector and its terminal point.

Let  be the vector in  whose initial point is at the origin and whose terminal point is . Though the  
and the vector  are different objects, it is convenient to write . When doing this, it is understood that the initial
point of  is at the origin  and the terminal point is .

Figure   Correspondence between points and vectors

Unless otherwise stated, when we refer to vectors as  in  or  in , we mean vectors in Cartesian
coordinates starting at the origin. Also, we will write the zero vector  in  and  as  and , respectively.

The point-vector correspondence provides an easy way to check if two vectors are equal, without having to determine their
magnitude and direction. Similar to seeing if two points are the same, you are now seeing if the terminal points of vectors starting
at the origin are the same. For each vector, find the (unique!) vector it equals whose initial point is the origin. Then compare the
coordinates of the terminal points of these ``new'' vectors: if those coordinates are the same, then the original vectors are equal. To
get the ``new'' vectors starting at the origin, you  each vector to start at the origin by subtracting the coordinates of the

u v w 5–√ u w
1
2

u = w

v u u ≠ v

12.1.5

w 12.1.5

Example 12.1.1

v R
3 (3, 4, 5) point (3, 4, 5)

v v = (3, 4, 5)
v (0, 0, 0) (3, 4, 5)

12.1.6

v = (a, b) R2 v = (a, b, c) R3

0 R
2

R
3 (0, 0) (0, 0, 0)

translate
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original initial point from the original terminal point. The resulting point will be the terminal point of the ``new'' vector whose
initial point is the origin. Do this for each original vector then compare.

Consider the vectors  and  in , where  and . Does 

?

The vector  is equal to the vector  with initial point  and terminal point 
. 

Similarly,  is equal to the vector  with initial point  and terminal point 
. 

So  and . 

Figure 

Recall the distance formula for points in the Euclidean plane:

For points ,  in , the distance  between  and  is:

By this formula, we have the following result:

For a vector  in  with initial point  and terminal point , the magnitude of  is:

Finding the magnitude of a vector  in  is a special case of the above formula with  and :

For a vector  in , the magnitude of  is:

To calculate the magnitude of vectors in , we need a distance formula for points in Euclidean space (we will postpone the proof
until the next section):

Example 12.1.2

PQ
−→−

RS
−→

R
3 P = (2, 1, 5),Q = (3, 5, 7),R = (1, −3, −2) S = (2, 1, 0)

=PQ
−→−

RS
−→

PQ
−→−

v (0, 0, 0)
Q−P = (3, 5, 7) −(2, 1, 5) = (3 −2, 5 −1, 7 −5) = (1, 4, 2)

RS
−→

w (0, 0, 0)
S−R = (2, 1, 0) −(1, −3, −2) = (2 −1, 1 −(−3), 0 −(−2)) = (1, 4, 2)

= v = (1, 4, 2)PQ
−→−

= w = (1, 4, 2)RS
−→

∴ =PQ
−→−

RS
−→

12.1.7

P = ( , )x1 y1 Q = ( , )x2 y2 R2 d P Q

d = ( − +( −x2 x1)2 y2 y1)2
− −−−−−−−−−−−−−−−−−

√ (12.1.1)

Note

PQ
−→−

R
2 P = ( , )x1 y1 Q = ( , )x2 y2 PQ

−→−

∥ ∥ =PQ
−→−

( − +( −x2 x1)2 y2 y1)2
− −−−−−−−−−−−−−−−−−

√ (12.1.2)

v = (a, b) R2 P = (0, 0) Q = (a, b)

v = (a, b) R2 v

∥v∥ = +a2 b2− −−−−−
√ (12.1.3)

R
3
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The distance  between points  and  in  is:

The proof will use the following result:

For a vector  in , the magnitude of  is:

Proof: There are four cases to consider: 
 . Then , so .

  are . Without loss of generality, we assume that  and  (the other two possibilities
are handled in a similar manner). Then , which is a vector of length  along the -axis. So 

. 
 

  is . Without loss of generality, we assume that ,  and  (the other two possibilities
are handled in a similar manner). Then , which is a vector in the -plane, so by the Pythagorean Theorem we have 

. 
 

Figure 

  are . Without loss of generality, we can assume that  are all positive (the other seven possibilities are
handled in a similar manner). Consider the points , ,  and , as shown in
Figure 1.1.8. Applying the Pythagorean Theorem to the right triangle  gives . A second application of the

Pythagorean Theorem, this time to the right triangle , gives . This
proves the theorem.

Theorem 12.1.1

d P = ( , , )x1 y1 z1 Q = ( , , )x2 y2 z2 R
3

d = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (12.1.4)

Theorem 12.1.2

v = (a, b, c) R3 v

∥v∥ = + +a2 b2 c2− −−−−−−−−−
√ (12.1.5)

Case 1: a = b = c = 0 v = 0 ∥v∥ = 0 = =+ +02 02 02− −−−−−−−−−√ + +a2 b2 c2− −−−−−−−−−√

Case 2: exactly two of  a, b, c 0 a = b = 0 c ≠ 0
v = (0, 0, c) |c| z

∥v∥ = |c| = = =c2−−√ + +02 02 c2
− −−−−−−−−−

√ + +a2 b2 c2− −−−−−−−−−√

Case 3: exactly one of  a, b, c 0 a = 0 b ≠ 0 c ≠ 0
v = (0, b, c) yz

∥v∥ = = =+b2 c2− −−−−−
√ + +02 b2 c2

− −−−−−−−−−
√ + +a2 b2 c2− −−−−−−−−−

√

12.1.8

Case 4: none of a, b, c 0 a, b, c
P = (0, 0, 0) Q = (a, b, c) R = (a, b, 0), S = (a, 0, 0)

△PSR = +|PR|2 a2 b2

△PQR ∥v∥ = |PQ| = =+|PR|2 |QR|2
− −−−−−−−−−−−

√ + +a2 b2 c2− −−−−−−−−−
√

(QED)
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Calculate the following:

1. The magnitude of the vector  in  with  and . 

 By formula (1.2), .
2. The magnitude of the vector  in .

 By formula (1.3), .
3. The distance between the points  and  in . 

 By formula (1.4), the distance .
4. The magnitude of the vector  in . 

 By formula (1.5), .

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation
License, Version 1.2.

12.1: Three-Dimensional Coordinate Systems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

1.1: Introduction by Michael Corral is licensed GNU FDL.

Example 1.3

PQ
−→−

R
2 P = (−1, 2) Q = (5, 5)

Solution: ∥ ∥ = = = = 3PQ
−→−

(5 −(−1) +(5 −2)2 )2− −−−−−−−−−−−−−−−−−√ 36 +9− −−−−√ 45−−√ 5–√

v = (8, 3) R2

Solution: ∥v∥ = =+82 32− −−−−−√ 73−−√

P = (2, −1, 4) Q = (4, 2, −3) R
2

Solution: d = = =(4 −2 +(2 −(−1) +(−3 −4)2 )2 )2− −−−−−−−−−−−−−−−−−−−−−−−−−−
√ 4 +9 +49− −−−−−−−√ 62−−√

v = (5, 8, −2) R
3

Solution: ∥v∥ = = =+ +(−252 82 )2
− −−−−−−−−−−−−

√ 25 +64 +4− −−−−−−−−√ 93
−−√
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12.2: Vectors

Describe three-dimensional space mathematically.
Locate points in space using coordinates.
Write the distance formula in three dimensions.
Write the equations for simple planes and spheres.
Perform vector operations in .

Vectors are useful tools for solving two-dimensional problems. Life, however, happens in three dimensions. To expand the use of
vectors to more realistic applications, it is necessary to create a framework for describing three-dimensional space. For example,
although a two-dimensional map is a useful tool for navigating from one place to another, in some cases the topography of the land
is important. Does your planned route go through the mountains? Do you have to cross a river? To appreciate fully the impact of
these geographic features, you must use three dimensions. This section presents a natural extension of the two-dimensional
Cartesian coordinate plane into three dimensions.

Three-Dimensional Coordinate Systems

As we have learned, the two-dimensional rectangular coordinate system contains two perpendicular axes: the horizontal -axis and
the vertical -axis. We can add a third dimension, the -axis, which is perpendicular to both the -axis and the -axis. We call this
system the three-dimensional rectangular coordinate system. It represents the three dimensions we encounter in real life.

The three-dimensional rectangular coordinate system consists of three perpendicular axes: the -axis, the -axis, and the -
axis. Because each axis is a number line representing all real numbers in , the three-dimensional system is often denoted by 

.

In Figure , the positive -axis is shown above the plane containing the - and -axes. The positive -axis appears to the left
and the positive -axis is to the right. A natural question to ask is: How was this arrangement determined? The system displayed
follows the right-hand rule. If we take our right hand and align the fingers with the positive -axis, then curl the fingers so they
point in the direction of the positive -axis, our thumb points in the direction of the positive -axis (Figure ). In this text, we
always work with coordinate systems set up in accordance with the right-hand rule. Some systems do follow a left-hand rule, but
the right-hand rule is considered the standard representation.

Figure : (a) We can extend the two-dimensional rectangular coordinate system by adding a third axis, the -axis, that is
perpendicular to both the -axis and the -axis. (b) The right-hand rule is used to determine the placement of the coordinate axes in
the standard Cartesian plane.

In two dimensions, we describe a point in the plane with the coordinates . Each coordinate describes how the point aligns
with the corresponding axis. In three dimensions, a new coordinate, , is appended to indicate alignment with the -axis: .

 Learning Objectives

R
3

x

y z x y

 Definition: Three-dimensional Rectangular Coordinate System

x y z

R

R
3

12.2.1a z x y x

y

x

y z 12.2.1b

12.2.1 z
x y

(x, y)
z z (x, y, z)
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A point in space is identified by all three coordinates (Figure ). To plot the point , go  units along the -axis, then 
units in the direction of the -axis, then  units in the direction of the -axis.

Figure : To plot the point  go  units along the -axis, then  units in the direction of the -axis, then  units in the
direction of the -axis.

Sketch the point  in three-dimensional space.

Solution

To sketch a point, start by sketching three sides of a rectangular prism along the coordinate axes: one unit in the positive 
direction,  units in the negative  direction, and  units in the positive  direction. Complete the prism to plot the point
(Figure ).

Figure : Sketching the point 

Sketch the point  in three-dimensional space.

Hint

Start by sketching the coordinate axes. e.g., Figure . Then sketch a rectangular prism to help find the point in space.

Answer

12.2.2 (x, y, z) x x y

y z z

12.2.2 (x,y,z) x x y y z

z

 Example : Locating Points in Space12.2.1

(1, −2, 3)

x

2 y 3 z

12.2.3

12.2.3 (1, −2, 3).

 Exercise 12.2.1

(−2, 3, −1)

12.2.3
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In two-dimensional space, the coordinate plane is defined by a pair of perpendicular axes. These axes allow us to name any
location within the plane. In three dimensions, we define coordinate planes by the coordinate axes, just as in two dimensions.
There are three axes now, so there are three intersecting pairs of axes. Each pair of axes forms a coordinate plane: the -plane, the 

-plane, and the -plane (Figure ). We define the -plane formally as the following set:  Similarly,
the -plane and the -plane are defined as  and  respectively.

To visualize this, imagine you’re building a house and are standing in a room with only two of the four walls finished. (Assume the
two finished walls are adjacent to each other.) If you stand with your back to the corner where the two finished walls meet, facing
out into the room, the floor is the -plane, the wall to your right is the -plane, and the wall to your left is the -plane.

Figure : The plane containing the - and -axes is called the -plane. The plane containing the - and -axes is called the 
-plane, and the - and -axes define the -plane.

In two dimensions, the coordinate axes partition the plane into four quadrants. Similarly, the coordinate planes divide space
between them into eight regions about the origin, called octants. The octants fill  in the same way that quadrants fill , as
shown in Figure .

xy

xz yz 12.2.4 xy {(x, y, 0) : x, y ∈ R}.
xz yz {(x, 0, z) : x, z ∈ R} {(0, y, z) : y, z ∈ R},

xy xz yz

12.2.4 x y xy x z
xz y z yz

R
3

R
2

12.2.5
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Figure : Points that lie in octants have three nonzero coordinates.

Most work in three-dimensional space is a comfortable extension of the corresponding concepts in two dimensions. In this section,
we use our knowledge of circles to describe spheres, then we expand our understanding of vectors to three dimensions. To
accomplish these goals, we begin by adapting the distance formula to three-dimensional space.

If two points lie in the same coordinate plane, then it is straightforward to calculate the distance between them. We know that the
distance  between two points  and  in the -coordinate plane is given by the formula

The formula for the distance between two points in space is a natural extension of this formula.

The distance  between points  and  is given by the formula

The proof of this theorem is left as an exercise. (Hint: First find the distance  between the points  and  as
shown in Figure .)

Figure : The distance between  and  is the length of the diagonal of the rectangular prism having  and  as opposite
corners.

Find the distance between points  and 

12.2.5

d ( , )x1 y1 ( , )x2 y2 xy

d = .( − +( −x2 x1)2 y2 y1)2
− −−−−−−−−−−−−−−−−−

√

 The Distance between Two Points in Space

d ( , , )x1 y1 z1 ( , , )x2 y2 z2

d = .( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (12.2.1)

d1 ( , , )x1 y1 z1 ( , , )x2 y2 z1

12.2.6

12.2.6 P1 P2 P1 P2

 Example : Distance in Space12.2.2

= (3, −1, 5)P1 = (2, 1, −1).P2
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Figure : Find the distance between the two points.

Solution

Substitute values directly into the distance formula (Equation ):

Find the distance between points  and .

Hint

Answer

Before moving on to the next section, let’s get a feel for how  differs from . For example, in , lines that are not parallel
must always intersect. This is not the case in . For example, consider the lines shown in Figure . These two lines are not
parallel, nor do they intersect.

12.2.7

12.2.1

d( , )P1 P2 = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (2 −3 +(1 −(−1) +(−1 −5)2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (−1 + +(−6)2 22 )2
− −−−−−−−−−−−−−−

√

= .41−−√

 Exercise 12.2.2

= (1, −5, 4)P1 = (4, −1, −1)P2

d = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2− −−−−−−−−−−−−−−−−−−−−−−−−−−−
√

5 2–√

R
3

R
2

R
2

R
3 12.2.8
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Figure : These two lines are not parallel, but still do not intersect.

You can also have circles that are interconnected but have no points in common, as in Figure .

12.2.8

12.2.9
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Figure : These circles are interconnected, but have no points in common.

We have a lot more flexibility working in three dimensions than we do if we stuck with only two dimensions.

Writing Equations in 
Now that we can represent points in space and find the distance between them, we can learn how to write equations of geometric
objects such as lines, planes, and curved surfaces in . First, we start with a simple equation. Compare the graphs of the equation 

 in , ,and  (Figure ). From these graphs, we can see the same equation can describe a point, a line, or a plane.

Figure : (a) In , the equation  describes a single point. (b) In , the equation  describes a line, the -axis. (c)
In , the equation  describes a plane, the -plane.

12.2.9

R
3

R
3

x = 0 R R
2

R
3 12.2.10

12.2.10 R x = 0 R
2 x = 0 y

R3 x = 0 yz
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In space, the equation  describes all points . This equation defines the -plane. Similarly, the -plane contains all
points of the form . The equation  defines the -plane and the equation  describes the -plane (Figure 

).

Figure : (a) In space, the equation  describes the -plane. (b) All points in the -plane satisfy the equation .

Understanding the equations of the coordinate planes allows us to write an equation for any plane that is parallel to one of the
coordinate planes. When a plane is parallel to the -plane, for example, the -coordinate of each point in the plane has the same
constant value. Only the - and -coordinates of points in that plane vary from point to point.

1. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .
2. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .
3. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .

a. Write an equation of the plane passing through point  that is parallel to the -plane.
b. Find an equation of the plane passing through points  and 

Solution

a. When a plane is parallel to the -plane, only the - and -coordinates may vary. The -coordinate has the same constant
value for all points in this plane, so this plane can be represented by the equation .

b. Each of the points  and  has the same -coordinate. This plane can be represented by the
equation .

Write an equation of the plane passing through point  that is parallel to the -plane.

Hint

If a plane is parallel to the -plane, the z-coordinates of the points in that plane do not vary.

Answer

As we have seen, in  the equation  describes the vertical line passing through point . This line is parallel to the -
axis. In a natural extension, the equation  in  describes the plane passing through point , which is parallel to the 

-plane. Another natural extension of a familiar equation is found in the equation of a sphere.

x = 0 (0, y, z) yz xy

(x, y, 0) z = 0 xy y = 0 xz

12.2.11

12.2.11 z = 0 xy xz y = 0

xy z

x y

 Equations of Planes Parallel to Coordinate Planes

xy (a, b, c) z = c

xz (a, b, c) y = b

yz (a, b, c) x = a

 Example : Writing Equations of Planes Parallel to Coordinate Planes12.2.3

(3, 11, 7) yz

(6, −2, 9), (0, −2, 4), (1, −2, −3).

yz y z x

x = 3
(6, −2, 9), (0, −2, 4), (1, −2, −3) y

y = −2

 Exercise 12.2.3

(1, −6, −4) xy

xy

z = −4

R
2 x = 5 (5, 0) y

x = 5 R
3 (5, 0, 0)

yz
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A sphere is the set of all points in space equidistant from a fixed point, the center of the sphere (Figure ), just as the set
of all points in a plane that are equidistant from the center represents a circle. In a sphere, as in a circle, the distance from the
center to a point on the sphere is called the radius.

Figure : Each point  on the surface of a sphere is  units away from the center .

The equation of a circle is derived using the distance formula in two dimensions. In the same way, the equation of a sphere is based
on the three-dimensional formula for distance.

The sphere with center  and radius  can be represented by the equation

This equation is known as the standard equation of a sphere.

Find the standard equation of the sphere with center  and point , as shown in Figure .

 Definition: Sphere

12.2.12

12.2.12 (x,y,z) r (a, b, c)

 Standard Equation of a Sphere

(a, b, c) r

(x−a +(y−b +(z−c = .)2 )2 )2 r2

 Example : Finding an Equation of a Sphere12.2.4

(10, 7, 4) (−1, 3, −2) 12.2.13

https://libretexts.org/
https://math.libretexts.org/@go/page/4525?pdf


12.2.10 https://math.libretexts.org/@go/page/4525

Figure : The sphere centered at  containing point 

Solution

Use the distance formula to find the radius  of the sphere:

The standard equation of the sphere is

Find the standard equation of the sphere with center  containing point 

Hint

First use the distance formula to find the radius of the sphere.

Answer

12.2.13 (10, 7, 4) (−1, 3, −2).

r

r = (−1 −10 +(3 −7 +(−2 −4)2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (−11 +(−4 +(−6)2 )2 )2
− −−−−−−−−−−−−−−−−−−

√

= 173
−−−

√

(x−10 +(y−7 +(z−4 = 173.)2 )2 )2

 Exercise 12.2.4

(−2, 4, −5) (4, 4, −1).

(x+2 +(y−4 +(z+5 = 52)2 )2 )2
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Let  and , and suppose line segment  forms the diameter of a sphere (Figure ). Find
the equation of the sphere.

Figure : Line segment .

Solution:

Since  is a diameter of the sphere, we know the center of the sphere is the midpoint of .Then,

Furthermore, we know the radius of the sphere is half the length of the diameter. This gives

Then, the equation of the sphere is 

Find the equation of the sphere with diameter , where  and 

Hint

Find the midpoint of the diameter first.

Answer

Describe the set of points that satisfies  and graph the set.

Solution

 Example : Finding the Equation of a Sphere12.2.5

P = (−5, 2, 3) Q = (3, 4, −1) PQ
¯ ¯¯̄¯̄¯̄ 12.2.14

12.2.14 PQ
¯ ¯¯̄¯̄¯̄

PQ
¯ ¯¯̄¯̄¯̄

PQ
¯ ¯¯̄¯̄¯̄

C =( , , ) = (−1, 3, 1).
−5 +3

2

2 +4

2

3 +(−1)

2

r =
1

2
(−5 −3 +(2 −4 +(3 −(−1))2 )2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−
√

=
1

2
64 +4 +16− −−−−−−−−√

= 21
−−

√

(x+1 +(y−3 +(z−1 = 21.)2 )2 )2

 Exercise 12.2.5

PQ
¯ ¯¯̄¯̄¯̄

P = (2, −1, −3) Q = (−2, 5, −1).

+(y−2 +(z+2 = 14x2 )2 )2

 Example : Graphing Other Equations in Three Dimensions12.2.6

(x−4)(z−2) = 0,
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We must have either  or , so the set of points forms the two planes  and  (Figure ).

Figure : The set of points satisfying  forms the two planes  and .

Describe the set of points that satisfies  and graph the set.

Hint

One of the factors must be zero.

Answer

The set of points forms the two planes  and .

x−4 = 0 z−2 = 0 x = 4 z = 2 12.2.15

12.2.15 (x− 4)(z − 2) = 0 x = 4 z = 2

 Exercise 12.2.6

(y+2)(z−3) = 0,

y = −2 z = 3
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Describe the set of points in three-dimensional space that satisfies  and graph the set.

Solution

The - and -coordinates form a circle in the -plane of radius , centered at . Since there is no restriction on the -
coordinate, the three-dimensional result is a circular cylinder of radius  centered on the line with  and . The
cylinder extends indefinitely in the -direction (Figure ).

 Example : Graphing Other Equations in Three Dimensions12.2.7

(x−2 +(y−1 = 4,)2 )2

x y xy 2 (2, 1) z

2 x = 2 y = 1
z 12.2.16
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Figure : The set of points satisfying . This is a cylinder of radius  centered on the line with 
 and .

Describe the set of points in three dimensional space that satisfies , and graph the surface.

Hint

Think about what happens if you plot this equation in two dimensions in the -plane.

Answer

A cylinder of radius 4 centered on the line with  and .

12.2.16 (x− 2 + (y− 1 = 4)2 )2 2
x = 2 y = 1

 Exercise 12.2.7

+(z−2 = 16x2 )2

xz

x = 0 z = 2
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Working with Vectors in 

Just like two-dimensional vectors, three-dimensional vectors are quantities with both magnitude and direction, and they are
represented by directed line segments (arrows). With a three-dimensional vector, we use a three-dimensional arrow.

Three-dimensional vectors can also be represented in component form. The notation  is a natural extension of the two-
dimensional case, representing a vector with the initial point at the origin, , and terminal point . The zero vector is 

. So, for example, the three dimensional vector  is represented by a directed line segment from point 
 to point  (Figure ).

Figure : Vector  is represented by a directed line segment from point  to point 

Vector addition and scalar multiplication are defined analogously to the two-dimensional case. If  and 
 are vectors, and  is a scalar, then

and

If  then  is written as , and vector subtraction is defined by .

The standard unit vectors extend easily into three dimensions as well, , , and , and we use
them in the same way we used the standard unit vectors in two dimensions. Thus, we can represent a vector in  in the following
ways:

.

Let  be the vector with initial point  and terminal point  as shown in Figure .

Express  in both component form and using standard unit vectors.

R
3

= ⟨x, y, z⟩v⇀

(0, 0, 0) (x, y, z)

= ⟨0, 0, 0⟩0
⇀

= ⟨2, 4, 1⟩v⇀

(0, 0, 0) (2, 4, 1) 12.2.17

12.2.17 = ⟨2, 4, 1⟩v⇀ (0, 0, 0) (2, 4, 1).

= ⟨ , , ⟩v⇀ x1 y1 z1

= ⟨ , , ⟩w⇀ x2 y2 z2 k

+ = ⟨ + , + , + ⟩v⇀ w⇀ x1 x2 y1 y2 z1 z2

k = ⟨k , k , k ⟩.v⇀ x1 y1 z1

k = −1, k = (−1)v⇀ v⇀ −v⇀ − = +(− ) = +(−1)v⇀ w⇀ v⇀ w⇀ v⇀ w⇀

= ⟨1, 0, 0⟩î = ⟨0, 1, 0⟩ĵ = ⟨0, 0, 1⟩k̂

R
3

= ⟨x, y, z⟩ = x +y +zv⇀ î ĵ k̂

 Example : Vector Representations12.2.8

PQ
−−⇀

P = (3, 12, 6) Q = (−4, −3, 2) 12.2.18

PQ
−−⇀
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Figure : The vector with initial point  and terminal point .

Solution

In component form,

In standard unit form,

Let  and . Express  in component form and in standard unit form.

Hint

Write  in component form first.  is the terminal point of .

Answer

As described earlier, vectors in three dimensions behave in the same way as vectors in a plane. The geometric interpretation of
vector addition, for example, is the same in both two- and three-dimensional space (Figure ).

Figure : To add vectors in three dimensions, we follow the same procedures we learned for two dimensions.

12.2.18 P = (3, 12, 6) Q = (−4, −3, 2)

= ⟨ − , − , − ⟩PQ
−−⇀

x2 x1 y2 y1 z2 z1

= ⟨−4 −3, −3 −12, 2 −6⟩

= ⟨−7, −15, −4⟩.

= −7 −15 −4 .PQ
−−⇀

î ĵ k̂

 Exercise 12.2.8

S = (3, 8, 2) T = (2, −1, 3) ST
→

ST
−−⇀

T ST
−−⇀

= ⟨−1, −9, 1⟩ = − −9 +ST
−−⇀

î ĵ k̂

12.2.19

12.2.19
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We have already seen how some of the algebraic properties of vectors, such as vector addition and scalar multiplication, can be
extended to three dimensions. Other properties can be extended in similar fashion. They are summarized here for our reference.

Let  and  be vectors, and let  be a scalar.

Scalar multiplication:

Vector addition:

Vector subtraction:

Vector magnitude:

Unit vector in the direction of :

We have seen that vector addition in two dimensions satisfies the commutative, associative, and additive inverse properties. These
properties of vector operations are valid for three-dimensional vectors as well. Scalar multiplication of vectors satisfies the
distributive property, and the zero vector acts as an additive identity. The proofs to verify these properties in three dimensions are
straightforward extensions of the proofs in two dimensions.

Let  and  (Figure ). Find the following vectors.

a. 
b. 
c. 
d. A unit vector in the direction of 

 Properties of Vectors in Space

= ⟨ , , ⟩v⇀ x1 y1 z1 = ⟨ , , ⟩w⇀ x2 y2 z2 k

k = ⟨k , k , k ⟩v⇀ x1 y1 z1

+ = ⟨ , , ⟩+ ⟨ , , ⟩ = ⟨ + , + , + ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

− = ⟨ , , ⟩− ⟨ , , ⟩ = ⟨ − , − , − ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

∥ ∥ =v⇀ + +x2
1 y2

1 z2
1

− −−−−−−−−−
√

v⇀

= ⟨ , , ⟩ = ⟨ , , ⟩, if ≠
1

∥ ∥v⇀
v⇀

1

∥ ∥v⇀
x1 y1 z1

x1

∥ ∥v⇀
y1

∥ ∥v⇀
z1

∥ ∥v⇀
v⇀ 0

⇀

 Example : Vector Operations in Three Dimensions12.2.9

= ⟨−2, 9, 5⟩v⇀ = ⟨1, −1, 0⟩w⇀ 12.2.20

3 −2v⇀ w⇀

5∥ ∥w⇀

∥5 ∥w⇀

v⇀
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Figure : The vectors  and .

Solution

a. First, use scalar multiplication of each vector, then subtract:

b. Write the equation for the magnitude of the vector, then use scalar multiplication:

c. First, use scalar multiplication, then find the magnitude of the new vector. Note that the result is the same as for part b.:

d. Recall that to find a unit vector in two dimensions, we divide a vector by its magnitude. The procedure is the same in three
dimensions:

Let  and . Find a unit vector in the direction of 

Hint

12.2.20 = ⟨−2, 9, 5⟩v⇀ = ⟨1, −1, 0⟩w⇀

3 −2 = 3⟨−2, 9, 5⟩−2⟨1, −1, 0⟩v⇀ w⇀

= ⟨−6, 27, 15⟩− ⟨2, −2, 0⟩

= ⟨−6 −2, 27 −(−2), 15 −0⟩

= ⟨−8, 29, 15⟩.

5∥ ∥ = 5 = 5 .w⇀ +(−1 +12 )2 02
− −−−−−−−−−−−−

√ 2–√

∥5 ∥ =∥ ⟨5, −5, 0⟩ ∥= = = 5w⇀ +(−5 +52 )2 02
− −−−−−−−−−−−−

√ 50−−√ 2–√

= ⟨−2, 9, 5⟩
v⇀

∥ ∥v⇀
1

∥ ∥v⇀

= ⟨−2, 9, 5⟩
1

(−2 + +)2 92 52
− −−−−−−−−−−−−

√

= ⟨−2, 9, 5⟩
1

110
−−−√

= ⟨ , , ⟩.
−2

110−−−√

9

110−−−√

5

110−−−√

 Exercise :12.2.9

= ⟨−1, −1, 1⟩v⇀ = ⟨2, 0, 1⟩w⇀ 5 +3 .v⇀ w⇀

https://libretexts.org/
https://math.libretexts.org/@go/page/4525?pdf


12.2.19 https://math.libretexts.org/@go/page/4525

Start by writing  in component form.

Answer

A quarterback is standing on the football field preparing to throw a pass. His receiver is standing 20 yd down the field and 15
yd to the quarterback’s left. The quarterback throws the ball at a velocity of 60 mph toward the receiver at an upward angle of 

 (see the following figure). Write the initial velocity vector of the ball, , in component form.

Solution

The first thing we want to do is find a vector in the same direction as the velocity vector of the ball. We then scale the vector
appropriately so that it has the right magnitude. Consider the vector  extending from the quarterback’s arm to a point directly
above the receiver’s head at an angle of  (see the following figure). This vector would have the same direction as , but it
may not have the right magnitude.

The receiver is 20 yd down the field and 15 yd to the quarterback’s left. Therefore, the straight-line distance from the
quarterback to the receiver is

Dist from QB to receiver  yd.

We have  Then the magnitude of  is given by

 yd

and the vertical distance from the receiver to the terminal point of  is

Vert dist from receiver to terminal point of  yd.

5 +3v⇀ w⇀

⟨ , − , ⟩
1

3 10
−−√

5

3 10
−−√

8

3 10
−−√

 Example : Throwing a Forward Pass12.2.10

30° v⇀

w⇀

30° v⇀

= = = = 25+152 202− −−−−−−−
√ 225 +400− −−−−−−−√ 625−−−√

= cos 30°.
25

∥ ∥w⇀
w⇀

∥ ∥ = = =w⇀
25

cos 30°

25 ⋅ 2

3–√

50

3–√

w⇀

= ∥ ∥ sin30° = ⋅ =w⇀ w⇀
50

3–√

1

2

25

3–√
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Then , and has the same direction as .

Recall, though, that we calculated the magnitude of  to be  yd, and  has magnitude  mph. So, we need to

multiply vector  by an appropriate constant, . We want to find a value of  so that  mph . We have

 yd,

so we want

 mph

 mph / yd

 mph / yd.

Then

.

Let’s double-check that  mph. We have

 mph.

So, we have found the correct components for .

Readers who have been watching the units of measurement may be wondering what exactly is going on at this point:
haven't we just mixed yards and miles per hour? We haven't, but the reason is subtle. One way to understand it is to realize
that there are really two parallel coordinate systems in this problem: one gives positions down the field, across the field,
and up into the air in units of yards; the other gives speeds down the field, across the field, and up into the air in units of
miles per hour. The vector  is calculated in the position coordinate system; vector  will be in the speed system. Because
corresponding axes in each system are parallel, directions in the two systems are also parallel, so the claim that  and 
point in the same direction is correct. The constant  that we're looking for is a conversion factor between the magnitudes
of these two vectors, converting from the position system to the speed one in the process. And as seen above, our
calculation of  produces the right units for such a conversion, namely miles per hour per yard.

Assume the quarterback and the receiver are in the same place as in the previous example. This time, however, the quarterback
throws the ball at velocity of  mph and an angle of . Write the initial velocity vector of the ball, , in component form.

Hint

Follow the process used in the previous example.

Answer

Key Concepts
The three-dimensional coordinate system is built around a set of three axes that intersect at right angles at a single point, the
origin. Ordered triples  are used to describe the location of a point in space.
The distance  between points  and  is given by the formula

= ⟨20, 15, ⟩w⇀
25

3–√
v⇀

w⇀ ∥ ∥ =w⇀
50

3–√
v⇀ 60

w⇀ k k ∥k ∥= 60w⇀ *

∥k ∥ = k∥ ∥ = kw⇀ w⇀
50

3–√

k(  yd) = 60
50

3
–√

k =
60 3–√

50

k =
6 3–√

5

= k = k⟨20, 15, ⟩ = ⟨20, 15, ⟩ = ⟨24 , 18 , 30⟩v⇀ w⇀
25

3–√

6 3–√

5

25

3–√
3–√ 3–√

∥ ∥ = 60v⇀

∥ ∥ = = = = 60v⇀ (24 +(18 +(303
–√ )2 3

–√ )2 )2
− −−−−−−−−−−−−−−−−−−−−

√ 1728 +972 +900− −−−−−−−−−−−−−√ 3600
− −−−√

v⇀

 Note *

w⇀ v⇀

w⇀ v⇀

k

k

 Exercise 12.2.10

40 45° v⇀

v= ⟨16 , 12 , 20 ⟩2
–√ 2

–√ 2
–√

(x, y, z)
d ( , , )x1 y1 z1 ( , , )x2 y2 z2
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In three dimensions, the equations  and  describe planes that are parallel to the coordinate planes.
The standard equation of a sphere with center  and radius  is

In three dimensions, as in two, vectors are commonly expressed in component form, , or in terms of the standard
unit vectors, 
Properties of vectors in space are a natural extension of the properties for vectors in a plane. Let  and 

 be vectors, and let  be a scalar.

Scalar multiplication:

Vector addition:

Vector subtraction:

Vector magnitude:

Unit vector in the direction of :

Key Equations
Distance between two points in space:

Sphere with center  and radius :

Glossary

coordinate plane
a plane containing two of the three coordinate axes in the three-dimensional coordinate system, named by the axes it contains:
the -plane, -plane, or the -plane

right-hand rule
a common way to define the orientation of the three-dimensional coordinate system; when the right hand is curved around the 

-axis in such a way that the fingers curl from the positive -axis to the positive -axis, the thumb points in the direction of the
positive -axis

octants
the eight regions of space created by the coordinate planes

sphere
the set of all points equidistant from a given point known as the center

standard equation of a sphere

d = .( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

x = a, y = b, z = c

(a, b, c) r

(x−a +(y−b +(z−c = .)2 )2 )2 r2

= ⟨x, y, z⟩v⇀

= x +y +z .v⇀ î ĵ k̂

= ⟨ , , ⟩v⇀ x1 y1 z1

= ⟨ , , ⟩w⇀ x2 y2 z2 k

k = ⟨k , k , k ⟩v⇀ x1 y1 z1

+ = ⟨ , , ⟩+ ⟨ , , ⟩ = ⟨ + , + , + ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

− = ⟨ , , ⟩− ⟨ , , ⟩ = ⟨ − , − , − ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

∥ ∥ =v⇀ + +x2
1 y2

1 z2
1

− −−−−−−−−−
√

v⇀

= ⟨ , , ⟩ = ⟨ , , ⟩, ≠
v⇀

∥ ∥v⇀
1

∥ ∥v⇀
x1 y1 z1

x1

∥ ∥v⇀
y1

∥ ∥v⇀
z1

∥ ∥v⇀
v⇀ 0

⇀

d = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

(a, b, c) r

(x−a +(y−b +(z−c =)2 )2 )2 r2

xy xz yz

z x y

z
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 describes a sphere with center  and radius 

three-dimensional rectangular coordinate system
a coordinate system defined by three lines that intersect at right angles; every point in space is described by an ordered triple 

 that plots its location relative to the defining axes

Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

Example  has been modified by Doug Baldwin and Paul Seeburger to clarify the units of measurement that it uses and how
it uses them.

Paul Seeburger also created dynamic versions of Figures  and  using CalcPlot3D.

12.2: Vectors is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

12.2: Vectors in Three Dimensions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(x−a +(y−b +(z−c =)2 )2 )2 r2 (a, b, c) r

(x, y, z)

12.2.10

12.2.8, 12.2.9 12.2.13
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12.3: The Dot Product

Calculate the dot product of two given vectors.
Determine whether two given vectors are perpendicular.
Find the direction cosines of a given vector.
Explain what is meant by the vector projection of one vector onto another vector, and describe how to compute it.
Calculate the work done by a given force.

If we apply a force to an object so that the object moves, we say that work is done by the force. Previously, we looked at a constant
force and we assumed the force was applied in the direction of motion of the object. Under those conditions, work can be expressed
as the product of the force acting on an object and the distance the object moves. In this chapter, however, we have seen that both
force and the motion of an object can be represented by vectors.

In this section, we develop an operation called the dot product, which allows us to calculate work in the case when the force vector
and the motion vector have different directions. The dot product essentially tells us how much of the force vector is applied in the
direction of the motion vector. The dot product can also help us measure the angle formed by a pair of vectors and the position of a
vector relative to the coordinate axes. It even provides a simple test to determine whether two vectors meet at a right angle.

The Dot Product and Its Properties

We have already learned how to add and subtract vectors. In this chapter, we investigate two types of vector multiplication. The
first type of vector multiplication is called the dot product, based on the notation we use for it, and it is defined as follows:

The dot product of vectors  and  is given by the sum of the products of the components

Note that if  and  are two-dimensional vectors, we calculate the dot product in a similar fashion. Thus, if  and 
 then

When two vectors are combined under addition or subtraction, the result is a vector. When two vectors are combined using the dot
product, the result is a scalar. For this reason, the dot product is often called the scalar product. It may also be called the inner
product.

a. Find the dot product of  and .
b. Find the scalar product of  and 

Solution:

a. Substitute the vector components into the formula for the dot product:

b. The calculation is the same if the vectors are written using standard unit vectors. We still have three components for each
vector to substitute into the formula for the dot product:

 Learning Objectives

 Definition: dot product

= ⟨ , , ⟩u⇀ u1 u2 u3 = ⟨ , , ⟩v⇀ v1 v2 v3

⋅ = + + .u⇀ v⇀ u1v1 u2v2 u3v3

u v = ⟨ , ⟩u⇀ u1 u2

= ⟨ , ⟩,v⇀ v1 v2

⋅ = + .u⇀ v⇀ u1v1 u2v2

 Example : Calculating Dot Products12.3.1

= ⟨3, 5, 2⟩u⇀ = ⟨−1, 3, 0⟩v⇀

= 10 −4 +7p⇀ î ĵ k̂ = −2 + +6 .q⇀ î ĵ k̂

⋅u⇀ v⇀ = + +u1v1 u2v2 u3v3

= 3(−1) +5(3) +2(0)

= −3 +15 +0

= 12.
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Find , where  and 

Hint

Multiply corresponding components and then add their products.

Answer

Like vector addition and subtraction, the dot product has several algebraic properties. We prove three of these properties and leave
the rest as exercises.

Let , , and  be vectors, and let  be a scalar.

i. Commutative property

ii. Distributive property

iii. Associative property

iv. Property of magnitude

Let  and  Then

The associative property looks like the associative property for real-number multiplication, but pay close attention to the
difference between scalar and vector objects:

⋅p⇀ q⇀ = + +p1q1 p2q2 p3q3

= 10(−2) +(−4)(1) +(7)(6)

= −20 −4 +42

= 18.

 Exercise 12.3.1

⋅u
⇀

v
⇀ = ⟨2, 9, −1⟩u

⇀ = ⟨−3, 1, −4⟩.v
⇀

7

 Properties of the Dot Product

u
⇀

v
⇀

w
⇀ c

⋅ = ⋅u
⇀

v
⇀

v
⇀

u
⇀

⋅ ( + ) = ⋅ + ⋅u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

u
⇀

w
⇀

c( ⋅ ) = (c ) ⋅ = ⋅ (c )u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

⋅ = ∥v⇀ v⇀ v⇀∥2

 Proof

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩.v

⇀ v1 v2 v3

⋅u
⇀

v
⇀ = ⟨ , , ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= + +u1v1 u2v2 u3v3

= + +v1u1 v2u2 v3u3

= ⟨ , , ⟩ ⋅ ⟨ , , ⟩v1 v2 v3 u1 u2 u3

= ⋅ .v
⇀

u
⇀
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The proof that  is similar.

The fourth property shows the relationship between the magnitude of a vector and its dot product with itself:

□

Note that the definition of the dot product yields  By property iv. if  then 

Let , , and .

Find each of the following products.

a. 
b. 
c. 

Solution

a. Note that this expression asks for the scalar multiple of  by :

b. This expression is a dot product of vector  and scalar multiple 2 :

c. Simplifying this expression is a straightforward application of the dot product:

c( ⋅ )u⇀ v⇀ = c( + + )u1v1 u2v2 u3v3

= c( ) +c( ) +c( )u1v1 u2v2 u3v3

= (c ) +(c ) +(c )u1 v1 u2 v2 u3 v3

= ⟨c , c , c ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= c⟨ , , ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= (c ) ⋅ .u
⇀

v
⇀

c( ⋅ ) = ⋅ (c )u
⇀

v
⇀

u
⇀

v
⇀

⋅v
⇀

v
⇀ = ⟨ , , ⟩ ⋅ ⟨ , , ⟩v1 v2 v3 v1 v2 v3

= ( +( +(v1)2 v2)2 v3)2

= [ ]( +( +(v1)2 v2)2 v3)2
− −−−−−−−−−−−−−−−

√
2

= ∥ .v
⇀∥2

⋅ = 0.0
⇀

v
⇀ ⋅ = 0,v

⇀
v
⇀ = .v

⇀
0
⇀

 Example : Using Properties of the Dot Product12.3.2

= ⟨1, 2, −3⟩a
⇀ = ⟨0, 2, 4⟩b

⇀
= ⟨5, −1, 3⟩c

⇀

( ⋅ )a
⇀

b
⇀

c
⇀

⋅ (2 )a
⇀

c
⇀

∥b
⇀

∥2

c⇀ ⋅a⇀ b
⇀

( ⋅ )a
⇀

b
⇀

c
⇀ = (⟨1, 2, −3⟩ ⋅ ⟨0, 2, 4⟩)⟨5, −1, 3⟩

= (1(0) +2(2) +(−3)(4))⟨5, −1, 3⟩

= −8⟨5, −1, 3⟩

= ⟨−40, 8, −24⟩.

a
⇀

c
⇀

⋅ (2 )a
⇀

c
⇀ = 2( ⋅ )a

⇀
c
⇀

= 2(⟨1, 2, −3⟩ ⋅ ⟨5, −1, 3⟩)

= 2(1(5) +2(−1) +(−3)(3))

= 2(−6) = −12.
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Find the following products for , , and .

a. 
b. 

Hint

 is a scalar.

Answer

Using the Dot Product to Find the Angle between Two Vectors
When two nonzero vectors are placed in standard position, whether in two dimensions or three dimensions, they form an angle
between them (Figure ). The dot product provides a way to find the measure of this angle. This property is a result of the fact
that we can express the dot product in terms of the cosine of the angle formed by two vectors.

Figure : Let  be the angle between two nonzero vectors  and  such that .

The dot product of two vectors is the product of the magnitude of each vector and the cosine of the angle between them:

Place vectors  and  in standard position and consider the vector  (Figure ). These three vectors form a triangle
with side lengths , and .

Figure : The lengths of the sides of the triangle are given by the magnitudes of the vectors that form the triangle.

Recall from trigonometry that the law of cosines describes the relationship among the side lengths of the triangle and the angle 
. Applying the law of cosines here gives

∥b
⇀

∥2 = ⋅b
⇀

b
⇀

= ⟨0, 2, 4⟩ ⋅ ⟨0, 2, 4⟩

= + +02 22 42

= 0 +4 +16

= 20.

 Exercise 12.3.2

= ⟨7, 0, 2⟩p⇀ = ⟨−2, 2, −2⟩q⇀ = ⟨0, 2, −3⟩r⇀

( ⋅ )r
⇀

p
⇀

q
⇀

∥p
⇀∥2

⋅r
⇀

p
⇀

a. ( ⋅ ) = ⟨12, −12, 12⟩; b. ∥ = 53r
⇀

p
⇀

q
⇀

p
⇀∥2

12.3.1

12.3.1 θ u⇀ v⇀ 0 ≤ θ ≤ π

 Evaluating a Dot Product

⋅ = ∥ ∥∥ ∥ cosθ.u⇀ v⇀ u⇀ v⇀ (12.3.1)

 Proof

u⇀ v⇀ −v⇀ u⇀ 12.3.2
∥ ∥, ∥ ∥u⇀ v⇀ ∥ − ∥v⇀ u⇀

12.3.2

θ

∥ − = ∥ +∥ −2∥ ∥∥ ∥ cosθ.v
⇀

u
⇀∥2

u
⇀∥2

v
⇀∥2

u
⇀

v
⇀ (12.3.2)
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The dot product provides a way to rewrite the left side of Equation :

Substituting into the law of cosines yields

□

We can use the form of the dot product in Equation  to find the measure of the angle between two nonzero vectors by
rearranging Equation  to solve for the cosine of the angle:

Using this equation, we can find the cosine of the angle between two nonzero vectors. Since we are considering the smallest angle
between the vectors, we assume  (or  if we are working in radians). The inverse cosine is unique over
this range, so we are then able to determine the measure of the angle .

Find the measure of the angle between each pair of vectors.

a.  and 
b.  and 

Solution

a. To find the cosine of the angle formed by the two vectors, substitute the components of the vectors into Equation :

Therefore,  rad.

b. Start by finding the value of the cosine of the angle between the vectors:

12.3.2

∥ −v⇀ u⇀∥2 = ( − ) ⋅ ( − )v⇀ u⇀ v⇀ u⇀

= ( − ) ⋅ −( − ) ⋅v
⇀

u
⇀

v
⇀

v
⇀

u
⇀

u
⇀

= ⋅ − ⋅ − ⋅ + ⋅v
⇀

v
⇀

u
⇀

v
⇀

v
⇀

u
⇀

u
⇀

u
⇀

= ⋅ − ⋅ − ⋅ + ⋅v
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

u
⇀

= ∥ −2 ⋅ +∥ .v⇀∥2
u
⇀

v⇀ u
⇀∥2

∥ −v⇀ u⇀∥2

∥ −2 ⋅ +∥v
⇀∥2

u
⇀

v
⇀

u
⇀∥2

−2 ⋅u
⇀

v
⇀

⋅u⇀ v⇀

= ∥ +∥ −2∥ ∥∥ ∥ cosθu⇀∥2
v⇀∥2

u⇀ v⇀

= ∥ +∥ −2∥ ∥∥ ∥ cosθu
⇀∥2

v
⇀∥2

u
⇀

v
⇀

= −2∥ ∥∥ ∥ cosθu
⇀

v
⇀

= ∥ ∥∥ ∥ cosθ.u⇀ v⇀

12.3.1
12.3.1

cosθ = .
⋅u

⇀
v
⇀

∥ ∥∥ ∥u⇀ v⇀
(12.3.3)

0° ≤ θ ≤ 180° 0 ≤ θ ≤ π

θ

 Example : Finding the Angle between Two Vectors12.3.3

+ +î ĵ k̂ 2 – – 3î ĵ k̂

⟨2, 5, 6⟩ ⟨−2, −4, 4⟩

12.3.3

cosθ =
( + + ) ⋅ (2 − −3 )î ĵ k̂ î ĵ k̂

+ + ∥ ⋅ ∥ 2 − −3∥∥ î ĵ k̂ î ĵ k̂∥∥

=
1(2) +(1)(−1) +(1)(−3)

+ +12 12 12− −−−−−−−−−
√ +(−1 +(−322 )2 )2

− −−−−−−−−−−−−−−
√

= = .
−2

3–√ 14−−√

−2

42−−√

θ = arccos
−2

42
−−√

https://libretexts.org/
https://math.libretexts.org/@go/page/4526?pdf


12.3.6 https://math.libretexts.org/@go/page/4526

Now,  and , so .

Find the measure of the angle, in radians, formed by vectors  and . Round to the nearest hundredth.

Hint

Use the Equation .

Answer

 rad

The angle between two vectors can be acute  obtuse , or straight . If ,
then both vectors have the same direction. If , then the vectors, when placed in standard position, form a right angle
(Figure ). We can formalize this result into a theorem regarding orthogonal (perpendicular) vectors.

Figure : (a) An acute angle has . (b) An obtuse angle has  (c) A straight line has .
(d) If the vectors have the same direction, . (e) If the vectors are orthogonal (perpendicular), 

The nonzero vectors  and  are orthogonal vectors if and only if 

cosθ =
⟨2, 5, 6⟩ ⋅ ⟨−2, −4, 4⟩

∥⟨2, 5, 6⟩ ∥ ⋅ ∥ ⟨−2, −4, 4⟩∥

=
2(−2) +(5)(−4) +(6)(4)

+ +22 52 62− −−−−−−−−−√ (−2 +(−4 +)2 )2 42
− −−−−−−−−−−−−−−

√

= = 0.
0

65−−√ 36−−√

cosθ = 0 0 ≤ θ ≤ π θ = π/2

 Exercise 12.3.3

= ⟨1, 2, 0⟩a
⇀ = ⟨2, 4, 1⟩b

⇀

12.3.3

θ ≈ 0.22

(0 < cosθ < 1), (−1 < cosθ < 0) (cosθ = −1) cosθ = 1
cosθ = 0

12.3.3

12.3.3 0 < cos θ < 1 −1 < cos θ < 0. cos θ = −1
cos θ = 1 cos θ = 0.

 Orthogonal Vectors

u⇀ v⇀ ⋅ = 0.u⇀ v⇀
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Let  and  be nonzero vectors, and let  denote the angle between them. First, assume Then

However,  and  so we must have . Hence, , and the vectors are orthogonal.

Now assume  and  are orthogonal. Then  and we have

□

The terms orthogonal, perpendicular, and normal each indicate that mathematical objects are intersecting at right angles. The use
of each term is determined mainly by its context. We say that vectors are orthogonal and lines are perpendicular. The term normal
is used most often when measuring the angle made with a plane or other surface.

Determine whether  and  are orthogonal vectors.

Solution

Using the definition, we need only check the dot product of the vectors:

Because  the vectors are orthogonal (Figure ).

Figure : Vectors  and  form a right angle when their initial points are aligned.

For which value of  is  orthogonal to ?

Hint

Vectors  and  are orthogonal if and only if .

 Proof

u⇀ v⇀ θ ⋅ = 0.u⇀ v⇀

∥ ∥∥ ∥ cosθ = 0.u⇀ v⇀

∥ ∥ ≠ 0u⇀ ∥ ∥ ≠ 0,v⇀ cosθ = 0 θ = 90°

u
⇀

v
⇀ θ = 90°

⋅u
⇀

v
⇀ = ∥ ∥∥ ∥ cosθu

⇀
v
⇀

= ∥ ∥∥ ∥ cos 90°u⇀ v⇀

= ∥ ∥∥ ∥(0)u
⇀

v
⇀

= 0.

 Example : Identifying Orthogonal Vectors12.3.4

= ⟨1, 0, 5⟩p
⇀ = ⟨10, 3, −2⟩q

⇀

⋅ = 1(10) +(0)(3) +(5)(−2) = 10 +0 −10 = 0.p⇀ q⇀

⋅ = 0,p⇀ q⇀ 12.3.4

12.3.4 p⇀ q⇀

 Exercise 12.3.4

x = ⟨2, 8, −1⟩p
⇀ = ⟨x, −1, 2⟩q

⇀

p
⇀

q
⇀ ⋅ = 0p

⇀
q
⇀
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Answer

Let  Find the measures of the angles formed by the following vectors.

a.  and 
b.  and 
c.  and 

Solution

a.Let α be the angle formed by  and :

b. Let β represent the angle formed by  and :

c. Let γ represent the angle formed by  and :

Let  Find the measure of the angles formed by each pair of vectors.

a.  and 
b.  and 
c.  and 

Hint

 and 

Answer

 rad; b.  rad; c.  rad

The angle a vector makes with each of the coordinate axes, called a direction angle, is very important in practical computations,
especially in a field such as engineering. For example, in astronautical engineering, the angle at which a rocket is launched must be
determined very precisely. A very small error in the angle can lead to the rocket going hundreds of miles off course. Direction
angles are often calculated by using the dot product and the cosines of the angles, called the direction cosines. Therefore, we define
both these angles and their cosines.

x = 5

 Example : Measuring the Angle Formed by Two Vectors12.3.5

= ⟨2, 3, 3⟩.v
⇀

v⇀ î

v⇀ ĵ

v
⇀

k̂

v⇀ î

cosα

α

= = =
⋅v⇀ î

∥ ∥ ⋅ ∥ ∥v
⇀

î

⟨2, 3, 3⟩ ⋅ ⟨1, 0, 0⟩

+ +22 32 32− −−−−−−−−−
√ 1

–√

2

22−−√

= arccos ≈ 1.130 rad.
2

22
−−√

v
⇀

ĵ

cosβ

β

= = =
⋅v

⇀
ĵ

∥ ∥ ⋅ ∥ ∥v⇀ ĵ

⟨2, 3, 3⟩ ⋅ ⟨0, 1, 0⟩

+ +22 32 32− −−−−−−−−−
√ 1–√

3

22
−−√

= arccos ≈ 0.877 rad.
3

22
−−√

v
⇀

k̂

cosγ

γ

= = =
⋅v

⇀
k̂

∥ ∥ ⋅ ∥ ∥v
⇀

k̂

⟨2, 3, 3⟩ ⋅ ⟨0, 0, 1⟩

+ +22 32 32− −−−−−−−−−
√ 1

–√

3

22
−−√

= arccos ≈ 0.877 rad.
3

22
−−

√

 Exercise 12.3.5

= ⟨3, −5, 1⟩.v
⇀

v
⇀

î

v⇀ ĵ

v⇀ k̂

= ⟨1, 0, 0⟩, = ⟨0, 1, 0⟩,î ĵ = ⟨0, 0, 1⟩k̂

a.α ≈ 1.04 β ≈ 2.58 γ ≈ 1.40
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The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector (Figure ).
The cosines for these angles are called the direction cosines.

Figure : Angle  is formed by vector  and unit vector . Angle β is formed by vector  and unit vector . Angle γ is
formed by vector  and unit vector .

In Example , the direction cosines of  are  and . The direction

angles of  are  rad,  rad, and  rad.

So far, we have focused mainly on vectors related to force, movement, and position in three-dimensional physical space. However,
vectors are often used in more abstract ways. For example, suppose a fruit vendor sells apples, bananas, and oranges. On a given
day, he sells 30 apples, 12 bananas, and 18 oranges. He might use a quantity vector,  to represent the quantity of
fruit he sold that day. Similarly, he might want to use a price vector,  to indicate that he sells his apples for 50¢
each, bananas for 25¢ each, and oranges for $1 apiece. In this example, although we could still graph these vectors, we do not
interpret them as literal representations of position in the physical world. We are simply using vectors to keep track of particular
pieces of information about apples, bananas, and oranges.

This idea might seem a little strange, but if we simply regard vectors as a way to order and store data, we find they can be quite a
powerful tool. Going back to the fruit vendor, let’s think about the dot product, . We compute it by multiplying the number of
apples sold (30) by the price per apple (50¢), the number of bananas sold by the price per banana, and the number of oranges sold
by the price per orange. We then add all these values together. So, in this example, the dot product tells us how much money the
fruit vendor had in sales on that particular day.

When we use vectors in this more general way, there is no reason to limit the number of components to three. What if the fruit
vendor decides to start selling grapefruit? In that case, he would want to use four-dimensional quantity and price vectors to
represent the number of apples, bananas, oranges, and grapefruit sold, and their unit prices. As you might expect, to calculate the
dot product of four-dimensional vectors, we simply add the products of the components as before, but the sum has four terms
instead of three.

AAA Party Supply Store sells invitations, party favors, decorations, and food service items such as paper plates and napkins.
When AAA buys its inventory, it pays 25¢ per package for invitations and party favors. Decorations cost AAA 50¢ each, and
food service items cost 20¢ per package. AAA sells invitations for $2.50 per package and party favors for $1.50 per package.
Decorations sell for $4.50 each and food service items for $1.25 per package.

During the month of May, AAA Party Supply Store sells 1258 invitations, 342 party favors, 2426 decorations, and 1354 food
service items. Use vectors and dot products to calculate how much money AAA made in sales during the month of May. How
much did the store make in profit?

Solution

The cost, price, and quantity vectors are

 Definition: direction angles

12.3.5

12.3.5 α v⇀ î v⇀ ĵ

v⇀ k̂

12.3.5 = ⟨2, 3, 3⟩v
⇀ cosα = , cosβ = ,

2

22
−−√

3

22
−−√

cosγ =
3

22
−−√

v
⇀ α = 1.130 β = 0.877 γ = 0.877

= ⟨30, 12, 18⟩,q
⇀

= ⟨0.50, 0.25, 1⟩,p
⇀

⋅q⇀ p⇀

 Example : Using Vectors in an Economic Context12.3.6
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AAA sales for the month of May can be calculated using the dot product . We have

So, AAA took in $16,267.50 during the month of May. To calculate the profit, we must first calculate how much AAA paid for
the items sold. We use the dot product  to get

So, AAA paid $1,883.80 for the items they sold. Their profit, then, is given by

Therefore, AAA Party Supply Store made $14,383.70 in May.

On June 1, AAA Party Supply Store decided to increase the price they charge for party favors to $2 per package. They also
changed suppliers for their invitations, and are now able to purchase invitations for only 10¢ per package. All their other costs
and prices remain the same. If AAA sells 1408 invitations, 147 party favors, 2112 decorations, and 1894 food service items in
the month of June, use vectors and dot products to calculate their total sales and profit for June.

Hint

Use four-dimensional vectors for cost, price, and quantity sold.

Answer

Sales = $15,685.50; profit = $14,073.15

Projections
As we have seen, addition combines two vectors to create a resultant vector. But what if we are given a vector and we need to find
its component parts? We use vector projections to perform the opposite process; they can break down a vector into its components.
The magnitude of a vector projection is a scalar projection. For example, if a child is pulling the handle of a wagon at a 55° angle,
we can use projections to determine how much of the force on the handle is actually moving the wagon forward ( ). We return
to this example and learn how to solve it after we see how to calculate projections.

Figure : When a child pulls a wagon, only the horizontal component of the force propels the wagon forward.

c⇀

p
⇀

q
⇀

= ⟨0.25, 0.25, 0.50, 0.20⟩

= ⟨2.50, 1.50, 4.50, 1.25⟩

= ⟨1258, 342, 2426, 1354⟩.

⋅p
⇀

q
⇀

⋅p⇀ q⇀ = ⟨2.50, 1.50, 4.50, 1.25⟩ ⋅ ⟨1258, 342, 2426, 1354⟩

= 3145 +513 +10917 +1692.5

= 16267.5.

⋅c
⇀

q
⇀

⋅c
⇀

q
⇀ = ⟨0.25, 0.25, 0.50, 0.20⟩ ⋅ ⟨1258, 342, 2426, 1354⟩

= 314.5 +85.5 +1213 +270.8

= 1883.8.

⋅ − ⋅ = 16267.5 −1883.8 = 14383.7.p
⇀

q
⇀

c
⇀

q
⇀

 Exercise 12.3.6

12.3.6

12.3.6
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The vector projection of  onto  is the vector labeled  in Figure . It has the same initial point as  and  and
the same direction as , and represents the component of  that acts in the direction of . If  represents the angle between 
and , then, by properties of triangles, we know the length of  is  When expressing  in
terms of the dot product, this becomes

We now multiply by a unit vector in the direction of  to get :

The length of this vector is also known as the scalar projection of  onto  and is denoted by

Figure : The projection of  onto  shows the component of vector  in the direction of .

Find the projection of  onto .

a.  and 
b.  and 

Solution

a. Substitute the components of  and  into the formula for the projection:

b. To find the two-dimensional projection, simply adapt the formula to the two-dimensional case:

 Definition: Vector and Projection

v⇀ u⇀ proj
u⇀ v⇀ 12.3.7 u⇀ v⇀

u⇀ v⇀ u⇀ θ u⇀

v⇀ proj
u⇀ v⇀ ∥ ∥ = ∥ ∥ cosθ.proj

u⇀ v⇀ v⇀ cosθ

∥ ∥ = ∥ ∥ cosθ = ∥ ∥( ) =proj u⇀ v
⇀

v
⇀

v
⇀ ⋅u

⇀
v
⇀

∥ ∥∥ ∥u
⇀

v
⇀

⋅u
⇀

v
⇀

∥ ∥.u
⇀

u
⇀ proj u⇀ v

⇀

= ( ) = .proj u⇀ v
⇀ ⋅u

⇀
v
⇀

∥ ∥u
⇀

1

∥ ∥u
⇀ u

⇀ ⋅u
⇀

v
⇀

∥u
⇀∥2

u
⇀

v⇀ u
⇀

∥ ∥ = =proj u⇀ v⇀ compu⇀ v⇀
⋅u⇀ v⇀

∥ ∥.u⇀

12.3.7 v⇀ u⇀ v⇀ u⇀

 Example : Finding Projections12.3.7

v
⇀

u
⇀

= ⟨3, 5, 1⟩v⇀ = ⟨−1, 4, 3⟩u⇀

= 3 −2v⇀ î ĵ = +6u⇀ î ĵ

v
⇀

u
⇀

proj u⇀ v⇀ =
⋅u⇀ v⇀

∥u⇀∥2
u⇀

= ⟨−1, 4, 3⟩
⟨−1, 4, 3⟩ ⋅ ⟨3, 5, 1⟩

∥⟨−1, 4, 3⟩∥2

= ⟨−1, 4, 3⟩
−3 +20 +3

(−1 + +)2 42 32

= ⟨−1, 4, 3⟩
20

26

= ⟨− , , ⟩.
10

13

40

13

30

13
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Sometimes it is useful to decompose vectors—that is, to break a vector apart into a sum. This process is called the resolution of a
vector into components. Projections allow us to identify two orthogonal vectors having a desired sum. For example, let 

 and let  We want to decompose the vector  into orthogonal components such that one of the component
vectors has the same direction as .

We first find the component that has the same direction as  by projecting  onto . Let . Then, we have

Now consider the vector  We have

Clearly, by the way we defined , we have  and

Therefore,  and  are orthogonal.

Express  as a sum of orthogonal vectors such that one of the vectors has the same direction as 

Solution

Let  represent the projection of  onto :

proj u⇀ v⇀ =
⋅u⇀ v⇀

∥u⇀∥2
u⇀

= ( +6 )
( +6 ) ⋅ (3 −2 )î ĵ î ĵ

+6∥∥ î ĵ∥∥
2

î ĵ

= ( +6 )
1(3) +6(−2)

+12 62
î ĵ

= − ( +6 )
9

37
î ĵ

= − − .
9

37
î

54

37
ĵ

= ⟨6, −4⟩v⇀ = ⟨3, 1⟩.u⇀ v⇀

u⇀

u
⇀

v
⇀

u
⇀ =p

⇀ proj u⇀ v
⇀

=p
⇀ ⋅u

⇀
v
⇀

∥u
⇀∥2

u
⇀

=
18 −4

9 +1
u
⇀

= = ⟨3, 1⟩ = ⟨ , ⟩.
7

5
u⇀

7

5

21

5

7

5

= − .q⇀ v⇀ p⇀

= −q
⇀

v
⇀

p
⇀

= ⟨6, −4⟩− ⟨ , ⟩
21

5

7

5

= ⟨ , − ⟩.
9

5

27

5

q⇀ = + ,v⇀ q⇀ p⇀

⋅ = ⟨ , − ⟩ ⋅ ⟨ , ⟩q⇀ p⇀
9

5

27

5

21

5

7

5

= +−
9(21)

25

27(7)

25

= − = 0.
189

25

189

25

q⇀ p⇀

 Example : Resolving Vectors into Components12.3.8

= ⟨8, −3, −3⟩v
⇀ = ⟨2, 3, 2⟩.u

⇀

p
⇀

v
⇀

u
⇀
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Then,

To check our work, we can use the dot product to verify that  and  are orthogonal vectors:

Then,

Express  as a sum of orthogonal vectors such that one of the vectors has the same direction as .

Hint

Start by finding the projection of  onto .

Answer

 where  and 

A container ship leaves port traveling  north of east. Its engine generates a speed of 20 knots along that path (see the
following figure). In addition, the ocean current moves the ship northeast at a speed of 2 knots. Considering both the engine
and the current, how fast is the ship moving in the direction  north of east? Round the answer to two decimal places.

p⇀ = proj u⇀ v⇀

=
⋅u⇀ v⇀

∥u
⇀∥2

u⇀

= ⟨2, 3, 2⟩
⟨2, 3, 2⟩ ⋅ ⟨8, −3, −3⟩

∥⟨2, 3, 2⟩∥2

= ⟨2, 3, 2⟩
16 −9 −6

+ +22 32 22

= ⟨2, 3, 2⟩
1

17

= ⟨ , , ⟩.
2

17

3

17

2

17

q⇀ = − = ⟨8, −3, −3⟩− ⟨ , , ⟩v⇀ p⇀
2

17

3

17

2

17

= ⟨ , − , − ⟩.
134

17

54

17

53

17

p⇀ q⇀

⋅p
⇀

q
⇀ = ⟨ , , ⟩ ⋅ ⟨ , − , − ⟩

2

17

3

17

2

17

134

17

54

17

53

17

= − − = 0.
268

289

162

289

106

289

= + = ⟨ , , ⟩+ ⟨ , − , − ⟩.v⇀ p⇀ q⇀
2

17

3

17

2

17

134

17

54

17

53

17

 Exercise 12.3.7

= 5 −v⇀ î ĵ = 4 +2u⇀ î ĵ

v
⇀

u
⇀

= + ,v
⇀

p
⇀

q
⇀ = +p

⇀ 18

5
î

9

5
ĵ = −q

⇀ 7

5
î

14

5
ĵ

 Example : Scalar Projection of Velocity12.3.9

15°

15°
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Solution

Let  be the velocity vector generated by the engine, and let  be the velocity vector of the current. We already know 
 along the desired route. We just need to add in the scalar projection of  onto . We get

The ship is moving at 21.73 knots in the direction  north of east.

Repeat the previous example, but assume the ocean current is moving southeast instead of northeast, as shown in the following
figure.

Hint

Compute the scalar projection of  onto .

Answer

21 knots

Work
Now that we understand dot products, we can see how to apply them to real-life situations. The most common application of the
dot product of two vectors is in the calculation of work.

v⇀ w⇀

∥ ∥ = 20v⇀ w⇀ v⇀

=comp v⇀w⇀
⋅v⇀ w⇀

∥ ∥v⇀

= = ∥ ∥ cos(30°) = 2 = ≈ 1.73 knots.
∥ ∥∥ ∥ cos(30°)v⇀ w⇀

∥ ∥v⇀
w⇀

3–√

2
3–√

15°

 Exercise 12.3.8

w
⇀

v
⇀
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From physics, we know that work is done when an object is moved by a force. When the force is constant and applied in the same
direction the object moves, then we define the work done as the product of the force and the distance the object travels: .
We saw several examples of this type in earlier chapters. Now imagine the direction of the force is different from the direction of
motion, as with the example of a child pulling a wagon. To find the work done, we need to multiply the component of the force that
acts in the direction of the motion by the magnitude of the displacement. The dot product allows us to do just that. If we represent
an applied force by a vector  and the displacement of an object by a vector , then the work done by the force is the dot product
of  and .

When a constant force is applied to an object so the object moves in a straight line from point  to point , the work  done
by the force , acting at an angle θ from the line of motion, is given by

Let’s revisit the problem of the child’s wagon introduced earlier. Suppose a child is pulling a wagon with a force having a
magnitude of 8 lb on the handle at an angle of 55°. If the child pulls the wagon 50 ft, find the work done by the force (Figure 

).

Figure : The horizontal component of the force is the projection of  onto the positive -axis.

We have

In U.S. standard units, we measure the magnitude of force  in pounds. The magnitude of the displacement vector  tells

us how far the object moved, and it is measured in feet. The customary unit of measure for work, then, is the foot-pound. One foot-
pound is the amount of work required to move an object weighing 1 lb a distance of 1 ft straight up. In the metric system, the unit
of measure for force is the newton (N), and the unit of measure of magnitude for work is a newton-meter (N·m), or a joule (J).

A conveyor belt generates a force  that moves a suitcase from point  to point  along a
straight line. Find the work done by the conveyor belt. The distance is measured in meters and the force is measured in
newtons.

Solution

The displacement vector  has initial point  and terminal point :

Work is the dot product of force and displacement:

W = Fd

F
⇀

s⇀

F
⇀

s
⇀

 Definition: Constant Force

P Q W

F
⇀

W = ⋅ =∥ ∥∥ ∥ cosθ.F
⇀

PQ
−−⇀

F
⇀

PQ
−−⇀

12.3.8

12.3.8 F
⇀

x

W =∥ ∥∥ ∥ cosθ = 8(50)(cos(55°)) ≈ 229 ft⋅lb.F
⇀

PQ
−−⇀

∥∥F
⇀∥∥

∥
∥PQ

−−⇀∥
∥

 Example : Calculating Work12.3.10

= 5 −3 +F
⇀

î ĵ k̂ (1, 1, 1) (9, 4, 7)

PQ
−−⇀

(1, 1, 1) (9, 4, 7)

= ⟨9 −1, 4 −1, 7 −1⟩ = ⟨8, 3, 6⟩ = 8 +3 +6 .PQ
−−⇀

î ĵ k̂
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A constant force of 30 lb is applied at an angle of 60° to pull a handcart 10 ft across the ground. What is the work done by this
force?

Hint

Use the definition of work as the dot product of force and distance.

Answer

150 ft-lb

Key Concepts
The dot product, or scalar product, of two vectors  and  is .
The dot product satisfies the following properties:

The dot product of two vectors can be expressed, alternatively, as  This form of the dot product is useful
for finding the measure of the angle formed by two vectors.
Vectors  and  are orthogonal if .
The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector. The cosines of
these angles are known as the direction cosines.

The vector projection of  onto  is the vector . The magnitude of this vector is known as the scalar

projection of  onto , given by .

Work is done when a force is applied to an object, causing displacement. When the force is represented by the vector  and the
displacement is represented by the vector , then the work done  is given by the formula 

W

= 5(8) +(−3)(3) +1(6)

= ⋅F
⇀

PQ
−−⇀

= (5 −3 + ) ⋅ (8 +3 +6 )î ĵ k̂ î ĵ k̂

= 37 N⋅m

= 37 J

 Exercise 12.3.9

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3 ⋅ = + +u
⇀

v
⇀ u1v1 u2v2 u3v3

⋅ = ⋅u⇀ v⇀ v⇀ u⇀

⋅ ( + ) = ⋅ + ⋅u⇀ v⇀ w⇀ u⇀ v⇀ u⇀ w⇀

c( ⋅ ) = (c ) ⋅ = ⋅ (c )u⇀ v⇀ u⇀ v⇀ u⇀ v⇀

⋅ = ∥v
⇀

v
⇀

v
⇀∥2

⋅ = ∥ ∥∥ ∥ cosθ.u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀ ⋅ = 0u

⇀
v
⇀

v
⇀

u
⇀ =proj u⇀ v

⇀ ⋅u
⇀

v
⇀

∥u⇀∥2
u
⇀

v⇀ u⇀ =comp
u⇀ v⇀

⋅u⇀ v⇀

∥ ∥u
⇀

F
⇀

s
⇀ W W = ⋅ =∥ ∥ ∥ ∥ cosθ.F

⇀
s
⇀

F
⇀

s
⇀
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Key Equations
Dot product of  and 

Cosine of the angle formed by  and 

Vector projection of  onto 

Scalar projection of  onto 

Work done by a force  to move an object through displacement vector 

Glossary

direction angles
the angles formed by a nonzero vector and the coordinate axes

direction cosines
the cosines of the angles formed by a nonzero vector and the coordinate axes

dot product or scalar product
 where  and 

scalar projection
the magnitude of the vector projection of a vector

orthogonal vectors
vectors that form a right angle when placed in standard position

vector projection
the component of a vector that follows a given direction

work done by a force

work is generally thought of as the amount of energy it takes to move an object; if we represent an applied force by a vector 
and the displacement of an object by a vector , then the work done by the force is the dot product of  and .
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licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

edited for vector notation by Paul Seeburger
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12.3: The Dot Product by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

u
⇀

v
⇀

⋅ = + + = ∥ ∥∥ ∥ cosθu⇀ v⇀ u1v1 u2v2 u3v3 u⇀ v⇀

u
⇀

v
⇀

cosθ =
⋅u⇀ v⇀

∥ ∥∥ ∥u⇀ v⇀

v
⇀

u
⇀

=proj u⇀ v⇀
⋅u⇀ v⇀

∥u
⇀∥2

u⇀

v⇀ u
⇀

=compu⇀ v
⇀ ⋅u

⇀
v
⇀

∥ ∥u
⇀

F
⇀

PQ
−−⇀

W = ⋅ =∥ ∥∥ ∥ cosθF
⇀

PQ
−−⇀

F
⇀

PQ
−−⇀

⋅ = + +u
⇀

v
⇀ u1v1 u2v2 u3v3 = ⟨ , , ⟩u

⇀ u1 u2 u3 = ⟨ , , ⟩v
⇀ v1 v2 v3

F
⇀

s
⇀

F
⇀

s
⇀
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12.4: The Cross Product

Calculate the cross product of two given vectors.
Use determinants to calculate a cross product.
Find a vector orthogonal to two given vectors.
Determine areas and volumes by using the cross product.
Calculate the torque of a given force and position vector.

Imagine a mechanic turning a wrench to tighten a bolt. The mechanic applies a force at the end of the wrench. This creates rotation,
or torque, which tightens the bolt. We can use vectors to represent the force applied by the mechanic, and the distance (radius) from
the bolt to the end of the wrench. Then, we can represent torque by a vector oriented along the axis of rotation. Note that the torque
vector is orthogonal to both the force vector and the radius vector.

In this section, we develop an operation called the cross product, which allows us to find a vector orthogonal to two given vectors.
Calculating torque is an important application of cross products, and we examine torque in more detail later in the section.

The Cross Product and Its Properties

The dot product is a multiplication of two vectors that results in a scalar. In this section, we introduce a product of two vectors that
generates a third vector orthogonal to the first two. Consider how we might find such a vector. Let  and 

 be nonzero vectors. We want to find a vector  orthogonal to both  and —that is, we want to
find  such that  and . Therefore, ,  and  must satisfy

If we multiply the top equation by  and the bottom equation by  and subtract, we can eliminate the variable , which gives

If we select

we get a possible solution vector. Substituting these values back into the original equations (Equations  and ) gives

That is, vector

is orthogonal to both  and , which leads us to define the following operation, called the cross product.

Let  and  Then, the cross product  is vector

From the way we have developed , it should be clear that the cross product is orthogonal to both  and . However, it never
hurts to check. To show that  is orthogonal to , we calculate the dot product of  and .

 Learning Objectives

= ⟨ , , ⟩u
⇀ u1 u2 u3

= ⟨ , , ⟩v
⇀ v1 v2 v3 = ⟨ , , ⟩w

⇀ w1 w2 w3 u
⇀

v
⇀

w
⇀ ⋅ = 0u

⇀
w
⇀ ⋅ = 0v

⇀
w
⇀ w1 ,w2 w3

+ + = 0u1w1 u2w2 u3w3 (12.4.1)

+ + = 0.v1w1 v2w2 v3w3 (12.4.2)

v3 u3 w3

( − ) +( − ) = 0.u1v3 v1u3 w1 u2v3 v2u3 w2

w1

w2

= −u2v3 u3v2

= −( − ),u1v3 u3v1

12.4.1 12.4.2

= − .w3 u1v2 u2v1

= ⟨ − , −( − ), − ⟩w⇀ u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

u⇀ v⇀

 Definition: Cross Product

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩.v

⇀ v1 v2 v3 ×u
⇀

v
⇀

×u
⇀

v
⇀ = ( − ) −( − ) +( − )u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

= ⟨ − , −( − ), − ⟩.u2v3 u3v2 u1v3 u3v1 u1v2 u2v1 (12.4.3)

×u
⇀

v
⇀

u
⇀

v
⇀

×u
⇀

v
⇀

u
⇀

u
⇀ ×u

⇀
v
⇀
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In a similar manner, we can show that the cross product is also orthogonal to .

The cross product  (vertical, in pink) changes as the angle between the vectors  (blue) and  (red) changes. The cross
product (purple) is always perpendicular to both vectors, and has magnitude zero when the vectors are parallel and maximum
magnitude  when they are perpendicular. (Public Domain; LucasVB).

Let  and  (Figure ). Find .

Figure : Finding a cross product to two given vectors.

Solution

Substitute the components of the vectors into Equation :

⋅ ( × )u⇀ u⇀ v⇀ = ⟨ , , ⟩ ⋅ ⟨ − , − + , − ⟩u1 u2 u3 u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

= ( − ) + (− + ) + ( − )u1 u2v3 u3v2 u2 u1v3 u3v1 u3 u1v2 u2v1

= − − + + −u1u2v3 u1u3v2 u1u2v3 u2u3v1 u1u3v2 u2u3v1

= ( − ) +(− + ) +( − )u1u2v3 u1u2v3 u1u3v2 u1u3v2 u2u3v1 u2u3v1

= 0

v⇀

×a⇀ b
⇀

a⇀ b
⇀

∥ ∥∥ ∥a
⇀

b
⇀

 Example : Finding a Cross Product12.4.1

= ⟨−1, 2, 5⟩p
⇀ = ⟨4, 0, −3⟩q

⇀ 12.4.1 ×p
⇀

q
⇀

12.4.1

12.4.3

×p⇀ q⇀ = ⟨−1, 2, 5⟩× ⟨4, 0, −3⟩

= ⟨ − , −( − ), − ⟩p2q3 p3q2 p1q3 p3q1 p1q2 p2q1

= ⟨2(−3) −5(0), −(−1)(−3) +5(4), (−1)(0) −2(4)⟩

= ⟨−6, 17, −8⟩.
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Find  for  and  Express the answer using standard unit vectors.

Hint

Use the formula 

Answer

Although it may not be obvious from Equation , the direction of  is given by the right-hand rule. If we hold the right
hand out with the fingers pointing in the direction of , then curl the fingers toward vector , the thumb points in the direction of
the cross product, as shown in Figure .

Figure : The direction of  is determined by the right-hand rule.

Notice what this means for the direction of . If we apply the right-hand rule to , we start with our fingers pointed in
the direction of , then curl our fingers toward the vector . In this case, the thumb points in the opposite direction of . (Try
it!)

Let  and . Calculate  and  and graph them.

Figure : Are the cross products  and  in the same direction?

Solution

We have

 Exercise 12.4.1

×p⇀ q⇀ = ⟨5, 1, 2⟩p⇀ = ⟨−2, 0, 1⟩.q⇀

× = ( − ) −( − ) +( − ) .u
⇀

v
⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

× = −9 +2p
⇀

q
⇀

î ĵ k̂

12.4.3 ×u
⇀

v
⇀

u
⇀

v
⇀

12.4.2

12.4.2 ×u⇀ v⇀

×v⇀ u⇀ ×v⇀ u⇀

v⇀ u⇀ ×u⇀ v⇀

 Example : Anticommutativity of the Cross Product12.4.2

= ⟨0, 2, 1⟩u
⇀ = ⟨3, −1, 0⟩v⇀ ×u

⇀
v⇀ ×v⇀ u

⇀

12.4.3 ×u
⇀

v
⇀ ×v

⇀
u
⇀

× = ⟨(0 +1), −(0 −3), (0 −6)⟩ = ⟨1, 3, −6⟩u
⇀

v
⇀

https://libretexts.org/
https://math.libretexts.org/@go/page/4527?pdf


12.4.4 https://math.libretexts.org/@go/page/4527

We see that, in this case,  (Figure ). We prove this in general later in this section.

Figure : The cross products  and  are both orthogonal to  and , but in opposite directions.

Suppose vectors  and  lie in the -plane (the -component of each vector is zero). Now suppose the - and -components
of  and the -component of  are all positive, whereas the -component of  is negative. Assuming the coordinate axes are
oriented in the usual positions, in which direction does  point?

Hint

Remember the right-hand rule (Figure ).

Answer

Up (the positive -direction)

The cross products of the standard unit vectors , , and  can be useful for simplifying some calculations, so let’s consider these
cross products. A straightforward application of the definition shows that

(The cross product of two vectors is a vector, so each of these products results in the zero vector, not the scalar .) It’s up to you to
verify the calculations on your own.

Furthermore, because the cross product of two vectors is orthogonal to each of these vectors, we know that the cross product of 
and  is parallel to . Similarly, the vector product of  and  is parallel to , and the vector product of  and  is parallel to .

We can use the right-hand rule to determine the direction of each product. Then we have

× = ⟨(−1 −0), −(3 −0), (6 −0)⟩ = ⟨−1, −3, 6⟩.v
⇀

u
⇀

× = −( × )u⇀ v⇀ v⇀ u⇀ 12.4.4

12.4.4 ×u⇀ v⇀ ×v⇀ u⇀ u⇀ v⇀

 Exercise 12.4.2

u⇀ v⇀ xy z x y

u⇀ y v⇀ x v⇀

×u⇀ v⇀

12.4.2

z

î ĵ k̂

× = × = × = .î î ĵ ĵ k̂ k̂ 0
⇀

0

î

ĵ k̂ î k̂ ĵ ĵ k̂ î
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These formulas come in handy later.

Find .

Solution

We know that . Therefore, 

Find 

Hint

Remember the right-hand rule (Figure ).

Answer

As we have seen, the dot product is often called the scalar product because it results in a scalar. The cross product results in a
vector, so it is sometimes called the vector product. These operations are both versions of vector multiplication, but they have very
different properties and applications. Let’s explore some properties of the cross product. We prove only a few of them. Proofs of
the other properties are left as exercises.

Let  and  be vectors in space, and let  be a scalar.

i. Anticommutative property:

ii. Distributive property:

iii. Multiplication by a constant:

iv. Cross product of the zero vector:

v. Cross product of a vector with itself:

×î ĵ

×ĵ î

×ĵ k̂

×k̂ ĵ

×k̂ î

×î k̂

= k̂

= −k̂

= î

= − î

= ĵ

= − .ĵ

 Example : Cross Product of Standard Unit Vectors12.4.3

×( × )î ĵ k̂

× =ĵ k̂ î ×( × ) = × = .î ĵ k̂ î î 0
⇀

 Exercise 12.4.3

( × ) ×( × ).î ĵ k̂ î

12.4.2

− î

 Properties of the Cross Product

, ,u⇀ v⇀ w⇀ c

× = −( × )u
⇀

v
⇀

v
⇀

u
⇀

×( + ) = × + ×u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

u
⇀

w
⇀

c( × ) = (c ) × = ×(c )u⇀ v⇀ u⇀ v⇀ u⇀ v⇀

× = × =u⇀ 0
⇀

0
⇀

u⇀ 0
⇀

× =v⇀ v⇀ 0
⇀
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vi. Scalar triple product:

For property , we want to show  We have

Unlike most operations we’ve seen, the cross product is not commutative. This makes sense if we think about the right-hand
rule.

For property ., this follows directly from the definition of the cross product. We have

Then, by property i.,  as well. Remember that the dot product of a vector and the zero vector is the scalar ,
whereas the cross product of a vector with the zero vector is the vector .

Property . looks like the associative property, but note the change in operations:

Use the cross product properties to calculate 

Solution

Use the properties of the cross product to calculate 

Hint

⋅ ( × ) = ( × ) ⋅u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

w
⇀

 Proof

i × = −( × ).u
⇀

v
⇀

v
⇀

u
⇀

×u
⇀

v
⇀ = ⟨ , , ⟩× ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= ⟨ − , − + , − ⟩u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

= −⟨ − , − + , − ⟩u3v2 u2v3 u3v1 u1v3 u2v1 u1v2

= −⟨ , , ⟩× ⟨ , , ⟩v1 v2 v3 u1 u2 u3

= −( × ).v
⇀

u
⇀

iv

× = ⟨ (0) − (0), −( (0) − (0)), (0) − (0)⟩ = ⟨0, 0, 0⟩ = .u⇀ 0
⇀

u2 u3 u1 u3 u1 u2 0
⇀

× =0
⇀

u⇀ 0
⇀

0

0
⇀

vi

⋅ ( × )u
⇀

v
⇀

w
⇀ = u ⋅ ⟨ − , − + , − ⟩v2w3 v3w2 v1w3 v3w1 v1w2 v2w1

= ( − ) + (− + ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= − − + + −u1v2w3 u1v3w2 u2v1w3 u2v3w1 u3v1w2 u3v2w1

= ( − ) +( − ) +( − )u2v3 u3v2 w1 u3v1 u1v3 w2 u1v2 u2v1 w3

= ⟨ − , − , − ⟩ ⋅ ⟨ , , ⟩ = ( × ) ⋅ .u2v3 u3v2 u3v1 u1v3 u1v2 u2v1 w1 w2 w3 u⇀ v⇀ w⇀

□

 Example : Using the Properties of the Cross Product12.4.4

(2 ×3 ) × .î ĵ ĵ

(2 ×3 ) ×î ĵ ĵ = 2( ×3 ) ×î ĵ ĵ

= 2(3)( × ) ×î ĵ ĵ

= (6 ) ×k̂ ĵ

= 6( × )k̂ ĵ

= 6(− ) = −6 .î î

 Exercise 12.4.4

( × ) ×( × ).î k̂ k̂ ĵ

× = −( × )u
⇀

v
⇀

v
⇀

u
⇀
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Answer

So far in this section, we have been concerned with the direction of the vector , but we have not discussed its magnitude. It
turns out there is a simple expression for the magnitude of  involving the magnitudes of  and , and the sine of the angle
between them.

Let  and  be vectors, and let  be the angle between them. Then, 

Let  and  be vectors, and let  denote the angle between them. Then

Taking square roots and noting that  for  we have the desired result:

□

This definition of the cross product allows us to visualize or interpret the product geometrically. It is clear, for example, that the
cross product is defined only for vectors in three dimensions, not for vectors in two dimensions. In two dimensions, it is impossible
to generate a vector simultaneously orthogonal to two nonparallel vectors.

Use "Magnitude of the Cross Product" to find the magnitude of the cross product of  and .

Solution

We have

−k̂

×u
⇀

v⇀

×u
⇀

v⇀ u
⇀

v⇀

 Magnitude of the Cross Product

u
⇀

v
⇀ θ ∥ × ∥ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθ.u

⇀
v
⇀

u
⇀

v
⇀

 Proof

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3 θ

∥ ×u
⇀

v
⇀∥2 = ( − +( − +( −u2v3 u3v2)2 u3v1 u1v3)2 u1v2 u2v1)2

= −2 + + −2 + + −2 +u2
2v

2
3 u2u3v2v3 u2

3v
2
2 u2

3v
2
1 u1u3v1v3 u2

1v
2
3 u2

1v
2
2 u1u2v1v2 u2

2v
2
1

= + + + + + + + +u2
1v

2
1 u2

1v
2
2 u2

1v
2
3 u2

2v
2
1 u2

2v
2
2 u2

2v
2
3 u2

3v
2
1 u2

3v
2
2 u2

3v
2
3

−( + + +2 +2 +2 )u2
1v

2
1 u2

2v
2
2 u2

3v
2
3 u1u2v1v2 u1u3v1v3 u2u3v2v3

= ( + + )( + + ) −( + +u2
1 u2

2 u2
3 v2

1 v2
2 v2

3 u1v1 u2v2 u3v3)2

= ∥ ∥ −( ⋅u⇀∥2
v⇀∥2

u⇀ v⇀)2

= ∥ ∥ −∥ ∥ θu
⇀∥2

v
⇀∥2

u
⇀∥2

v
⇀∥2 cos2

= ∥ ∥ (1 − θ)u
⇀∥2

v
⇀∥2 cos2

= ∥ ∥ ( θ).u⇀∥2
v⇀∥2 sin2

= sinθθsin2− −−−−√ 0 ≤ θ ≤ 180°,

∥ × ∥ = ∥ ∥∥ ∥ sinθ.u
⇀

v
⇀

u
⇀

v
⇀

 Example : Calculating the Cross Product12.4.5

= ⟨0, 4, 0⟩u
⇀ = ⟨0, 0, −3⟩v

⇀

∥ × ∥u⇀ v⇀ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθu⇀ v⇀

= ⋅ ⋅ sin+ +02 42 02− −−−−−−−−−
√ + +(−302 02 )2

− −−−−−−−−−−−−
√

π

2

= 4(3)(1) = 12
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Use "Magnitude of the Cross Product" to find the magnitude of , where  and .

Hint

Vectors  and  are orthogonal.

Answer

16

Determinants and the Cross Product

Using Equation  to find the cross product of two vectors is straightforward, and it presents the cross product in the useful
component form. The formula, however, is complicated and difficult to remember. Fortunately, we have an alternative. We can
calculate the cross product of two vectors using determinant notation.

A  determinant is defined by

For example,

A  determinant is defined in terms of  determinants as follows:

Equation  is referred to as the expansion of the determinant along the first row. Notice that the multipliers of each of the 
 determinants on the right side of this expression are the entries in the first row of the  determinant. Furthermore, each

of the  determinants contains the entries from the  determinant that would remain if you crossed out the row and column
containing the multiplier. Thus, for the first term on the right,  is the multiplier, and the  determinant contains the entries
that remain if you cross out the first row and first column of the  determinant. Similarly, for the second term, the multiplier is 

, and the  determinant contains the entries that remain if you cross out the first row and second column of the 
determinant. Notice, however, that the coefficient of the second term is negative. The third term can be calculated in similar
fashion.

Evaluate the determinant .

Solution

We have

 Exercise 12.4.5

×u⇀ v⇀ = ⟨−8, 0, 0⟩u⇀ = ⟨0, 2, 0⟩v⇀

u
⇀

v
⇀

12.4.3

2 ×2

= − .
∣

∣
∣
a1

a2

b1

b2

∣

∣
∣ a1b2 b1a2

= 3(1) −5(−2) = 3 +10 = 13.
∣

∣
∣
3

5

−2

1

∣

∣
∣

3 ×3 2 ×2

= − + .

∣

∣

∣
∣

a1

b1

c1

a2

b2

c2

a3

b3

c3

∣

∣

∣
∣ a1

∣

∣
∣
b2

c2

b3

c3

∣

∣
∣ a2

∣

∣
∣
b1

c1

b3

c3

∣

∣
∣ a3

∣

∣
∣
b1

c1

b2

c2

∣

∣
∣ (12.4.4)

12.4.4
2 ×2 3 ×3

2 ×2 3 ×3
a1 2 ×2
3 ×3

a2 2 ×2 3 ×3

 Example : Using Expansion Along the First Row to Compute a  Determinant12.4.6 3 × 3

∣

∣

∣
∣

2

−1

−2

5

1

3

−1

3

4

∣

∣

∣
∣

∣

∣

∣
∣

2

−1

−2

5

1

3

−1

3

4

∣

∣

∣
∣ = 2 −5 −1

∣

∣
∣
1

3

3

4

∣

∣
∣

∣

∣
∣
−1

−2

3

4

∣

∣
∣

∣

∣
∣
−1

−2

1

3

∣

∣
∣

= 2(4 −9) −5(−4 +6) −1(−3 +2)

= 2(−5) −5(2) −1(−1) = −10 −10 +1

= −19
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Evaluate the determinant .

Hint

Expand along the first row. Don’t forget the second term is negative!

Answer

40

Technically, determinants are defined only in terms of arrays of real numbers. However, the determinant notation provides a useful
mnemonic device for the cross product formula.

Let  and  be vectors. Then the cross product  is given by

Let  and . Find .

Solution

We set up our determinant by putting the standard unit vectors across the first row, the components of  in the second row, and
the components of  in the third row. Then, we have

Notice that this answer confirms the calculation of the cross product in Example .

Use determinant notation to find , where  and 

Hint

Calculate the determinant .

Answer

 Exercise 12.4.6

∣

∣

∣
∣

1

3

1

−2

2

5

−1

−3

4

∣

∣

∣
∣

 Rule: Cross Product Calculated by a Determinant

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3 ×u
⇀

v
⇀

× = = − + .u
⇀

v
⇀

∣

∣

∣
∣
∣

î

u1

v1

ĵ

u2

v2

k̂

u3

v3

∣

∣

∣
∣
∣

∣

∣
∣
u2

v2

u3

v3

∣

∣
∣ î

∣

∣
∣
u1

v1

u3

v3

∣

∣
∣ ĵ

∣

∣
∣
u1

v1

u2

v2

∣

∣
∣ k̂

 Example : Using Determinant Notation to find 12.4.7 ×p⇀ q⇀

= ⟨−1, 2, 5⟩p⇀ = ⟨4, 0, −3⟩q⇀ ×p⇀ q⇀

u
⇀

v⇀

×p
⇀

q
⇀ = = − +

∣

∣

∣
∣
∣

î

−1

4

ĵ

2

0

k̂

5

−3

∣

∣

∣
∣
∣

∣

∣
∣
2

0

5

−3

∣

∣
∣ î

∣

∣
∣
−1

4

5

−3

∣

∣
∣ ĵ

∣

∣
∣
−1

4

2

0

∣

∣
∣ k̂

= (−6 −0) −(3 −20) +(0 −8)î ĵ k̂

= −6 +17 −8 .î ĵ k̂

12.4.1

 Exercise 12.4.7

×a
⇀

b
⇀

= ⟨8, 2, 3⟩a
⇀ = ⟨−1, 0, 4⟩.b

⇀

∣

∣

∣
∣
∣

î ĵ k̂

8

−1

2

0

3

4

∣

∣

∣
∣
∣

× = 8 −35 +2a
⇀

b
⇀

î ĵ k̂
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Using the Cross Product
The cross product is very useful for several types of calculations, including finding a vector orthogonal to two given vectors,
computing areas of triangles and parallelograms, and even determining the volume of the three-dimensional geometric shape made
of parallelograms known as a parallelepiped. The following examples illustrate these calculations.

Let  and . Find a unit vector orthogonal to both  and .

Solution

The cross product  is orthogonal to both vectors  and . We can calculate it with a determinant:

Normalize this vector to find a unit vector in the same direction:

.

Thus,  is a unit vector orthogonal to  and .

Simplified, this vector becomes .

Find a unit vector orthogonal to both  and , where  and 

Hint

Normalize the cross product.

Answer

 or, simplified as 

To use the cross product for calculating areas, we state and prove the following theorem.

If we locate vectors  and  such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given
by  (Figure ).

Figure : The parallelogram with adjacent sides  and  has base  and height .

 Example : Finding a Unit Vector Orthogonal to Two Given Vectors12.4.8

= ⟨5, 2, −1⟩a⇀ = ⟨0, −1, 4⟩b
⇀

a⇀ b
⇀

×a
⇀

b
⇀

a
⇀

b
⇀

×a⇀ b
⇀

= = − +

∣

∣

∣
∣
∣

î

5

0

ĵ

2

−1

k̂

−1

4

∣

∣

∣
∣
∣

∣

∣
∣

2

−1

−1

4

∣

∣
∣ î

∣

∣
∣
5

0

−1

4

∣

∣
∣ ĵ

∣

∣
∣
5

0

2

−1

∣

∣
∣ k̂

= (8 −1) −(20 −0) +(−5 −0)î ĵ k̂

= 7 −20 −5 .î ĵ k̂

∥ × ∥ = =a
⇀

b
⇀

(7 +(−20 +(−5)2 )2 )2− −−−−−−−−−−−−−−−−−√ 474
−−−√

⟨ , , ⟩
7

474
−−−

√

−20

474
−−−

√

−5

474
−−−

√
a
⇀

b
⇀

⟨ , , ⟩
7 474−−−√

474

−10 474−−−√

237

−5 474−−−√

474

 Exercise 12.4.8

a⇀ b
⇀

= ⟨4, 0, 3⟩a⇀ = ⟨1, 1, 4⟩.b
⇀

⟨ , , ⟩
−3

194−−−√

−13

194−−−√

4

194−−−√
⟨ , , ⟩

−3 194−−−√

194

−13 194−−−√

194

2 194−−−√

97

 Area of a Parallelogram

u⇀ v⇀

∥ × ∥u⇀ v⇀ 12.4.5

12.4.5 u⇀ v⇀ ∥ ∥u⇀ ∥ ∥ sin θv⇀
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We show that the magnitude of the cross product is equal to the base times height of the parallelogram.

□

Let  and  be the vertices of a triangle (Figure ). Find its area.

Figure : Finding the area of a triangle by using the cross product.

Solution

We have  and . The area of the

parallelogram with adjacent sides  and  is given by :

The area of  is half the area of the parallelogram or .

Find the area of the parallelogram  with vertices , , , and .

Hint

Sketch the parallelogram and identify two vectors that form adjacent sides of the parallelogram.

 Proof

Area of a parallelogram = base ×height

= ∥ ∥(∥ ∥ sinθ)u⇀ v⇀

= ∥ × ∥u
⇀

v
⇀

 Example : Finding the Area of a Triangle12.4.9

P = (1, 0, 0),Q = (0, 1, 0), R = (0, 0, 1) 12.4.6

12.4.6

= ⟨0 −1, 1 −0, 0 −0⟩ = ⟨−1, 1, 0⟩PQ
−−⇀

= ⟨0 −1, 0 −0, 1 −0⟩ = ⟨−1, 0, 1⟩PR
−−⇀

PQ
−−⇀

PR
−−⇀

×∥
∥PQ

−−⇀
PR
−−⇀∥

∥

×PQ
−−⇀

PR
−−⇀

×∥
∥PQ

−−⇀
PR
−−⇀∥

∥

=

∣

∣

∣
∣
∣

î

−1

−1

ĵ

1

0

k̂

0

1

∣

∣

∣
∣
∣

= (1 −0) −(−1 −0) +(0 −(−1))î ĵ k̂

= + +î ĵ k̂

=∥ ⟨1, 1, 1⟩∥

= + +12 12 12− −−−−−−−−−
√

= .3–√

ΔPQR /23–√ units2

 Exercise 12.4.9

PQRS P (1, 1, 0) Q(7, 1, 0) R(9, 4, 2) S(3, 4, 2)
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Answer

The Triple Scalar Product
Because the cross product of two vectors is a vector, it is possible to combine the dot product and the cross product. The dot
product of a vector with the cross product of two other vectors is called the triple scalar product because the result is a scalar.

The triple scalar product of vectors ,  and  is

The triple scalar product of vectors

and

is the determinant of the  matrix formed by the components of the vectors:

The calculation is straightforward.

□

Let  and . Calculate the triple scalar product 

Solution

Apply Equation  directly:

6 13
−−

√ units2

 Definition: Triple Scalar Product

u
⇀ ,v

⇀
w
⇀

⋅ ( × ).u
⇀

v
⇀

w
⇀

 Calculating a Triple Scalar Product

= + +u⇀ u1 î u2 ĵ u3k̂

= + +v⇀ v1 î v2 ĵ v3k̂

= + +w⇀ w1 î w2 ĵ w3k̂

3 ×3

⋅ ( × ) = .u
⇀

v
⇀

w
⇀

∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣ (12.4.5)

 Proof

⋅ ( × )u
⇀

v⇀ w⇀ = ⟨ , , ⟩ ⋅ ⟨ − , − + , − ⟩u1 u2 u3 v2w3 v3w2 v1w3 v3w1 v1w2 v2w1

= ( − ) + (− + ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= ( − ) − ( − ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= .

∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣

 Example : Calculating the Triple Scalar Product12.4.10

= ⟨1, 3, 5⟩, = ⟨2, −1, 0⟩u
⇀

v
⇀ = ⟨−3, 0, −1⟩w

⇀ ⋅ ( × ).u
⇀

v
⇀

w
⇀

12.4.5
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Calculate the triple scalar product  where , and 

Hint

Place the vectors as the rows of a  matrix, then calculate the determinant.

Answer

When we create a matrix from three vectors, we must be careful about the order in which we list the vectors. If we list them in a
matrix in one order and then rearrange the rows, the absolute value of the determinant remains unchanged. However, each time two
rows switch places, the determinant changes sign:

Verifying this fact is straightforward, but rather messy. Let’s take a look at this with an example:

Switching the top two rows we have

Rearranging vectors in the triple products is equivalent to reordering the rows in the matrix of the determinant. Let 
 and  Applying Note, we have

and

⋅ ( × )u⇀ v⇀ w⇀ =

∣

∣

∣
∣

1

2

−3

3

−1

0

5

0

−1

∣

∣

∣
∣

= 1 −3 +5
∣

∣
∣
−1

0

0

−1

∣

∣
∣

∣

∣
∣

2

−3

0

−1

∣

∣
∣

∣

∣
∣

2

−3

−1

0

∣

∣
∣

= (1 −0) −3(−2 −0) +5(0 −3)

= 1 +6 −15 = −8.

 Exercise 12.4.10

⋅ ( × ),a⇀ b
⇀

c⇀ = ⟨2, −4, 1⟩, = ⟨0, 3, −1⟩a⇀ b
⇀

= ⟨5, −3, 3⟩.c⇀

3 ×3

17

= d = −d = d = −d

∣

∣

∣
∣

a1

b1

c1

a2

b2

c2

a3

b3

c3

∣

∣

∣
∣

∣

∣

∣
∣

b1

a1

c1

b2

a2

c2

b3

a3

c3

∣

∣

∣
∣

∣

∣

∣
∣

b1

c1

a1

b2

c2

a2

b3

c3

a3

∣

∣

∣
∣

∣

∣

∣
∣

c1

b1

a1

c2

b2

a2

c3

b3

a3

∣

∣

∣
∣

∣

∣

∣
∣

1

−2

4

2

0

1

1

3

−1

∣

∣

∣
∣ = −2 +

∣

∣
∣
0

1

3

−1

∣

∣
∣

∣

∣
∣
−2

4

3

−1

∣

∣
∣

∣

∣
∣
−2

4

0

1

∣

∣
∣

= (0 −3) −2(2 −12) +(−2 −0)

= −3 +20 −2 = 15.

∣

∣

∣
∣

−2

1

4

0

2

1

3

1

−1

∣

∣

∣
∣ = −2 +3

∣

∣
∣
2

1

1

−1

∣

∣
∣

∣

∣
∣
1

4

2

1

∣

∣
∣

= −2(−2 −1) +3(1 −8)

= 6 −21 = −15.

= + + , = + + ,u
⇀ u1 î u2 ĵ u3k̂ v

⇀ v1 î v2 ĵ v3k̂ = + + .w
⇀ w1 î w2 ĵ w3k̂

⋅ ( × ) =u⇀ v⇀ w⇀
∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣

⋅ ( × ) = .u
⇀

w⇀ v⇀
∣

∣

∣
∣

u1

w1

v1

u2

w2

v2

u3

w3

v3

∣

∣

∣
∣
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We can obtain the determinant for calculating  by switching the bottom two rows of  Therefore, 

Following this reasoning and exploring the different ways we can interchange variables in the triple scalar product lead to the
following identities:

Let  and  be two vectors in standard position. If  and  are not scalar multiples of each other, then these vectors form adjacent
sides of a parallelogram. We saw in Note that the area of this parallelogram is . Now suppose we add a third vector  that
does not lie in the same plane as  and  but still shares the same initial point. Then these vectors form three edges of a
parallelepiped, a three-dimensional prism with six faces that are each parallelograms, as shown in Figure . The volume of
this prism is the product of the figure’s height and the area of its base. The triple scalar product of  and  provides a simple
method for calculating the volume of the parallelepiped defined by these vectors.

The volume of a parallelepiped with adjacent edges given by the vectors , and  is the absolute value of the triple scalar
product (Figure ):

Note that, as the name indicates, the triple scalar product produces a scalar. The volume formula just presented uses the
absolute value of a scalar quantity.

Figure : The height of the parallelepiped is given by 

The area of the base of the parallelepiped is given by  The height of the figure is given by  The
volume of the parallelepiped is the product of the height and the area of the base, so we have

□

Let  and . Find the volume of the parallelepiped with adjacent edges ,
and  (Figure ).

⋅ ( × )u
⇀

w
⇀

v
⇀ ⋅ ( × ).u

⇀
v
⇀

w
⇀

⋅ ( × ) = − ⋅ ( × ).u
⇀

v
⇀

w
⇀

u
⇀

w
⇀

v
⇀

⋅ ( × )u
⇀

v
⇀

w
⇀

⋅ ( × )u
⇀

v
⇀

w
⇀

= − ⋅ ( × )u
⇀

w
⇀

v
⇀

= ⋅ ( × ) = ⋅ ( × ).v
⇀

w
⇀

u
⇀

w
⇀

u
⇀

v
⇀

(12.4.6)

(12.4.7)

u⇀ v⇀ u⇀ v⇀

∥ × ∥u⇀ v⇀ w⇀

u⇀ v⇀

12.4.7
, ,u⇀ v⇀ w⇀

 Volume of a Parallelepiped

,u
⇀

v
⇀

w
⇀

12.4.7

V = || ⋅ ( × )||.u
⇀

v
⇀

w
⇀

12.4.7 ∥ ∥.proj ×v
⇀

w
⇀u⇀

 Proof

∥ × ∥.v
⇀

w
⇀ ∥ ∥.proj ×v⇀ w⇀ u

⇀

V =∥ ∥ ∥ × ∥proj ×v⇀ w⇀ u⇀ v⇀ w⇀

=∣∣ ∣∣ ∥ × ∥
⋅ ( × )u⇀ v⇀ w⇀

∥ × ∥v
⇀

w
⇀ v

⇀
w
⇀

= ∥ ⋅ ( × )∥.u⇀ v⇀ w⇀

 Example : Calculating the Volume of a Parallelepiped12.4.11

= ⟨−1, −2, 1⟩, = ⟨4, 3, 2⟩,u⇀ v⇀ = ⟨0, −5, −2⟩w⇀ ,u⇀ v⇀

w⇀ 12.4.8
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Figure 

Solution

We have

Thus, the volume of the parallelepiped is  units

Find the volume of the parallelepiped formed by the vectors  and 

Hint

Calculate the triple scalar product by finding a determinant.

Answer

 units

Applications of the Cross Product

The cross product appears in many practical applications in mathematics, physics, and engineering. Let’s examine some of these
applications here, including the idea of torque, with which we began this section. Other applications show up in later chapters,
particularly in our study of vector fields such as gravitational and electromagnetic fields (Introduction to Vector Calculus).

Use the triple scalar product to show that vectors , and  are coplanar—that is, show
that these vectors lie in the same plane.

Solution

12.4.8

⋅ ( × )u
⇀

v
⇀

w
⇀ =

∣

∣

∣
∣

−1

4

0

−2

3

−5

1

2

−2

∣

∣

∣
∣

= (−1) +2 +
∣

∣
∣

3

−5

2

−2

∣

∣
∣

∣

∣
∣
4

0

2

−2

∣

∣
∣

∣

∣
∣
4

0

3

−5

∣

∣
∣

= (−1)(−6 +10) +2(−8 −0) +(−20 −0)

= −4 −16 −20

= −40.

| −40| = 40 3

 Exercise 12.4.11

= 3 +4 − , = 2 − − ,a
⇀

î ĵ k̂ b
⇀

î ĵ k̂ = 3 + .c
⇀

ĵ k̂

8 3

 Example : Using the Triple Scalar Product12.4.12

= ⟨2, 0, 5⟩, = ⟨2, 2, 4⟩u⇀ v⇀ = ⟨1, −1, 3⟩w⇀
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Start by calculating the triple scalar product to find the volume of the parallelepiped defined by  and :

The volume of the parallelepiped is  units , so one of the dimensions must be zero. Therefore, the three vectors all lie in the
same plane.

Are the vectors  and  coplanar?

Hint

Calculate the triple scalar product.

Answer

No, the triple scalar product is  so the three vectors form the adjacent edges of a parallelepiped. They are not
coplanar.

Only a single plane can pass through any set of three noncolinear points. Find a vector orthogonal to the plane containing
points  and 

Solution

The plane must contain vectors  and :

The cross product  produces a vector orthogonal to both  and . Therefore, the cross product is orthogonal to
the plane that contains these two vectors:

We have seen how to use the triple scalar product and how to find a vector orthogonal to a plane. Now we apply the cross product
to real-world situations.

Sometimes a force causes an object to rotate. For example, turning a screwdriver or a wrench creates this kind of rotational effect,
called torque.

Torque,  (the Greek letter tau), measures the tendency of a force to produce rotation about an axis of rotation. Let  be a
vector with an initial point located on the axis of rotation and with a terminal point located at the point where the force is
applied, and let vector  represent the force. Then torque is equal to the cross product of  and :

, ,u
⇀

v
⇀

w
⇀

⋅ ( × )u⇀ v⇀ w⇀ =

∣

∣

∣
∣

2

2

1

0

2

−1

5

4

3

∣

∣

∣
∣

= [2(2)(3) +(0)(4)(1) +5(2)(−1)] −[5(2)(1) +(2)(4)(−1) +(0)(2)(3)]

= 2 −2 = 0.

0 3

 Exercise 12.4.12

= + − , = − + ,a⇀ î ĵ k̂ b
⇀

î ĵ k̂ = + +c⇀ î ĵ k̂

−4 ≠ 0,

 Example : Finding an Orthogonal Vector12.4.13

P = (9, −3, −2),Q = (1, 3, 0), R = (−2, 5, 0).

PQ
−−⇀

QR
−−⇀

= ⟨1 −9, 3 −(−3), 0 −(−2)⟩ = ⟨−8, 6, 2⟩PQ
−−⇀

= ⟨−2 −1, 5 −3, 0 −0⟩ = ⟨−3, 2, 0⟩.QR
−−⇀

×PQ
−−⇀

QR
−−⇀

PQ
−−⇀

QR
−−⇀

×PQ
−−⇀

QR
−−⇀

=

∣

∣

∣
∣
∣

î

−8

−3

ĵ

6

2

k̂

2

0

∣

∣

∣
∣
∣

= 0 −6 −16 −(−18 +4 +0 )î ĵ k̂ k̂ î ĵ

= −4 −6 +2 .î ĵ k̂

 Definition: Torque

τ⇀ r⇀

F
⇀

r F
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See Figure .

Figure : Torque measures how a force causes an object to rotate.

Think about using a wrench to tighten a bolt. The torque τ applied to the bolt depends on how hard we push the wrench (force) and
how far up the handle we apply the force (distance). The torque increases with a greater force on the wrench at a greater distance
from the bolt. Common units of torque are the newton-meter or foot-pound. Although torque is dimensionally equivalent to work
(it has the same units), the two concepts are distinct. Torque is used specifically in the context of rotation, whereas work typically
involves motion along a line.

A bolt is tightened by applying a force of  N to a 0.15-m wrench (Figure ). The angle between the wrench and the
force vector is . Find the magnitude of the torque about the center of the bolt. Round the answer to two decimal places.

Figure : Torque describes the twisting action of the wrench.

Solution:

Substitute the given information into the equation defining torque:

Calculate the force required to produce  N⋅m torque at an angle of  from a -cm rod.

Hint

 N⋅m and  m

Answer

 N

= × .τ⇀ r⇀ F
⇀

12.4.9

12.4.9

 Example : Evaluating Torque12.4.14

6 12.4.10
40°

12.4.10

∥ ∥τ
⇀ = ∥ × ∥r⇀ F

⇀

= ∥ ∥ ∥ ∥ sinθr⇀ F
⇀

= (0.15 m)(6 N) sin40°

≈ 0.58 N⋅m.

 Exercise 12.4.14

15 30º 150

∥ ∥ = 15τ
⇀ ∥ ∥ = 1.5r

⇀

20
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Key Concepts
The cross product  of two vectors  and  is a vector orthogonal to both  and . Its
length is given by  where  is the angle between  and . Its direction is given by the right-hand
rule.
The algebraic formula for calculating the cross product of two vectors,

 and , is

The cross product satisfies the following properties for vectors  and , and scalar :

The cross product of vectors  and  is the determinant 

If vectors  and  form adjacent sides of a parallelogram, then the area of the parallelogram is given by 
The triple scalar product of vectors  and  is 
The volume of a parallelepiped with adjacent edges given by vectors , and  is 
If the triple scalar product of vectors  and  is zero, then the vectors are coplanar. The converse is also true: If the vectors
are coplanar, then their triple scalar product is zero.
The cross product can be used to identify a vector orthogonal to two given vectors or to a plane.
Torque  measures the tendency of a force to produce rotation about an axis of rotation. If force  is acting at a distance
(displacement)  from the axis, then torque is equal to the cross product of  and 

Key Equations
The cross product of two vectors in terms of the unit vectors

Glossary
cross product

 where  and 

determinant

a real number associated with a square matrix

parallelepiped

a three-dimensional prism with six faces that are parallelograms

torque

the effect of a force that causes an object to rotate

triple scalar product

the dot product of a vector with the cross product of two other vectors: 

vector product

×u
⇀

v
⇀ = ⟨ , , ⟩u

⇀ u1 u2 u3 = ⟨ , , ⟩v
⇀ v1 v2 v3 u

⇀
v
⇀

∥ × ∥ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθ,u
⇀

v
⇀

u
⇀

v
⇀ θ u

⇀
v
⇀

= ⟨ , , ⟩u⇀ u1 u2 u3 = ⟨ , , ⟩v⇀ v1 v2 v3

× = ( − ) −( − ) +( − ) .u
⇀

v
⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

, ,u
⇀

v⇀ w⇀ c

× = −( × )u
⇀

v
⇀

v
⇀

u
⇀

×( + ) = × + ×u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

u
⇀

w
⇀

c( × ) = (c ) × = ×(c )u⇀ v⇀ u⇀ v⇀ u⇀ v⇀

× = × =u
⇀

0
⇀

0
⇀

u
⇀

0
⇀

× =v
⇀

v
⇀

0
⇀

⋅ ( × ) = ( × ) ⋅u⇀ v⇀ w⇀ u⇀ v⇀ w⇀

= ⟨ , , ⟩u⇀ u1 u2 u3 = ⟨ , , ⟩v⇀ v1 v2 v3

∣

∣

∣
∣
∣

î

u1

v1

ĵ

u2

v2

k̂

u3

v3

∣

∣

∣
∣
∣

u⇀ v⇀ ∥ × ∥.u⇀ v⇀

, ,u⇀ v⇀ w⇀ ⋅ ( × ).u⇀ v⇀ w⇀

,u⇀ v⇀ w⇀ V = | ⋅ ( × )|.u⇀ v⇀ w⇀

, ,u⇀ v⇀ w⇀

τ
⇀

F
⇀

r
⇀

r
⇀ : = × .F

⇀
τ
⇀

r
⇀

F
⇀

× = ( − ) −( − ) +( − )u
⇀

v
⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

× = ( − ) −( − ) +( − ) ,u
⇀

v
⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂ = ⟨ , , ⟩u

⇀ u1 u2 u3 = ⟨ , , ⟩v
⇀ v1 v2 v3

⋅ ( × )u
⇀

v
⇀

w
⇀
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the cross product of two vectors
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12.5: Equations of Lines and Planes

Write the vector, parametric, and symmetric equations of a line through a given point in a given direction, and a line
through two given points.
Find the distance from a point to a given line.
Write the vector and scalar equations of a plane through a given point with a given normal.
Find the distance from a point to a given plane.
Find the angle between two planes.

By now, we are familiar with writing equations that describe a line in two dimensions. To write an equation for a line, we must
know two points on the line, or we must know the direction of the line and at least one point through which the line passes. In two
dimensions, we use the concept of slope to describe the orientation, or direction, of a line. In three dimensions, we describe the
direction of a line using a vector parallel to the line. In this section, we examine how to use equations to describe lines and planes
in space.

Equations for a Line in Space
Let’s first explore what it means for two vectors to be parallel. Recall that parallel vectors must have the same or opposite
directions. If two nonzero vectors,  and , are parallel, we claim there must be a scalar, , such that . If  and  have
the same direction, simply choose

If  and  have opposite directions, choose

Note that the converse holds as well. If  for some scalar , then either  and  have the same direction  or
opposite directions , so  and  are parallel. Therefore, two nonzero vectors  and  are parallel if and only if 
for some scalar . By convention, the zero vector  is considered to be parallel to all vectors.

 Learning Objectives

u⇀ v⇀ k = ku⇀ v⇀ u⇀ v⇀

k= .
∥ ∥u⇀

∥ ∥v⇀

u⇀ v⇀

k=− .
∥ ∥u⇀

∥ ∥v
⇀

= ku
⇀

v
⇀ k u

⇀
v
⇀ (k> 0)

(k< 0) u
⇀

v
⇀

u
⇀

v
⇀ = ku

⇀
v
⇀

k 0
⇀
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Figure : Vector  is the direction vector for .

As in two dimensions, we can describe a line in space using a point on the line and the direction of the line, or a parallel vector,
which we call the direction vector (Figure ). Let  be a line in space passing through point . Let 

be a vector parallel to . Then, for any point on line , we know that  is parallel to . Thus, as we just discussed, there

is a scalar, , such that , which gives

Using vector operations, we can rewrite Equation 

Setting  and , we now have the vector equation of a line:

Equating components, Equation  shows that the following equations are simultaneously true:  and
 If we solve each of these equations for the component variables  and , we get a set of equations in which each

12.5.1 v⇀ PQ
−−⇀

12.5.1 L P ( , , )x0 y0 z0 = ⟨a, b, c⟩v
⇀

L Q(x, y, z) PQ
−−⇀

v
⇀

t = tPQ
−−⇀

v
⇀

PQ
−−⇀

⟨x− , y− , z− ⟩x0 y0 z0

⟨x− , y− , z− ⟩x0 y0 z0

= tv⇀

= t⟨a, b, c⟩

= ⟨ta, tb, tc⟩. (12.5.1)

12.5.1

⟨x− , y− , z− ⟩x0 y0 z0

⟨x, y, z⟩− ⟨ , , ⟩x0 y0 z0

⟨x, y, z⟩
  

r⇀

= ⟨ta, tb, tc⟩

= t⟨a, b, c⟩

= + t .⟨ , , ⟩x0 y0 z0
  

r⇀o

⟨a, b, c⟩
  

v⇀

= ⟨x, y, z⟩r⇀ = ⟨ , , ⟩r⇀0 x0 y0 z0

= + t .r
⇀

r
⇀

0 v
⇀ (12.5.2)

12.5.2 x− = ta, y− = tb,x0 y0
z− = tc.z0 x, y, z
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variable is defined in terms of the parameter  and that, together, describe the line. This set of three equations forms a set of
parametric equations of a line:

If we solve each of the equations for  assuming , and  are nonzero, we get a different description of the same line:

Because each expression equals , they all have the same value. We can set them equal to each other to create symmetric
equations of a line:

We summarize the results in the following theorem.

A line  parallel to vector  and passing through point  can be described by the following parametric
equations:

and

If the constants  and  are all nonzero, then  can be described by the symmetric equation of the line:

The parametric equations of a line are not unique. Using a different parallel vector or a different point on the line leads to a
different, equivalent representation. Each set of parametric equations leads to a related set of symmetric equations, so it follows that
a symmetric equation of a line is not unique either.

Find parametric and symmetric equations of the line passing through points  and 

Solution

First, identify a vector parallel to the line:

Use either of the given points on the line to complete the parametric equations:

and

t

x = + tax0

y = + tby0

z= + tc.z0

t a, b c

= t
x−x0

a

= t
y−y0

b

= t.
z−z0

c

t

= = .
x−x0

a

y−y0

b

z−z0

c

 Theorem: Parametric and Symmetric Equations of a Line

L = ⟨a, b, c⟩v⇀ P ( , , )x0 y0 z0

x = + ta, y = + tb,x0 y0

z= + tc.z0

a, b, c L

= = .
x−x0

a

y−y0

b

z−z0

c

 Example : Equations of a Line in Space12.5.1

(1, 4, −2) (−3, 5, 0).

= ⟨−3−1, 5−4, 0−(−2)⟩ = ⟨−4, 1, 2⟩.v
⇀

x = 1−4t

y = 4+ t,

z=−2+2t.
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Solve each equation for  to create the symmetric equation of the line:

Find parametric and symmetric equations of the line passing through points  and 

Hint:

Start by finding a vector parallel to the line.

Answer

Possible set of parametric equations:  related set of symmetric equations:

Sometimes we don’t want the equation of a whole line, just a line segment. In this case, we limit the values of our parameter . For
example, let  and  be points on a line, and let  and  be the associated
position vectors. In addition, let . We want to find a vector equation for the line segment between  and . Using 

as our known point on the line, and  as the direction vector equation, Equation  gives

Equation  can be expanded using properties of vectors:

Thus, the vector equation of the line passing through  and  is

Remember that we did not want the equation of the whole line, just the line segment between  and . Notice that when , we
have , and when , we have . Therefore, the vector equation of the line segment between  and  is

Going back to Equation , we can also find parametric equations for this line segment. We have

Then, the parametric equations are

t

= y−4 = .
x−1

−4

z+2

2

 Exercise 12.5.1

(1, −3, 2) (5, −2, 8).

x = 1+4t, y =−3+ t, z= 2+6t;

= y+3 =
x−1

4

z−2

6

t

P ( , , )x0 y0 z0 Q( , , )x1 y1 z1 = ⟨ , , ⟩p
⇀ x0 y0 z0 = ⟨ , , ⟩q

⇀ x1 y1 z1
= ⟨x, y, z⟩r

⇀ P Q P

= ⟨ − , − , − ⟩PQ
−−⇀

x1 x0 y1 y0 z1 z0 12.5.2

= + t( ).r
⇀

p
⇀ PQ

−−⇀
(12.5.3)

12.5.3

r
⇀ = + t( )p

⇀ PQ
−−⇀

= ⟨ , , ⟩+ t⟨ − , − , − ⟩x0 y0 z0 x1 x0 y1 y0 z1 z0

= ⟨ , , ⟩+ t(⟨ , , ⟩− ⟨ , , ⟩)x0 y0 z0 x1 y1 z1 x0 y0 z0

= ⟨ , , ⟩+ t⟨ , , ⟩− t⟨ , , ⟩x0 y0 z0 x1 y1 z1 x0 y0 z0

= (1− t)⟨ , , ⟩+ t⟨ , , ⟩x0 y0 z0 x1 y1 z1

= (1− t) + t .p
⇀

q
⇀

P Q

= (1− t) + t .r
⇀

p
⇀

q
⇀

P Q t = 0
=r

⇀
p
⇀ t = 1 =r

⇀
q
⇀ P Q

= (1− t) + t , 0 ≤ t ≤ 1.r
⇀

p
⇀

q
⇀

12.5.2

r
⇀

⟨x, y, z⟩

= + t( )p
⇀ PQ

−−⇀

= ⟨ , , ⟩+ t⟨ − , − , − ⟩x0 y0 z0 x1 x0 y1 y0 z1 z0

= ⟨ + t( − ), + t( − ), + t( − )⟩.x0 x1 x0 y0 y1 y0 z0 z1 z0

x

y

z

= + t( − )x0 x1 x0

= + t( − )y0 y1 y0

= + t( − ), 0 ≤ t ≤ 1.z0 z1 z0
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Find parametric equations of the line segment between the points  and 

Solution

Start with the parametric equations for a line (Equations ) and work with each component separately:

and

Therefore, the parametric equations for the line segment are

Find parametric equations of the line segment between points  and .

Answer

Distance between a Point and a Line
We already know how to calculate the distance between two points in space. We now expand this definition to describe the distance
between a point and a line in space. Several real-world contexts exist when it is important to be able to calculate these distances.
When building a home, for example, builders must consider “setback” requirements, when structures or fixtures have to be a
certain distance from the property line. Air travel offers another example. Airlines are concerned about the distances between
populated areas and proposed flight paths.

Let  be a line in the plane and let  be any point not on the line. Then, we define distance  from  to  as the length of line
segment , where  is a point on  such that  is perpendicular to  (Figure ).

Figure : The distance from point  to line  is the length of .

 Example : Parametric Equations of a Line Segment12.5.2

P (2, 1, 4) Q(3, −1, 3).

???

x = + t( − )x0 x1 x0

= 2+ t(3−2)

= 2+ t,

y = + t( − )y0 y1 y0

= 1+ t(−1−1)

= 1−2t,

z = + t( − )z0 z1 z0

= 4+ t(3−4)

= 4− t.

x

y

z

= 2+ t

= 1−2t

= 4− t, 0 ≤ t ≤ 1.

 Exercise 12.5.2

P (−1, 3, 6) Q(−8, 2, 4)

x =−1−7t, y = 3− t, z= 6−2t, 0 ≤ t ≤ 1

L M d M L

MP
¯ ¯¯̄¯̄¯̄¯

P L MP
¯ ¯¯̄¯̄¯̄¯

L 12.5.2

12.5.2 M L MP
¯ ¯¯̄¯̄¯̄¯
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When we’re looking for the distance between a line and a point in space, Figure  still applies. We still define the distance as
the length of the perpendicular line segment connecting the point to the line. In space, however, there is no clear way to know
which point on the line creates such a perpendicular line segment, so we select an arbitrary point on the line and use properties of
vectors to calculate the distance. Therefore, let  be an arbitrary point on line  and let  be a direction vector for  (Figure 

).

Figure : Vectors  and  form two sides of a parallelogram with base  and height , which is the distance between a
line and a point in space.

Vectors  and  form two sides of a parallelogram with area . Using a formula from geometry, the area of this
parallelogram can also be calculated as the product of its base and height:

We can use this formula to find a general formula for the distance between a line in space and any point not on the line.

Let  be a line in space passing through point  with direction vector . If  is any point not on , then the distance from 
to  is

Find the distance between the point  and line 

Solution:

From the symmetric equations of the line, we know that vector  is a direction vector for the line. Setting the
symmetric equations of the line equal to zero, we see that point  lies on the line. Then,

To calculate the distance, we need to find 

Therefore, the distance between the point and the line is (Figure )

12.5.2

P L v
⇀ L

12.5.3

12.5.3 PM
−−⇀

v⇀ ∥ ∥v⇀ d

PM
−−⇀

v
⇀ ∥ × ∥PM

−−⇀
v
⇀

∥ × ∥ = ∥ ∥d.PM
−−⇀

v
⇀

v
⇀

 Distance from a Point to a Line

L P v
⇀ M L M

L

d = .
∥ × ∥PM

−−⇀
v
⇀

∥ ∥v⇀

 Example : Calculating the Distance from a Point to a Line12.5.3

M = (1, 1, 3) = = z−3.
x−3

4

y+1

2

= ⟨4, 2, 1⟩v⇀

P (3, −1, 3)

= ⟨1−3, 1−(−1), 3−3⟩PM
−−⇀

= ⟨−2, 2, 0⟩.

× :PM
−−⇀

v
⇀

×PM
−−⇀

v⇀ =

∣

∣

∣
∣
∣

î

−2

4

ĵ

2

2

k̂

0

1

∣

∣

∣
∣
∣

= (2−0) −(−2−0) +(−4−8)î ĵ k̂

= 2 +2 −12 .î ĵ k̂

12.5.4
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Figure : Point  is approximately  units from the line with symmetric equations 

Find the distance between point  and the line with parametric equations 

Hint

Find a vector with initial point  and a terminal point on the line, and then find a direction vector for the line.

Answer

Relationships between Lines

Given two lines in the two-dimensional plane, the lines are equal, they are parallel but not equal, or they intersect in a single point.
In three dimensions, a fourth case is possible. If two lines in space are not parallel, but do not intersect, then the lines are said to be
skew lines (Figure ).

d =
∥ × ∥PM

−−⇀
v
⇀

∥ ∥v
⇀

=
+ +22 22 122

− −−−−−−−−−−
√

+ +42 22 12
− −−−−−−−−−

√

=
2 38−−√

21−−√

= units
2 798

−−−√

21

12.5.4 (1, 1, 3) 2.7 = = z−3.
x−3
4

y+1

2

 Exercise 12.5.3

(0, 3, 6) x = 1− t, y = 1+2t, z= 5+3t.

(0, 3, 6)

= units
10

7

−−−
√

70
−−√

7

12.5.5
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Figure : In three dimensions, it is possible that two lines do not cross, even when they have different directions.

To classify lines as parallel but not equal, equal, intersecting, or skew, we need to know two things: whether the direction vectors
are parallel and whether the lines share a point (Figure ).

Figure : Determine the relationship between two lines based on whether their direction vectors are parallel and whether they
share a point.

For each pair of lines, determine whether the lines are equal, parallel but not equal, skew, or intersecting.

a.

12.5.5

12.5.6

12.5.6

 Example : Classifying Lines in Space12.5.4

: x = 2s−1, y = s−1, z= s−4L1
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b.

c.

Solution

a. Line  has direction vector ; line  has direction vector . Because the direction vectors are
not parallel vectors, the lines are either intersecting or skew. To determine whether the lines intersect, we see if there is a point, 

, that lies on both lines. To find this point, we use the parametric equations to create a system of equalities:

By the first equation,  Substituting into the second equation yields

Substitution into the third equation, however, yields a contradiction:

There is no single point that satisfies the parametric equations for  and  simultaneously. These lines do not
intersect, so they are skew (see the following figure).

b. Line  has direction vector  and passes through the origin, . Line  has a different direction
vector, , so these lines are not parallel or equal. Let  represent the parameter for line  and let  represent the

: x = t−3, y = 3t+8, z= 5−2tL2

: x =−y = zL1

: = y = z−2L2
x−3

2

: x = 6s−1, y =−2s, z= 3s+1L1

: = =L2
x−4

6

y+3

−2

z−1

3

L1 = ⟨2, 1, 1⟩v⇀1 L2 = ⟨1, 3, −2⟩v⇀2

(x, y, z)

2s−1 = t−3;

s−1 = 3t+8;

s−4 = 5−2t.

t = 2s+2.

s−1 = 3(2s+2)+8

s−1 = 6s+6+8

5s=−15

s=−3.

s−4 = 5−2(2s+2)

s−4 = 5−4s−4

5s= 5

s= 1.

L1 L2

L1 = ⟨1,−1, 1⟩v
⇀

1 (0, 0, 0) L2

= ⟨2, 1, 1⟩v
⇀

2 r L1 s
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parameter for :

Solve the system of equations to find  and . If we need to find the point of intersection, we can substitute
these parameters into the original equations to get  (see the following figure).

c. Lines  and  have equivalent direction vectors:  These two lines are parallel (see the following
figure).

Describe the relationship between the lines with the following parametric equations:

Hint

L2

Line  :L1

x = r

y =−r

z= r

Line  :L2

x = 2s+3

y = s

z= s+2

r= 1 s=−1
(1,−1, 1)

L1 L2 = ⟨6,−2, 3⟩.v
⇀

 Exercise 12.5.4

x = 1−4t, y = 3+ t, z= 8−6t

x = 2+3s, y = 2s, z=−1−3s.
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Start by identifying direction vectors for each line. Is one a multiple of the other?

Answer

These lines are skew because their direction vectors are not parallel and there is no point  that lies on both lines.

Equations for a Plane
We know that a line is determined by two points. In other words, for any two distinct points, there is exactly one line that passes
through those points, whether in two dimensions or three. Similarly, given any three points that do not all lie on the same line, there
is a unique plane that passes through these points. Just as a line is determined by two points, a plane is determined by three.

This may be the simplest way to characterize a plane, but we can use other descriptions as well. For example, given two distinct,
intersecting lines, there is exactly one plane containing both lines. A plane is also determined by a line and any point that does not
lie on the line. These characterizations arise naturally from the idea that a plane is determined by three points. Perhaps the most
surprising characterization of a plane is actually the most useful.

Imagine a pair of orthogonal vectors that share an initial point. Visualize grabbing one of the vectors and twisting it. As you twist,
the other vector spins around and sweeps out a plane. Here, we describe that concept mathematically. Let  be a vector

and  be a point. Then the set of all points  such that  is orthogonal to  forms a plane (Figure 
). We say that  is a normal vector, or perpendicular to the plane. Remember, the dot product of orthogonal vectors is zero.

This fact generates the vector equation of a plane:

Rewriting this equation provides additional ways to describe the plane:

Figure : Given a point  and vector , the set of all points  with  orthogonal to  forms a plane.

Given a point  and vector , the set of all points  satisfying the equation  forms a plane. The equation

is known as the vector equation of a plane.

The scalar equation of a plane (sometimes also called the standard equation of a plane) containing point 
with normal vector  is

This equation can be expressed as  where  This form of the equation is
sometimes called the general form of the equation of a plane.

(x, y, z)

= ⟨a, b, c⟩n⇀

P = ( , , )x0 y0 z0 Q = (x, y, z) PQ
−−⇀

n⇀

12.5.7 n⇀

⋅ = 0.n⇀ PQ
−−⇀

⋅n⇀ PQ
−−⇀

⟨a, b, c⟩ ⋅ ⟨x− , y− , z− ⟩x0 y0 z0

a(x− )+b(y− )+c(z− )x0 y0 z0

= 0

= 0

= 0.

12.5.7 P n⇀ Q PQ
−−⇀

n⇀

 Definition: Scalar Equation of a Plane

P n⇀ Q ⋅ = 0n⇀ PQ
−−⇀

⋅ = 0n
⇀ PQ

−−⇀

P = ( , , )x0 y0 z0
= ⟨a, b, c⟩n⃗ 

a(x− )+b(y− )+c(z− ) = 0.x0 y0 z0

ax+by+cz+d = 0, d =−a −b −c .x0 y0 z0
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As described earlier in this section, any three points that do not all lie on the same line determine a plane. Given three such points,
we can find an equation for the plane containing these points.

Write an equation for the plane containing points  and  in both standard and
general forms.

Solution

To write an equation for a plane, we must find a normal vector for the plane. We start by identifying two vectors in the plane:

The cross product  is orthogonal to both  and , so it is normal to the plane that contains these two vectors:

Thus,  and we can choose any of the three given points to write an equation of the plane:

The scalar equations of a plane vary depending on the normal vector and point chosen.

Find an equation of the plane that passes through point  and contains the line given by 

Solution

Symmetric equations describe the line that passes through point  parallel to vector  (see the following
figure). Use this point and the given point,  to identify a second vector parallel to the plane:

Use the cross product of these vectors to identify a normal vector for the plane:

The scalar equations for the plane are  and 

 Example : Writing an Equation of a Plane Given Three Points in the Plane12.5.5

P = (1, 1, −2),Q = (0, 2, 1), R= (−1,−1, 0)

PQ
−−⇀

QR
−−⇀

= ⟨0−1, 2−1, 1−(−2)⟩

= ⟨−1, 1, 3⟩

= ⟨−1−0,−1−2, 0−1⟩

= ⟨−1,−3,−1⟩.

×PQ
−−⇀

QR
−−⇀

PQ
−−⇀

QR
−−⇀

n
⇀ = ×PQ

−−⇀
QR
−−⇀

=

∣

∣

∣
∣
∣

î

−1

−1

ĵ

1

−3

k̂

3

−1

∣

∣

∣
∣
∣

= (−1+9) −(1+3) +(3+1)î ĵ k̂

= 8 −4 +4 .î ĵ k̂

= ⟨8,−4, 4⟩,n
⇀

8(x−1)−4(y−1)+4(z+2)

8x−4y+4z+4

= 0

= 0.

 Example : Writing an Equation for a Plane Given a Point and a Line12.5.6

(1, 4, 3) x = = z+1.
y−1

2

(0, 1, −1) = ⟨1, 2, 1⟩v
⇀

1

(1, 4, 3),

= ⟨1−0, 4−1, 3−(−1)⟩ = ⟨1, 3, 4⟩.v
⇀

2

n
⇀ = ×v

⇀
1 v

⇀
2

=

∣

∣

∣
∣
∣

î

1

1

ĵ

2

3

k̂

1

4

∣

∣

∣
∣
∣

= (8−3) −(4−1) +(3−2)î ĵ k̂

= 5 −3 + .î ĵ k̂

5x−3(y−1)+(z+1) = 0 5x−3y+z+4 = 0.
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Find an equation of the plane containing the lines  and :

Hint

Hint: The cross product of the lines’ direction vectors gives a normal vector for the plane.

Answer

or

Now that we can write an equation for a plane, we can use the equation to find the distance  between a point  and the plane. It is
defined as the shortest possible distance from  to a point on the plane.

Figure : We want to find the shortest distance from point P to the plane. Let point  be the point in the plane such that, for
any other point in the plane .

Just as we find the two-dimensional distance between a point and a line by calculating the length of a line segment perpendicular to
the line, we find the three-dimensional distance between a point and a plane by calculating the length of a line segment

 Exercise 12.5.6

L1 L2

: x =−y = zL1

: = y = z−2.L2
x−3

2

−2(x−1)+(y+1)+3(z−1) = 0

−2x+y+3z= 0

d P

P

12.5.8 R

Q, ∥ ∥ < ∥ ∥RP
−−⇀

QP
−−⇀
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perpendicular to the plane. Let  be the point in the plane such that  is orthogonal to the plane, and let  be an arbitrary point

in the plane. Then the projection of vector  onto the normal vector describes vector , as shown in Figure .

Suppose a plane with normal vector  passes through point . The distance  from the plane to a point  not in the plane is
given by

Find the distance between point  and the plane given by  (see the following figure).

Solution

The coefficients of the plane’s equation provide a normal vector for the plane: . To find vector , we need a
point in the plane. Any point will work, so set  to see that point  lies in the plane. Find the component
form of the vector from  to :

Apply the distance formula from Equation :

R RP
−−⇀

Q

QP
−−⇀

RP
−−⇀

12.5.8

 The Distance between a Plane and a Point

n
⇀ Q d P

d = ∥ ∥ =∣ ∣= .proj n⇀ QP
−−⇀

compn⇀ QP
−−⇀

⋅∣
∣QP
−−⇀

n
⇀∣
∣

∥ ∥n
⇀ (12.5.4)

 Example : Distance between a Point and a Plane12.5.7

P = (3, 1, 2) x−2y+z= 5

= ⟨1,−2, 1⟩n
⇀ QP

−−⇀

y = z= 0 Q = (5, 0, 0)
Q P

= ⟨3−5, 1−0, 2−0⟩ = ⟨−2, 1, 2⟩.QP
−−⇀

12.5.4

d =
⋅ |∣

∣QP
−−⇀

n
⇀

∥ ∥n
⇀

=
|⟨−2, 1, 2⟩ ⋅ ⟨1,−2, 1⟩|

+(−2 +12 )2 12
− −−−−−−−−−−−−

√

=
|−2−2+2|

6
–√

= = units.
2

6
–√

6
–√

3
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Find the distance between point  and the plane given by .

Hint

Point  lies on the plane.

Answer

Parallel and Intersecting Planes

We have discussed the various possible relationships between two lines in two dimensions and three dimensions. When we
describe the relationship between two planes in space, we have only two possibilities: the two distinct planes are parallel or they
intersect. When two planes are parallel, their normal vectors are parallel. When two planes intersect, the intersection is a line
(Figure ).

Figure : The intersection of two nonparallel planes is always a line.

We can use the equations of the two planes to find parametric equations for the line of intersection.

Find parametric and symmetric equations for the line formed by the intersection of the planes given by  and 
 (see the following figure).

 Exercise 12.5.7

P = (5,−1, 0) 4x+2y−z= 3

(0, 0, −3)

= units
15

21−−√

5 21
−−

√

7

12.5.9

12.5.9

 Example : Finding the Line of Intersection for Two Planes12.5.8

x+y+z= 0
2x−y+z= 0
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Solution

Note that the two planes have nonparallel normals, so the planes intersect. Further, the origin satisfies each equation, so we
know the line of intersection passes through the origin. Add the plane equations so we can eliminate one of the variables, in
this case, :

________________

.

This gives us  We substitute this value into the first equation to express  in terms of :

We now have the first two variables,  and , in terms of the third variable, . Now we define  in terms of . To eliminate the

need for fractions, we choose to define the parameter  as . Then, . Substituting the parametric

y

x+y+z= 0

2x−y+z= 0

3x+2z= 0

x =− z.
2

3
y z

.

x+y+z= 0

− z+y+z= 0
2

3

y+ z= 0
1

3

y =− z
1

3

x y z z t

t t =− z
1

3
z=−3t
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representation of  back into the other two equations, we see that the parametric equations for the line of intersection are 

 The symmetric equations for the line are .

Find parametric equations for the line formed by the intersection of planes  and 

Hint

Add the two equations, then express  in terms of . Then, express  in terms of .

Answer

In addition to finding the equation of the line of intersection between two planes, we may need to find the angle formed by the
intersection of two planes. For example, builders constructing a house need to know the angle where different sections of the roof
meet to know whether the roof will look good and drain properly. We can use normal vectors to calculate the angle between the two
planes. We can do this because the angle between the normal vectors is the same as the angle between the planes. Figure 
shows why this is true.

Figure : The angle between two planes has the same measure as the angle between the normal vectors for the planes.

We can find the measure of the angle  between two intersecting planes by first finding the cosine of the angle, using the following
equation:

We can then use the angle to determine whether two planes are parallel or orthogonal or if they intersect at some other angle.

Determine whether each pair of planes is parallel, orthogonal, or neither. If the planes are intersecting, but not orthogonal, find
the measure of the angle between them. Give the answer in radians and round to two decimal places.

a.  and 
b.  and 
c.  and 

Solution:

a. The normal vectors for these planes are  and  These two vectors are scalar multiples of
each other. The normal vectors are parallel, so the planes are parallel.

b. The normal vectors for these planes are  and . Taking the dot product of these vectors, we
have

z

x = 2t, y = t, z=−3t. = y =
x

2

z

−3

 Exercise 12.5.8

x+y−z= 3 3x−y+3z= 5.

z x y x

x = t, y = 7−3t, z= 4−2t

12.5.10

12.5.10

θ

cosθ= .
| ⋅ |n
⇀

1 n
⇀

2

∥ ∥∥ ∥n⇀1 n⇀2

 Example : Finding the Angle between Two Planes12.5.9

x+2y−z= 8 2x+4y−2z= 10
2x−3y+2z= 3 6x+2y−3z= 1
x+y+z= 4 x−3y+5z= 1

= ⟨1, 2, −1⟩n⇀1 = ⟨2, 4, −2⟩.n⇀2

= ⟨2,−3, 2⟩n⇀1 = ⟨6, 2, −3⟩n⇀2
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The normal vectors are orthogonal, so the corresponding planes are orthogonal as well.
c. The normal vectors for these planes are  and :

 
Then  rad. 

Thus the angle between the two planes is about  rad, or approximately .

Find the measure of the angle between planes  and  Give the answer in radians and round to
two decimal places.

Hint

Use the coefficients of the variables in each equation to find a normal vector for each plane.

Answer

When we find that two planes are parallel, we may need to find the distance between them. To find this distance, we simply select a
point in one of the planes. The distance from this point to the other plane is the distance between the planes.

Previously, we introduced the formula for calculating this distance in Equation :

where  is a point on the plane,  is a point not on the plane, and  is the normal vector that passes through point . Consider the
distance from point  to plane  Let  be any point in the plane. Substituting into the
formula yields

We state this result formally in the following theorem.

Let  be a point. The distance from  to plane  is given by

⋅ = ⟨2,−3, 2⟩ ⋅ ⟨6, 2, −3⟩n⇀1 n⇀2

= 2(6)−3(2)+2(−3) = 0.

= ⟨1, 1, 1⟩n
⇀

1 = ⟨1,−3, 5⟩n
⇀

2

cosθ =
| ⋅ |n
⇀

1 n
⇀

2

∥ ∥∥ ∥n
⇀

1 n
⇀

2

=
|⟨1, 1, 1⟩ ⋅ ⟨1,−3, 5⟩|

+ +12 12 12
− −−−−−−−−−

√ +(−3 +12 )2 52
− −−−−−−−−−−−−

√

=
3

105
−−−√

θ= arccos ≈ 1.273
105√

1.27 73°

 Exercise 12.5.9

x+y−z= 3 3x−y+3z= 5.

1.44 rad

12.5.4

d = ,
⋅QP

−−⇀
n⇀

∥ ∥n⇀

Q P n⃗  Q

( , , )x0 y0 z0 ax+by+cz+k= 0. ( , , )x1 y1 z1

d =
|a( − )+b( − )+c( − )|x0 x1 y0 y1 z0 z1

+ +a2 b2 c2
− −−−−−−−−−√

= .
|a +b +c +k|x0 y0 z0

+ +a2 b2 c2
− −−−−−−−−−√

 Distance from a Point to a Plane

P ( , , )x0 y0 z0 P ax+by+cz+k= 0

d = .
|a +b +c +k|x0 y0 z0

+ +a2 b2 c2
− −−−−−−−−−√
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Find the distance between the two parallel planes given by  and 

Solution

Point  lies in the first plane. The desired distance, then, is

Find the distance between parallel planes  and .

Hint

Set  to find a point on the first plane.

Answer

Finding the distance from a point to a line or from a line to a plane seems like a pretty abstract procedure. But, if the lines
represent pipes in a chemical plant or tubes in an oil refinery or roads at an intersection of highways, confirming that the
distance between them meets specifications can be both important and awkward to measure. One way is to model the two pipes
as lines, using the techniques in this chapter, and then calculate the distance between them. The calculation involves forming
vectors along the directions of the lines and using both the cross product and the dot product.

 Example : Finding the Distance between Parallel Planes12.5.10

2x+y−z= 2 2x+y−z= 8.

(1, 0, 0)

d =
|a +b +c +k|x0 y0 z0

+ +a2 b2 c2
− −−−−−−−−−√

=
|2(1)+1(0)+(−1)(0)+(−8)|

+ +(−122 12 )2
− −−−−−−−−−−−−

√

= = units
6

6
–√

6–√

 Exercise :12.5.10

5x−2y+z= 6 5x−2y+z=−3

x = y = 0

= units
9

30
−−√

3 30−−√

10

 Distance between Two Skew Lines
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Figure : Industrial pipe installations often feature pipes running in different directions. How can we find the distance
between two skew pipes?

The symmetric forms of two lines,  and , are

You are to develop a formula for the distance  between these two lines, in terms of the values 
and  The distance between two lines is usually taken to mean the minimum distance, so this is the length of a line
segment or the length of a vector that is perpendicular to both lines and intersects both lines.

1. First, write down two vectors,  and , that lie along  and , respectively.

2. Find the cross product of these two vectors and call it . This vector is perpendicular to  and , and hence is
perpendicular to both lines.

3. From vector , form a unit vector  in the same direction.

4. Use symmetric equations to find a convenient vector  that lies between any two points, one on each line. Again,
this can be done directly from the symmetric equations.

5. The dot product of two vectors is the magnitude of the projection of one vector onto the other—that is, 
 where  is the angle between the vectors. Using the dot product, find the projection of vector 

 found in step  onto unit vector  found in step . This projection is perpendicular to both lines, and hence its
length must be the perpendicular distance d between them. Note that the value of  may be negative, depending on your
choice of vector  or the order of the cross product, so use absolute value signs around the numerator.

6. Check that your formula gives the correct distance of  between the following two lines:

12.5.11

L1 L2

: = =L1
x−x1

a1

y−y1

b1

z−z1

c1

: = = .L2
x−x2

a2
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b2

z−z2

c2

d , , ; , , ; , , ;a1 b1 c1 a2 b2 c2 x1 y1 z1
, , .x2 y2 z2

v
⇀

1 v
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2 L1 L2

N
⇀
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⇀
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⇀
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⋅ = ∥ ∥∥ ∥ cosθ,A
⇀

B
⇀

A
⇀
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⇀
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v⇀12 4 n⇀ 3
d

v⇀12

| −25|/ ≈ 1.78198
−−−√
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y−3

4

z−1

3

: = = .L2
x−6

3

y−1

5

z

7
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7. Is your general expression valid when the lines are parallel? If not, why not? (Hint: What do you know about the value
of the cross product of two parallel vectors? Where would that result show up in your expression for ?)

8. Demonstrate that your expression for the distance is zero when the lines intersect. Recall that two lines intersect if
they are not parallel and they are in the same plane. Hence, consider the direction of  and . What is the result of
their dot product?

9. Consider the following application. Engineers at a refinery have determined they need to install support struts between
many of the gas pipes to reduce damaging vibrations. To minimize cost, they plan to install these struts at the closest
points between adjacent skewed pipes. Because they have detailed schematics of the structure, they are able to determine
the correct lengths of the struts needed, and hence manufacture and distribute them to the installation crews without
spending valuable time making measurements.

The rectangular frame structure has the dimensions  (height, width, and depth). One sector
has a pipe entering the lower corner of the standard frame unit and exiting at the diametrically opposed corner (the
one farthest away at the top); call this . A second pipe enters and exits at the two different opposite lower
corners; call this  (Figure ).

Figure : Two pipes cross through a standard frame unit.

Write down the vectors along the lines representing those pipes, find the cross product between them from which to
create the unit vector , define a vector that spans two points on each line, and finally determine the minimum distance
between the lines. (Take the origin to be at the lower corner of the first pipe.) Similarly, you may also develop the
symmetric equations for each line and substitute directly into your formula.

Key Concepts
In three dimensions, the direction of a line is described by a direction vector. The vector equation of a line with direction vector 

 passing through point  is , where  is the position vector of point 
. This equation can be rewritten to form the parametric equations of the line: , and .

The line can also be described with the symmetric equations .

Let  be a line in space passing through point  with direction vector . If  is any point not on , then the distance from 

to  is 

In three dimensions, two lines may be parallel but not equal, equal, intersecting, or skew.

Given a point  and vector , the set of all points  satisfying equation  forms a plane. Equation  is
known as the vector equation of a plane.
The scalar equation of a plane containing point  with normal vector  is 

. This equation can be expressed as  where 
 This form of the equation is sometimes called the general form of the equation of a plane.

d
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L2 12.5.12
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Suppose a plane with normal vector  passes through point . The distance  from the plane to point  not in the plane is
given by

The normal vectors of parallel planes are parallel. When two planes intersect, they form a line.

The measure of the angle  between two intersecting planes can be found using the equation: , where 

and  are normal vectors to the planes.
The distance  from point  to plane  is given by

.

Key Equations
Vector Equation of a Line

Parametric Equations of a Line

 and 

Symmetric Equations of a Line

Vector Equation of a Plane

Scalar Equation of a Plane

Distance between a Plane and a Point

Glossary

direction vector
a vector parallel to a line that is used to describe the direction, or orientation, of the line in space

general form of the equation of a plane
an equation in the form  where  is a normal vector of the plane,  is a point
on the plane, and 

normal vector
a vector perpendicular to a plane

parametric equations of a line
the set of equations  and  describing the line with direction vector  passing
through point 

scalar equation of a plane
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the equation  used to describe a plane containing point  with normal
vector  or its alternate form , where 

skew lines
two lines that are not parallel but do not intersect

symmetric equations of a line

the equations  describing the line with direction vector  passing through point 

vector equation of a line
the equation  used to describe a line with direction vector  passing through point ,
where , is the position vector of point 

vector equation of a plane

the equation  where  is a given point in the plane,  is any point in the plane, and  is a normal vector of the
plane
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12.6: Cylinders and Quadric Surfaces

Convert from cylindrical to rectangular coordinates.
Convert from rectangular to cylindrical coordinates.
Convert from spherical to rectangular coordinates.
Convert from rectangular to spherical coordinates.

The Cartesian coordinate system provides a straightforward way to describe the location of points in space. Some surfaces,
however, can be difficult to model with equations based on the Cartesian system. This is a familiar problem; recall that in two
dimensions, polar coordinates often provide a useful alternative system for describing the location of a point in the plane,
particularly in cases involving circles. In this section, we look at two different ways of describing the location of points in space,
both of them based on extensions of polar coordinates. As the name suggests, cylindrical coordinates are useful for dealing with
problems involving cylinders, such as calculating the volume of a round water tank or the amount of oil flowing through a pipe.
Similarly, spherical coordinates are useful for dealing with problems involving spheres, such as finding the volume of domed
structures.

Cylindrical Coordinates
When we expanded the traditional Cartesian coordinate system from two dimensions to three, we simply added a new axis to
model the third dimension. Starting with polar coordinates, we can follow this same process to create a new three-dimensional
coordinate system, called the cylindrical coordinate system. In this way, cylindrical coordinates provide a natural extension of polar
coordinates to three dimensions.

In the cylindrical coordinate system, a point in space (Figure ) is represented by the ordered triple , where

 are the polar coordinates of the point’s projection in the -plane
 is the usual -coordinate in the Cartesian coordinate system

Figure : The right triangle lies in the -plane. The length of the hypotenuse is  and  is the measure of the angle
formed by the positive -axis and the hypotenuse. The -coordinate describes the location of the point above or below the -
plane.

In the -plane, the right triangle shown in Figure  provides the key to transformation between cylindrical and Cartesian, or
rectangular, coordinates.

The rectangular coordinates  and the cylindrical coordinates  of a point are related as follows:

These equations are used to convert from cylindrical coordinates to rectangular coordinates.

 Learning Objectives

 Definition: The Cylindrical Coordinate System

12.6.1 (r, θ, z)

(r, θ) xy

z z

12.6.1 xy r θ
x z xy

xy 12.6.1

 Conversion between Cylindrical and Cartesian Coordinates

(x, y, z) (r, θ, z)
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These equations are used to convert from rectangular coordinates to cylindrical coordinates

1. 
2. 

3. 

As when we discussed conversion from rectangular coordinates to polar coordinates in two dimensions, it should be noted that the

equation  has an infinite number of solutions. However, if we restrict  to values between  and , then we can find a

unique solution based on the quadrant of the -plane in which original point  is located. Note that if , then the value

of  is either  or , depending on the value of .

Notice that these equations are derived from properties of right triangles. To make this easy to see, consider point  in the -plane
with rectangular coordinates  and with cylindrical coordinates , as shown in Figure .

Figure : The Pythagorean theorem provides equation . Right-triangle relationships tell us that 
 and 

Let’s consider the differences between rectangular and cylindrical coordinates by looking at the surfaces generated when each of
the coordinates is held constant. If  is a constant, then in rectangular coordinates, surfaces of the form  or  are
all planes. Planes of these forms are parallel to the -plane, the -plane, and the -plane, respectively. When we convert to
cylindrical coordinates, the -coordinate does not change. Therefore, in cylindrical coordinates, surfaces of the form  are
planes parallel to the -plane. Now, let’s think about surfaces of the form . The points on these surfaces are at a fixed
distance from the -axis. In other words, these surfaces are vertical circular cylinders. Last, what about ? The points on a
surface of the form  are at a fixed angle from the -axis, which gives us a half-plane that starts at the -axis (Figures 
and ).

Figure : In rectangular coordinates, (a) surfaces of the form  are planes parallel to the -plane, (b) surfaces of the
form  are planes parallel to the -plane, and (c) surfaces of the form  are planes parallel to the -plane.
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tanθ =
y

x
θ 0 2π

xy (x, y, z) x = 0

θ , ,
π

2

3π

2
0 y

P xy

(x, y, 0) (r, θ, 0) 12.6.2
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Figure : In cylindrical coordinates, (a) surfaces of the form  are vertical cylinders of radius , (b) surfaces of the form 
 are half-planes at angle  from the -axis, and (c) surfaces of the form  are planes parallel to the -plane.

Plot the point with cylindrical coordinates  and express its location in rectangular coordinates.

Solution

Conversion from cylindrical to rectangular coordinates requires a simple application of the equations listed in Note:

The point with cylindrical coordinates  has rectangular coordinates  (Figure ).

Figure : The projection of the point in the -plane is 4 units from the origin. The line from the origin to the point’s

projection forms an angle of  with the positive -axis. The point lies  units below the -plane.

Point  has cylindrical coordinates . Plot  and describe its location in space using rectangular, or Cartesian,
coordinates.

Hint

The first two components match the polar coordinates of the point in the -plane.

Answer

The rectangular coordinates of the point are 

12.6.4 r = c r
θ = c θ x z = c xy

 Example : Converting from Cylindrical to Rectangular Coordinates12.6.1
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If this process seems familiar, it is with good reason. This is exactly the same process that we followed in Introduction to
Parametric Equations and Polar Coordinates to convert from polar coordinates to two-dimensional rectangular coordinates.

Convert the rectangular coordinates  to cylindrical coordinates.

Solution

Use the second set of equations from Note to translate from rectangular to cylindrical coordinates:

We choose the positive square root, so .Now, we apply the formula to find . In this case,  is negative and  is

positive, which means we must select the value of  between  and :

In this case, the z-coordinates are the same in both rectangular and cylindrical coordinates:

The point with rectangular coordinates  has cylindrical coordinates approximately equal to 

Convert point  from Cartesian coordinates to cylindrical coordinates.

Hint

 and 

Answer

The use of cylindrical coordinates is common in fields such as physics. Physicists studying electrical charges and the capacitors
used to store these charges have discovered that these systems sometimes have a cylindrical symmetry. These systems have

 Example : Converting from Rectangular to Cylindrical Coordinates12.6.2
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complicated modeling equations in the Cartesian coordinate system, which make them difficult to describe and analyze. The
equations can often be expressed in more simple terms using cylindrical coordinates. For example, the cylinder described by
equation  in the Cartesian system can be represented by cylindrical equation .

Describe the surfaces with the given cylindrical equations.

a. 

b. 
c. 

Solution

a. When the angle  is held constant while  and  are allowed to vary, the result is a half-plane (Figure ).

Figure : In polar coordinates, the equation  describes the ray extending diagonally through the first quadrant. In
three dimensions, this same equation describes a half-plane.

b. Substitute  into equation  to express the rectangular form of the equation: . This
equation describes a sphere centered at the origin with radius 3 (Figure ).

Figure : The sphere centered at the origin with radius 3 can be described by the cylindrical equation .

c. To describe the surface defined by equation , is it useful to examine traces parallel to the -plane. For example, the
trace in plane  is circle , the trace in plane  is circle , and so on. Each trace is a circle. As the value of 
increases, the radius of the circle also increases. The resulting surface is a cone (Figure ).

+ = 25x2 y2 r = 5

 Example : Identifying Surfaces in the Cylindrical Coordinate System12.6.3
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12.6.7
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Figure : The traces in planes parallel to the -plane are circles. The radius of the circles increases as  increases.

Describe the surface with cylindrical equation .

Hint

The  and  components of points on the surface can take any value.

Answer

This surface is a cylinder with radius .

Spherical Coordinates

In the Cartesian coordinate system, the location of a point in space is described using an ordered triple in which each coordinate
represents a distance. In the cylindrical coordinate system, location of a point in space is described using two distances  and 
and an angle measure . In the spherical coordinate system, we again use an ordered triple to describe the location of a point in
space. In this case, the triple describes one distance and two angles. Spherical coordinates make it simple to describe a sphere, just
as cylindrical coordinates make it easy to describe a cylinder. Grid lines for spherical coordinates are based on angle measures, like
those for polar coordinates.

12.6.8 xy z

 Exercise 12.6.3

r = 6

θ z

6

(r z)
(θ)
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In the spherical coordinate system, a point  in space (Figure ) is represented by the ordered triple  where

 (the Greek letter rho) is the distance between  and the origin 
 is the same angle used to describe the location in cylindrical coordinates;
 (the Greek letter phi) is the angle formed by the positive -axis and line segment , where  is the origin and 

Figure : The relationship among spherical, rectangular, and cylindrical coordinates.

By convention, the origin is represented as  in spherical coordinates.

Rectangular coordinates , cylindrical coordinates  and spherical coordinates  of a point are related as
follows:

Convert from spherical coordinates to rectangular coordinates

These equations are used to convert from spherical coordinates to rectangular coordinates.

Convert from rectangular coordinates to spherical coordinates

These equations are used to convert from rectangular coordinates to spherical coordinates.

Convert from spherical coordinates to cylindrical coordinates

These equations are used to convert from spherical coordinates to cylindrical coordinates.

Convert from cylindrical coordinates to spherical coordinates

These equations are used to convert from cylindrical coordinates to spherical coordinates.

 Definition: spherical coordinate system

P 12.6.9 (ρ, θ, φ)

ρ P (ρ ≠ 0);
θ

φ z OP̄ O

0 ≤ φ ≤ π.

12.6.9

(0, 0, 0)

 HOWTO: Converting among Spherical, Cylindrical, and Rectangular Coordinates

(x, y, z) (r, θ, z), (ρ, θ, φ)

x = ρ sinφ cos θ

y = ρ sinφ sinθ

z = ρ cos φ

= + +ρ2 x2 y2 z2

tanθ =
y

x

φ = arccos( ).
z

+ +x2 y2 z2
− −−−−−−−−−

√

r = ρ sinφ

θ = θ

z = ρ cos φ

ρ = +r2 z2
− −−−−−

√
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The formulas to convert from spherical coordinates to rectangular coordinates may seem complex, but they are straightforward
applications of trigonometry. Looking at Figure, it is easy to see that . Then, looking at the triangle in the -plane with
r as its hypotenuse, we have . The derivation of the formula for  is similar. Figure also shows that 

 and . Solving this last equation for  and then substituting  (from the

first equation) yields . Also, note that, as before, we must be careful when using the formula  to

choose the correct value of .

Figure : The equations that convert from one system to another are derived from right-triangle relationships.

As we did with cylindrical coordinates, let’s consider the surfaces that are generated when each of the coordinates is held constant.
Let  be a constant, and consider surfaces of the form . Points on these surfaces are at a fixed distance from the origin and
form a sphere. The coordinate  in the spherical coordinate system is the same as in the cylindrical coordinate system, so surfaces
of the form  are half-planes, as before. Last, consider surfaces of the form . The points on these surfaces are at a fixed
angle from the -axis and form a half-cone (Figure ).

Figure : In spherical coordinates, surfaces of the form  are spheres of radius  (a), surfaces of the form  are half-
planes at an angle  from the -axis (b), and surfaces of the form  are half-cones at an angle  from the -axis (c).

Plot the point with spherical coordinates  and express its location in both rectangular and cylindrical coordinates.

Solution

Use the equations in Note to translate between spherical and cylindrical coordinates (Figure ):

θ = θ

φ = arccos( )
z

+r2 z2
− −−−−−

√

r = ρ sinφ xy

x = r cos θ = ρ sinφ cos θ y
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√
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√
tanθ =

y
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θ

12.6.10

c ρ = c

θ

θ = c φ = 0
z 12.6.11

12.6.11 ρ = c ρ θ = c
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 Example : Converting from Spherical Coordinates12.6.4
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Figure : The projection of the point in the -plane is  units from the origin. The line from the origin to the point’s
projection forms an angle of  with the positive -axis. The point lies  units above the -plane.

The point with spherical coordinates  has rectangular coordinates 

Finding the values in cylindrical coordinates is equally straightforward:

x

y

z

= ρ sinφ cos θ

= 8 sin( ) cos( )
π

6

π

3

= 8( )
1

2

1

2

= 2

= ρ sinφ sinθ

= 8 sin( ) sin( )
π

6

π

3

= 8( )
1

2

3
–

√

2

= 2 3
–

√

= ρ cos φ

= 8 cos( )
π

6

= 8( )
3
–

√

2

= 4 3–√

12.6.12 xy 4
π/3 x 4 3

–
√ xy

(8, , )
π

3

π

6
(2, 2 , 4 ).3

–
√ 3

–
√

r

θ

z

= ρ sinφ

= 8 sin
π

6

= θ

= ρ cos φ

= 8 cos
π

6

= 4 .3
–

√

= 4
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Thus, cylindrical coordinates for the point are .

Plot the point with spherical coordinates  and describe its location in both rectangular and cylindrical coordinates.

Hint

Converting the coordinates first may help to find the location of the point in space more easily.

Answer

Cartesian:  cylindrical: 

Convert the rectangular coordinates  to both spherical and cylindrical coordinates.

Solution

Start by converting from rectangular to spherical coordinates:

Because , then the correct choice for  is .

There are actually two ways to identify . We can use the equation . A more simple approach,

however, is to use equation  We know that  and , so

 so 

and therefore . The spherical coordinates of the point are 

To find the cylindrical coordinates for the point, we need only find r:

(4, , 4 )
π

3
3
–

√

 Exercise 12.6.4
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 Example : Converting from Rectangular Coordinates12.6.5
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The cylindrical coordinates for the point are .

Describe the surfaces with the given spherical equations.

a. 

b. 

c. 
d. 

Solution

a. The variable  represents the measure of the same angle in both the cylindrical and spherical coordinate systems. Points with
coordinates  lie on the plane that forms angle  with the positive -axis. Because , the surface described by

equation  is the half-plane shown in Figure .

Figure : The surface described by equation  is a half-plane.

b. Equation  describes all points in the spherical coordinate system that lie on a line from the origin forming an angle

measuring  rad with the positive -axis. These points form a half-cone (Figure). Because there is only one value for  that

is measured from the positive -axis, we do not get the full cone (with two pieces).

( , , )2
–

√
3π

4
6
–

√

 Example : Identifying Surfaces in the Spherical Coordinate System12.6.6
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Figure : The equation  describes a cone.

To find the equation in rectangular coordinates, use equation 

This is the equation of a cone centered on the -axis.

c. Equation  describes the set of all points  units away from the origin—a sphere with radius  (Figure ).

Figure : Equation  describes a sphere with radius .

d. To identify this surface, convert the equation from spherical to rectangular coordinates, using equations  and

12.6.14 φ =
5π

6

φ = arccos( ).
z

+ +x2 y2 z2− −−−−−−−−−
√
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6
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6
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2
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+ +
3x2

4
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4
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4

+ −
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4
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4
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4
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√
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√
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z
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− −−−−−−−−−

√
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+ +x2 y2 z2

= z2
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 Multiply both sides of the equation by .

 Substitute rectangular variables using the equations above.

 Subtract  from both sides of the equation.

 Complete the square.

. Rewrite the middle terms as a perfect square.

The equation describes a sphere centered at point  with radius .

Describe the surfaces defined by the following equations.

a. 

b. 

c. 

Hint

Think about what each component represents and what it means to hold that component constant.

Answer a

This is the set of all points  units from the origin. This set forms a sphere with radius .

Answer b

This set of points forms a half plane. The angle between the half plane and the positive -axis is 

Answer c

Let  be a point on this surface. The position vector of this point forms an angle of  with the positive -axis, which

means that points closer to the origin are closer to the axis. These points form a half-cone.

Spherical coordinates are useful in analyzing systems that have some degree of symmetry about a point, such as the volume of the
space inside a domed stadium or wind speeds in a planet’s atmosphere. A sphere that has Cartesian equation 
has the simple equation  in spherical coordinates.

In geography, latitude and longitude are used to describe locations on Earth’s surface, as shown in Figure. Although the shape of
Earth is not a perfect sphere, we use spherical coordinates to communicate the locations of points on Earth. Let’s assume Earth has
the shape of a sphere with radius  mi. We express angle measures in degrees rather than radians because latitude and longitude
are measured in degrees.

= ρ sinθ sinφρ2 ρ

+ + = yx2 y2 z2

+ −y + = 0x2 y2 z2 y

+ −y + + =x2 y2 1

4
z2 1

4

+(y − + =x2 1

2
)2 z2 1

4

(0, , 0)
1

2

1

2

 Exercise 12.6.5
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Figure : In the latitude–longitude system, angles describe the location of a point on Earth relative to the equator and the
prime meridian.

Let the center of Earth be the center of the sphere, with the ray from the center through the North Pole representing the positive -
axis. The prime meridian represents the trace of the surface as it intersects the -plane. The equator is the trace of the sphere
intersecting the -plane.

The latitude of Columbus, Ohio, is  N and the longitude is  W, which means that Columbus is  north of the equator.
Imagine a ray from the center of Earth through Columbus and a ray from the center of Earth through the equator directly south
of Columbus. The measure of the angle formed by the rays is . In the same way, measuring from the prime meridian,
Columbus lies  to the west. Express the location of Columbus in spherical coordinates.

Solution

The radius of Earth is mi, so . The intersection of the prime meridian and the equator lies on the positive -axis.
Movement to the west is then described with negative angle measures, which shows that , Because Columbus lies 

 north of the equator, it lies  south of the North Pole, so . In spherical coordinates, Columbus lies at point 

Sydney, Australia is at  and  Express Sydney’s location in spherical coordinates.

Hint

Because Sydney lies south of the equator, we need to add  to find the angle measured from the positive -axis.

Answer

Cylindrical and spherical coordinates give us the flexibility to select a coordinate system appropriate to the problem at hand. A
thoughtful choice of coordinate system can make a problem much easier to solve, whereas a poor choice can lead to unnecessarily
complex calculations. In the following example, we examine several different problems and discuss how to select the best
coordinate system for each one.

12.6.16

z

xz

xy

 Example : Converting Latitude and Longitude to Spherical Coordinates12.6.7

40° 83° 40°

40°
83°

4000 ρ = 4000 x

θ = −83°
40° 50° φ = 50°
(4000, −83°, 50°).

 Exercise 12.6.6
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90° z
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In each of the following situations, we determine which coordinate system is most appropriate and describe how we would
orient the coordinate axes. There could be more than one right answer for how the axes should be oriented, but we select an
orientation that makes sense in the context of the problem. Note: There is not enough information to set up or solve these
problems; we simply select the coordinate system (Figure ).

a. Find the center of gravity of a bowling ball.
b. Determine the velocity of a submarine subjected to an ocean current.
c. Calculate the pressure in a conical water tank.
d. Find the volume of oil flowing through a pipeline.
e. Determine the amount of leather required to make a football.

Figure : (credit: (a) modification of work by scl hua, Wikimedia, (b) modification of work by DVIDSHUB, Flickr, (c)
modification of work by Michael Malak, Wikimedia, (d) modification of work by Sean Mack, Wikimedia, (e) modification of
work by Elvert Barnes, Flickr)

Solution

a. Clearly, a bowling ball is a sphere, so spherical coordinates would probably work best here. The origin should be located at
the physical center of the ball. There is no obvious choice for how the -, - and -axes should be oriented. Bowling balls
normally have a weight block in the center. One possible choice is to align the -axis with the axis of symmetry of the
weight block.

b. A submarine generally moves in a straight line. There is no rotational or spherical symmetry that applies in this situation, so
rectangular coordinates are a good choice. The -axis should probably point upward. The - and -axes could be aligned to
point east and north, respectively. The origin should be some convenient physical location, such as the starting position of
the submarine or the location of a particular port.

c. A cone has several kinds of symmetry. In cylindrical coordinates, a cone can be represented by equation  where  is
a constant. In spherical coordinates, we have seen that surfaces of the form  are half-cones. Last, in rectangular

coordinates, elliptic cones are quadric surfaces and can be represented by equations of the form  In this

case, we could choose any of the three. However, the equation for the surface is more complicated in rectangular
coordinates than in the other two systems, so we might want to avoid that choice. In addition, we are talking about a water
tank, and the depth of the water might come into play at some point in our calculations, so it might be nice to have a
component that represents height and depth directly. Based on this reasoning, cylindrical coordinates might be the best

 Example : Choosing the Best Coordinate System12.6.8

12.6.17

12.6.17

x y z
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choice. Choose the -axis to align with the axis of the cone. The orientation of the other two axes is arbitrary. The origin
should be the bottom point of the cone.

d. A pipeline is a cylinder, so cylindrical coordinates would be best the best choice. In this case, however, we would likely
choose to orient our -axis with the center axis of the pipeline. The -axis could be chosen to point straight downward or to
some other logical direction. The origin should be chosen based on the problem statement. Note that this puts the -axis in
a horizontal orientation, which is a little different from what we usually do. It may make sense to choose an unusual
orientation for the axes if it makes sense for the problem.

e. A football has rotational symmetry about a central axis, so cylindrical coordinates would work best. The -axis should align
with the axis of the ball. The origin could be the center of the ball or perhaps one of the ends. The position of the -axis is
arbitrary.

Which coordinate system is most appropriate for creating a star map, as viewed from Earth (see the following figure)?

How should we orient the coordinate axes?

Hint

What kinds of symmetry are present in this situation?

Answer

Spherical coordinates with the origin located at the center of the earth, the -axis aligned with the North Pole, and the -
axis aligned with the prime meridian

Key Concepts
In the cylindrical coordinate system, a point in space is represented by the ordered triple  where  represents the
polar coordinates of the point’s projection in the -plane and z represents the point’s projection onto the -axis.
To convert a point from cylindrical coordinates to Cartesian coordinates, use equations  and 
To convert a point from Cartesian coordinates to cylindrical coordinates, use equations  and 

In the spherical coordinate system, a point  in space is represented by the ordered triple , where  is the distance
between  and the origin  is the same angle used to describe the location in cylindrical coordinates, and  is the
angle formed by the positive -axis and line segment , where  is the origin and 

z

z x

z

z

x

 Exercise 12.6.7

z x

(r, θ, z), (r, θ)
xy z

x = r cos θ, y = r sinθ, z = z.

= + , tanθ = ,r2 x2 y2 y

x
z = z.

P (ρ, θ, φ) ρ

P (ρ ≠ 0), θ φ

z OP̄ O 0 ≤ φ ≤ π.
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To convert a point from spherical coordinates to Cartesian coordinates, use equations  and 

To convert a point from Cartesian coordinates to spherical coordinates, use equations  and 

.

To convert a point from spherical coordinates to cylindrical coordinates, use equations  and 
To convert a point from cylindrical coordinates to spherical coordinates, use equations  and 

Glossary

cylindrical coordinate system
a way to describe a location in space with an ordered triple  where  represents the polar coordinates of the point’s
projection in the -plane, and z represents the point’s projection onto the -axis

spherical coordinate system
a way to describe a location in space with an ordered triple  where  is the distance between  and the origin 

 is the same angle used to describe the location in cylindrical coordinates, and  is the angle formed by the positive 
-axis and line segment , where  is the origin and 

Contributors and Attributions

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

Paul Seeburger edited the LaTeX on the page

12.6: Cylinders and Quadric Surfaces is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

12.7: Cylindrical and Spherical Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

x = ρ sinφ cos θ, y = ρ sinφ sinθ,
z = ρ cos φ.

= + + , tanθ = ,ρ2 x2 y2 z2 y

x

φ = arccos( )
z

+ +x2 y2 z2− −−−−−−−−−√
r = ρ sinφ, θ = θ, z = ρ cos φ.

ρ = , θ = θ,+r2 z2
− −−−−−

√

φ = arccos( ).
z

+r2 z2
− −−−−−

√

(r, θ, z), (r, θ)
xy z

(ρ, θ, φ), ρ P

(ρ ≠ 0), θ φ

z OP̄ O 0 ≤ φ ≤ π

https://libretexts.org/
https://math.libretexts.org/@go/page/4529?pdf
https://cnx.org/contents/i4nRcikn@3.1:H2TLb2-S@4/Introduction
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/12%3A_Vectors_and_The_Geometry_of_Space/12.06%3A_Cylinders_and_Quadric_Surfaces
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/12%3A_Vectors_and_The_Geometry_of_Space/12.06%3A_Cylinders_and_Quadric_Surfaces?no-cache
https://math.libretexts.org/@go/page/2592
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


1

CHAPTER OVERVIEW

13: Vector Functions

A general Calculus Textmap organized around the textbook 

Calculus: Early Transcendentals 

by James Stewart

I    II    III    IV   V    VI    VII    VIII    IX    X    XI    XII    XIII    XIV    XV    XVI    XVII

This Textmap is currently under construction... please be patient with us.

13: Vector Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

13.1: Vector Functions and Space Curves
13.2: Derivatives and Integrals of Vector Functions
13.3: Arc Length and Curvature
13.4: Motion in Space- Velocity and Acceleration

Topic hierarchy

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/01%3A_Functions_and_Models
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/02%3A_Limits_and_Derivatives
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/03%3A_Differentiation_Rules
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/04%3A_Applications_of_Differentiation
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/05%3A_Integrals
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/06%3A_Applications_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/07%3A_Techniques_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/08%3A_Further_Applications_of_Integration
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/09%3A_Differential_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/11%3A_Infinite_Sequences_And_Series
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/12%3A_Vectors_and_The_Geometry_of_Space
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/14%3A_Partial_Derivatives
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/16%3A_Vector_Calculus
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/17%3A_SecondOrder_Differential_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions?no-cache
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions/13.01%3A_Vector_Functions_and_Space_Curves
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions/13.02%3A_Derivatives_and_Integrals_of_Vector_Functions
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions/13.03%3A_Arc_Length_and_Curvature
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/13%3A_Vector_Functions/13.04%3A_Motion_in_Space-_Velocity_and_Acceleration


13.1.1 https://math.libretexts.org/@go/page/4531

13.1: Vector Functions and Space Curves

Write the general equation of a vector-valued function in component form and unit-vector form.
Recognize parametric equations for a space curve.
Describe the shape of a helix and write its equation.
Define the limit of a vector-valued function.

Our study of vector-valued functions combines ideas from our earlier examination of single-variable calculus with our description
of vectors in three dimensions from the preceding chapter. In this section, we extend concepts from earlier chapters and also
examine new ideas concerning curves in three-dimensional space. These definitions and theorems support the presentation of
material in the rest of this chapter and also in the remaining chapters of the text.

Definition of a Vector-Valued Function
Our first step in studying the calculus of vector-valued functions is to define what exactly a vector-valued function is. We can then
look at graphs of vector-valued functions and see how they define curves in both two and three dimensions.

A vector-valued function is a function of the form

where the component functions , , and , are real-valued functions of the parameter . Vector-valued functions are also
written in the form

In both cases, the first form of the function defines a two-dimensional vector-valued function; the second form describes a three-
dimensional vector-valued function.

The parameter  can lie between two real numbers: . Another possibility is that the value of  might take on all real
numbers. Last, the component functions themselves may have domain restrictions that enforce restrictions on the value of . We
often use  as a parameter because  can represent time.

For each of the following vector-valued functions, evaluate , , and . Do any of these functions have domain
restrictions?

1. 
2. 

Solution

1. To calculate each of the function values, substitute the appropriate value of  into the function:

 Learning Objectives

 Definition: Vector-valued Functions

(t) = f(t) +g(t) or (t) = f(t) +g(t) +h(t) ,r⇀ î ĵ r⇀ î ĵ k̂

f g h t

(t) = ⟨f(t), g(t)⟩ or (t) = ⟨f(t), g(t), h(t)⟩.r⇀ r⇀

t a ≤ t ≤ b t

t

t t

 Example : Evaluating Vector-Valued Functions and Determining Domains13.1.1

(0)r⇀ ( )r⇀ π

2 ( )r⇀ 2π

3

(t) = 4 cos t +3 sin tr⇀ î ĵ

(t) = 3 tan t +4 sec t +5tr⇀ î ĵ k̂

t
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To determine whether this function has any domain restrictions, consider the component functions separately. The first
component function is  and the second component function is . Neither of these functions has a
domain restriction, so the domain of  is all real numbers.

2. To calculate each of the function values, substitute the appropriate value of t into the function:

To determine whether this function has any domain restrictions, consider the component functions separately. The first
component function is , the second component function is , and the third component function is

. The first two functions are not defined for odd multiples of , so the function is not defined for odd multiples of
. Therefore,

where  is any integer.

For the vector-valued function , evaluate , and . Does this function have
any domain restrictions?

Hint

Substitute the appropriate values of  into the function.

Answer

The domain of  is all real numbers.

Example  illustrates an important concept. The domain of a vector-valued function consists of real numbers. The domain can
be all real numbers or a subset of the real numbers. The range of a vector-valued function consists of vectors. Each real number in
the domain of a vector-valued function is mapped to either a two- or a three-dimensional vector.

(0) = 4 cos(0) +3 sin(0)r⇀ î ĵ

= 4 +0 = 4î ĵ î

( ) = 4 cos( ) +3 sin( )r⇀
π

2

π

2
î

π

2
ĵ

= 0 +3 = 3î ĵ ĵ

( ) = 4 cos( ) +3 sin( )r⇀
2π

3

2π

3
î

2π

3
ĵ

= 4 (− ) +3( ) = −2 +1
2 î

3√
2 ĵ î

3 3√
2 ĵ

f(t) = 4 cos t g(t) = 3 sin t

(t) = 4 cos t +3 sin tr⇀ î ĵ

(0) = 3 tan(0) +4 sec(0) +5(0)r⇀ î ĵ k̂

= 0 +4j+0 = 4î k̂ ĵ

( ) = 3 tan( ) +4 sec( ) +5( ) , which does not existr⇀
π

2

π

2
î

π

2
ĵ

π

2
k̂

( ) = 3 tan( ) +4 sec( ) +5( )r⇀
2π

3

2π

3
î

2π

3
ĵ

2π

3
k̂

= 3(− ) +4(−2) +3–√ î ĵ
10π

3
k̂

= (−3 ) −8 +3–√ î ĵ
10π

3
k̂

f(t) = 3 tan t g(t) = 4 sec t

h(t) = 5t π

2
π

2

= {t | t ≠ },D r⇀
(2n +1)π

2

n

 Exercise 13.1.1

(t) = ( −3t) +(4t +1)r⇀ t2 î ĵ (0), (1)r⇀ r⇀ (−4)r⇀

t

(0) = , (1) = −2 +5 , (−4) = 28 −15r⇀ ĵ r⇀ î ĵ r⇀ î ĵ

(t) = ( −3t) +(4t +1)r⇀ t2 î ĵ

13.1.1
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Graphing Vector-Valued Functions
Recall that a plane vector consists of two quantities: direction and magnitude. Given any point in the plane (the initial point), if we
move in a specific direction for a specific distance, we arrive at a second point. This represents the terminal point of the vector. We
calculate the components of the vector by subtracting the coordinates of the initial point from the coordinates of the terminal point.

A vector is considered to be in standard position if the initial point is located at the origin. When graphing a vector-valued function,
we typically graph the vectors in the domain of the function in standard position, because doing so guarantees the uniqueness of the
graph. This convention applies to the graphs of three-dimensional vector-valued functions as well. The graph of a vector-valued
function of the form

consists of the set of all points , and the path it traces is called a plane curve. The graph of a vector-valued function of
the form

consists of the set of all points , and the path it traces is called a space curve. Any representation of a plane curve
or space curve using a vector-valued function is called a vector parameterization of the curve.

Each plane curve and space curve has an orientation, indicated by arrows drawn in on the curve, that shows the direction of
motion along the curve as the value of the parameter  increases.

Create a graph of each of the following vector-valued functions:

1. The plane curve represented by , 
2. The plane curve represented by , 
3. The space curve represented by , 

Solution

1. As with any graph, we start with a table of values. We then graph each of the vectors in the second column of the table in
standard position and connect the terminal points of each vector to form a curve (Figure ). This curve turns out to be an
ellipse centered at the origin.

Table : Table of Values for , 

  

(t) = f(t) +g(t)r⇀ î ĵ

(f(t), g(t))

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

(f(t), g(t), h(t))

t

 Example  : Graphing a Vector-Valued Function13.1.2

(t) = 4 cos t +3 sin tr⇀ î ĵ 0 ≤ t ≤ 2π

(t) = 4 cos( ) +3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−√3

(t) = 4 cos t +4 sin t + tr⇀ î ĵ k̂ 0 ≤ t ≤ 4π

13.1.1

13.1.1 (t) = 4 cos t + 3 sin tr⇀ î ĵ 0 ≤ t ≤ 2π

t (t)r
⇀

t (t)r
⇀

0 4 î π −4 î

π

4
2 +2–√ î

3 2√

2
ĵ

5π

4
−2 −2–√ î

3 2√

2
ĵ

π

2 3 ĵ
3π

2
−3 ĵ

3π

4
−2 +2–√ î

3 2√

2
ĵ

7π

4
2 −2–√ î

3 2√

2
ĵ

2π 4 î
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Figure : The graph of the first vector-valued function is an ellipse.

2. The table of values for ,  is as follows:

Table of Values for , 

  

The graph of this curve is also an ellipse centered at the origin.

Figure : The graph of the second vector-valued function is also an ellipse.

3. We go through the same procedure for a three-dimensional vector function.

Table of Values for , 

13.1.1

(t) = 4 cos( ) +3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−

√3

(t) = 4 cos( ) + 3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−

√3

t (t)r⇀ t (t)r⇀

0 4 î π−−√3 −4 î

π

4

−−
√3 2 +2

–√ î
3 2√

2 ĵ
5π

4

−−−
√3 −2 −2

–√ î
3 2√

2 ĵ

π

2

−−
√3 3 ĵ

3π

2

−−−
√3 −3 ĵ

3π

4

−−−
√3 −2 +2

–√ î
3 2√

2 ĵ
7π

4

−−−
√3 2 −2

–√ î
3 2√

2 ĵ

2π
−−√3 4 î

13.1.2

r(t) = 4 cos t + 4 sin t + tî ĵ k̂ 0 ≤ t ≤ 4π
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The values then repeat themselves, except for the fact that the coefficient of  is always increasing ( ). This curve is
called a helix. Notice that if the  component is eliminated, then the function becomes , which is a
circle of radius 4 centered at the origin.

Figure : The graph of the third vector-valued function is a helix.

You may notice that the graphs in parts a. and b. are identical. This happens because the function describing curve b is a so-called
reparameterization of the function describing curve a. In fact, any curve has an infinite number of reparameterizations; for example,
we can replace  with  in any of the three previous curves without changing the shape of the curve. The interval over which  is
defined may change, but that is all. We return to this idea later in this chapter when we study arc-length parameterization. As
mentioned, the name of the shape of the curve of the graph in  is a helix. The curve resembles a spring, with a circular cross-
section looking down along the -axis. It is possible for a helix to be elliptical in cross-section as well. For example, the vector-
valued function  describes an elliptical helix. The projection of this helix into the -plane is an
ellipse. Last, the arrows in the graph of this helix indicate the orientation of the curve as  progresses from  to .

Create a graph of the vector-valued function , .

Hint

Start by making a table of values, then graph the vectors for each value of .

Answer

tt (t)(t)rr⇀
⇀

tt (t)(t)rr⇀
⇀

0 4 î π −4 + πî k̂

π

4
2 + 2 +2–√ î 2–√ ĵ π

4 k̂
5π

4
−2 − 2 +2–√ î 2–√ ĵ 5π

4 k̂

π

2
4 +ĵ π

2 k̂
3π

2
−4 +ĵ 3π

2 k̂

3π

4
−2 + 2 +2–√ î 2–√ ĵ 3π

4 k̂
7π

4
2 − 2 +2–√ î 2–√ ĵ 7π

4 k̂

2π 4 + 2πĵ k̂

k̂ 13.1.3

k̂ (t) = 4 cos t +4 sin tr⇀ î ĵ

13.1.3

t 2t t

13.1.3
z

(t) = 4 cos t +3 sin t + tr⇀ î ĵ k̂ xy

t 0 4π

 Exercise 13.1.2

(t) = ( −1) +(2t −3)r⇀ t2 î ĵ 0 ≤ t ≤ 3

t
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At this point, you may notice a similarity between vector-valued functions and parameterized curves. Indeed, given a vector-valued
function  we can define  and . If a restriction exists on the values of  (for example,  is
restricted to the interval  for some constants , then this restriction is enforced on the parameter. The graph of the
parameterized function would then agree with the graph of the vector-valued function, except that the vector-valued graph would
represent vectors rather than points. Since we can parameterize a curve defined by a function , it is also possible to
represent an arbitrary plane curve by a vector-valued function.

Limits and Continuity of a Vector-Valued Function

We now take a look at the limit of a vector-valued function. This is important to understand to study the calculus of vector-valued
functions.

A vector-valued function  approaches the limit  as  approaches , written

provided

This is a rigorous definition of the limit of a vector-valued function. In practice, we use the following theorem:

Let , , and  be functions of . Then the limit of the vector-valued function  as t approaches a is given
by

provided the limits  and  exist.

Similarly, the limit of the vector-valued function  as  approaches  is given by

provided the limits ,  and  exist.

In the following example, we show how to calculate the limit of a vector-valued function.

(t) = f(t) +g(t)r⇀ î ĵ x = f(t) y = g(t) t t

[a, b] a < b

y = f(x)

 Definition: limit of a vector-valued function

r⇀ L
⇀

t a

(t) = ,lim
t→a

r⇀ L
⇀

(t) − = 0.lim
t→a

∥∥r⇀ L
⇀∥∥

 Theorem: Limit of a vector-valued function

f g h t (t) = f(t) +g(t)r⇀ î ĵ

(t) = [ f(t)] +[ g(t)] ,lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ (13.1.1)

f(t)lim
t→a

g(t)lim
t→a

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ t a

(t) = [ f(t)] +[ g(t)] +[ h(t)] ,lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ lim
t→a

k̂ (13.1.2)

f(t)lim
t→a

g(t)lim
t→a

h(t)lim
t→a
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For each of the following vector-valued functions, calculate  for

a. 
b. 

Solution

a. Use Equation  and substitute the value  into the two component expressions:

b. Use Equation  and substitute the value  into the three component expressions:

Calculate  for the function 

Hint

Use Equation  from the preceding theorem.

Answer

Now that we know how to calculate the limit of a vector-valued function, we can define continuity at a point for such a function.

Let , , and  be functions of . Then, the vector-valued function  is continuous at point  if the
following three conditions hold:

1.  exists
2.  exists

3. 

Similarly, the vector-valued function  is continuous at point  if the following three
conditions hold:

1.  exists
2.  exists

3. 

 Example : Evaluating the Limit of a Vector-Valued Function13.1.3

(t)lim
t→3

r⇀

(t) = ( −3t +4) +(4t +3)r⇀ t2 î ĵ

(t) = + +(4t −3)r⇀ 2t−4
t+1

î t

+1t2
ĵ k̂

13.1.1 t = 3

(t) = [( −3t +4) +(4t +3) ]lim
t→3

r⇀ lim
t→3

t2 î ĵ

= [ ( −3t +4)] +[ (4t +3)]lim
t→3

t2 î lim
t→3

ĵ

= 4 +15î ĵ

13.1.2 t = 3

(t) = ( + +(4t −3) )lim
t→3

r⇀ lim
t→3

2t −4

t +1
î

t

+1t2
ĵ k̂

= [ ( )] +[ ( )] +[ (4t −3)]lim
t→3

2t −4

t +1
î lim

t→3

t

+1t2
ĵ lim

t→3
k̂

= + +91
2 î 3

10 ĵ k̂

 Exercise 13.1.3

(t)lim
t→2

r⇀ (t) = −(4t −3) −sinr⇀ +3t −1t2− −−−−−−−−√ î ĵ
(t+1)π

2 k̂

13.1.2

(t) = 3 −5 +lim
t→2

r⇀ î ĵ k̂

 Definitions

f g h t (t) = f(t) +g(t)r⇀ î ĵ t = a

(a)r⇀

(t)lim
t→a

r⇀

(t) = (a)lim
t→a

r⇀ r⇀

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ t = a

(a)r⇀

(t)lim
t→a

r⇀

(t) = (a)lim
t→a

r⇀ r⇀
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Summary

A vector-valued function is a function of the form  or , where the
component functions , , and  are real-valued functions of the parameter .
The graph of a vector-valued function of the form  is called a plane curve. The graph of a vector-valued
function of the form  is called a space curve.
It is possible to represent an arbitrary plane curve by a vector-valued function.
To calculate the limit of a vector-valued function, calculate the limits of the component functions separately.

Key Equations

Vector-valued function 
 or ,or  or 

Limit of a vector-valued function 
 or 

Glossary

component functions

the component functions of the vector-valued function  are  and , and the component functions of
the vector-valued function  are ,  and 

helix
a three-dimensional curve in the shape of a spiral

limit of a vector-valued function

a vector-valued function  has a limit  as  approaches  if 

plane curve
the set of ordered pairs  together with their defining parametric equations  and 

reparameterization
an alternative parameterization of a given vector-valued function

space curve
the set of ordered triples  together with their defining parametric equations ,  and 

vector parameterization
any representation of a plane or space curve using a vector-valued function

vector-valued function

a function of the form  or ,where the component functions , , and  are
real-valued functions of the parameter .
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(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

f g h t

(t) = f(t) +g(t)r⇀ î ĵ

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ (t) = ⟨f(t), g(t)⟩r⇀ (t) = ⟨f(t), g(t), h(t)⟩r⇀

(t) = [ f(t)] +[ g(t)]lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ (t) = [ f(t)] +[ g(t)] +[ h(t)]lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ lim
t→a

k̂

(t) = f(t) +g(t)r⇀ î ĵ f(t) g(t)

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ f(t) g(t) h(t)

(t)r
⇀

L
⇀

t a lim t → a (t) − = 0∣
∣r
⇀

L
⇀∣

∣

(f(t), g(t)) x = f(t) y = g(t)

(f(t), g(t), h(t)) x = f(t) y = g(t) z = h(t)

(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ f g h

t
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13.2: Derivatives and Integrals of Vector Functions

Write an expression for the derivative of a vector-valued function.
Find the tangent vector at a point for a given position vector.
Find the unit tangent vector at a point for a given position vector and explain its significance.
Calculate the definite integral of a vector-valued function.

To study the calculus of vector-valued functions, we follow a similar path to the one we took in studying real-valued functions. First,
we define the derivative, then we examine applications of the derivative, then we move on to defining integrals. However, we will find
some interesting new ideas along the way as a result of the vector nature of these functions and the properties of space curves.

Derivatives of Vector-Valued Functions
Now that we have seen what a vector-valued function is and how to take its limit, the next step is to learn how to differentiate a
vector-valued function. The definition of the derivative of a vector-valued function is nearly identical to the definition of a real-valued
function of one variable. However, because the range of a vector-valued function consists of vectors, the same is true for the range of
the derivative of a vector-valued function.

The derivative of a vector-valued function  is

provided the limit exists. If  exists, then  is differentiable at . If  exists for all  in an open interval  then 
 is differentiable over the interval . For the function to be differentiable over the closed interval , the following two

limits must exist as well:

and

Many of the rules for calculating derivatives of real-valued functions can be applied to calculating the derivatives of vector-valued
functions as well. Recall that the derivative of a real-valued function can be interpreted as the slope of a tangent line or the
instantaneous rate of change of the function. The derivative of a vector-valued function can be understood to be an instantaneous rate
of change as well; for example, when the function represents the position of an object at a given point in time, the derivative
represents its velocity at that same point in time.

We now demonstrate taking the derivative of a vector-valued function.

Use the definition to calculate the derivative of the function

Solution

Let’s use Equation :

 Learning Objectives

 Definition: Derivative of Vector-Valued Functions

(t)r
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt) − (t)r
⇀

r
⇀

Δt
(13.2.1)

(t)r
⇀′ (t)r

⇀ t '(t)r
⇀ t (a, b)

(t)r
⇀ (a, b) [a, b]

'(a) =r⇀ lim
Δt→0+

(a+Δt) − (a)r
⇀

r
⇀

Δt

'(b) =r⇀ lim
Δt→0−

(b+Δt) − (b)r
⇀

r
⇀

Δt

 Example : Finding the Derivative of a Vector-Valued Function13.2.1

(t) = (3t+4) +( −4t+3) .r
⇀

î t2
ĵ

13.2.1
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Use the definition to calculate the derivative of the function .

Hint

Use Equation .

Answer

Notice that in the calculations in Example , we could also obtain the answer by first calculating the derivative of each
component function, then putting these derivatives back into the vector-valued function. This is always true for calculating the
derivative of a vector-valued function, whether it is in two or three dimensions. We state this in the following theorem. The proof of
this theorem follows directly from the definitions of the limit of a vector-valued function and the derivative of a vector-valued
function.

Let , , and  be differentiable functions of .

1. If  then

2. If  then

Use Theorem  to calculate the derivative of each of the following functions.

a. 
b. 
c. 

Solution

We use Theorem  and what we know about differentiating functions of one variable.

a. The first component of

'(t)r
⇀ = lim

Δt→0

(t+Δt) − (t)r⇀ r⇀

Δt

= lim
Δt→0

[(3(t+Δt) +4) +((t+Δt −4(t+Δt) +3) ] −[(3t+4) +( −4t+3) ]î )2 ĵ î t2 ĵ

Δt

= lim
Δt→0

(3t+3Δt+4) −(3t+4) +( +2tΔt+(Δt −4t−4Δt+3) −( −4t+3)î î t2 )2 ĵ t2 ĵ

Δt

= lim
Δt→0

(3Δt) +(2tΔt+(Δt −4Δt)î )2 ĵ

Δt

= (3 +(2t+Δt−4) )lim
Δt→0

î ĵ

= 3 +(2t−4)î ĵ

 Exercise 13.2.1

(t) = (2 +3) +(5t−6)r
⇀ t2 î ĵ

13.2.1

'(t) = 4t +5r
⇀

î ĵ

13.2.1

 Theorem : Differentiation of Vector-Valued Functions13.2.1

f g h t

(t) = f(t) +g(t)r
⇀

î ĵ

'(t) = f '(t) +g'(t) .r
⇀

î ĵ

(t) = f(t) +g(t) +h(t)r
⇀

î ĵ k̂

'(t) = f '(t) +g'(t) +h'(t) .r
⇀

î ĵ k̂

 Example : Calculating the Derivative of Vector-Valued Functions13.2.2

13.2.1

(t) = (6t+8) +(4 +2t−3)r
⇀

î t2 ĵ

(t) = 3 cos t +4 sin tr
⇀

î ĵ

(t) = sin t + cos t −r⇀ et î et ĵ e2t k̂

13.2.1

(t) = (6t+8) +(4 +2t−3)r⇀ î t2 ĵ
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is . The second component is . We have  and , so the Theorem 
 gives .

b. The first component is  and the second component is . We have  and 
, so we obtain .

c. The first component of  is , the second component is , and
the third component is . We have , , and , so the
theorem gives .

Calculate the derivative of the function

Hint

Identify the component functions and use Theorem .

Answer

We can extend to vector-valued functions the properties of the derivative that we presented previously. In particular, the constant
multiple rule, the sum and difference rules, the product rule, and the chain rule all extend to vector-valued functions. However, in the
case of the product rule, there are actually three extensions:

1. for a real-valued function multiplied by a vector-valued function,
2. for the dot product of two vector-valued functions, and
3. for the cross product of two vector-valued functions.

Let  and  be differentiable vector-valued functions of , let  be a differentiable real-valued function of , and let  be a scalar.

The proofs of the first two properties follow directly from the definition of the derivative of a vector-valued function. The third
property can be derived from the first two properties, along with the product rule. Let . Then

f(t) = 6t+8 g(t) = 4 +2t−3t2 f '(t) = 6 g'(t) = 8t+2

13.2.1 '(t) = 6 +(8t+2)r
⇀

î ĵ

f(t) = 3 cos t g(t) = 4 sin t f '(t) = −3 sin t

g'(t) = 4 cos t '(t) = −3 sin t +4 cos tr⇀ î ĵ

(t) = sin t + cos t −r⇀ et î et ĵ e2t k̂ f(t) = sin tet g(t) = cos tet

h(t) = −e2t f '(t) = (sin t+cos t)et g'(t) = (cos t−sin t)et h'(t) = −2e2t

'(t) = (sin t+cos t) + (cos t−sin t) −2r⇀ et î et ĵ e2t k̂

 Exercise 13.2.2

(t) = (t ln t) +(5 ) +(cos t−sin t) .r
⇀

î et ĵ k̂

13.2.1

'(t) = (1 +ln t) +5 −(sin t+cos t)r
⇀

î et ĵ k̂

 Theorem: Properties of the Derivative of Vector-Valued Functions

r⇀ u⇀ t f t c

i.

ii.

iii.

iv.

v.

vi.

vii.

[c (t)]
d

dt
r
⇀

[ (t) ± (t)]
d

dt
r
⇀

u
⇀

[f(t) (t)]
d

dt
u
⇀

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀

[ (t) × (t)]
d

dt
r
⇀

u
⇀

[ (f(t))]
d

dt
r⇀

If (t) ⋅ (t)r
⇀

r
⇀

=

=

=

=

=

=

=

c '(t)r
⇀

'(t) ± '(t)r
⇀

u
⇀

f '(t) (t) +f(t) '(t)u
⇀

u
⇀

'(t) ⋅ (t) + (t) ⋅ '(t)r
⇀

u
⇀

r
⇀

u
⇀

'(t) × (t) + (t) × '(t)r
⇀

u
⇀

r
⇀

u
⇀

'(f(t)) ⋅ f '(t)r⇀

c, then (t) ⋅ '(t) = 0 .r
⇀

r
⇀

Scalar multiple

Sum and difference

Scalar product

Dot product

Cross product

Chain rule

 Proof

(t) = g(t) +h(t)u⇀ î ĵ
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To prove property iv. let  and . Then

The proof of property v. is similar to that of property iv. Property vi. can be proved using the chain rule. Last, property vii. follows
from property iv:

Now for some examples using these properties.

Given the vector-valued functions

and

calculate each of the following derivatives using the properties of the derivative of vector-valued functions.

a. 

b. 

Solution

We have  and . Therefore, according to property iv:

1. 

[f(t) (t)]
d

dt
u
⇀ = [f(t)(g(t) +h(t) )]

d

dt
î ĵ

= [f(t)g(t) +f(t)h(t) ]
d

dt
î ĵ

= [f(t)g(t)] + [f(t)h(t)]
d

dt
î

d

dt
ĵ

= (f '(t)g(t) +f(t)g'(t)) +(f '(t)h(t) +f(t)h'(t))î ĵ

= f '(t) (t) +f(t) '(t).u
⇀

u
⇀

(t) = (t) + (t)r
⇀ f1 î g1 ĵ (t) = (t) + (t)u

⇀ f2 î g2 ĵ

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀ = [ (t) (t) + (t) (t)]

d

dt
f1 f2 g1 g2

= '(t) (t) + (t) '(t) + '(t) (t) + (t) '(t) = '(t) (t) + '(t) (t) + (t) '(t) + (t) '(t)f1 f2 f1 f2 g1 g2 g1 g2 f1 f2 g1 g2 f1 f2 g1 g2

= ( ' + ' ) ⋅ ( + ) +( + ) ⋅ ( ' + ' )f1 î g1 ĵ f2 î g2 ĵ f1 î g1 ĵ f2 î g2 ĵ

= '(t) ⋅ (t) + (t) ⋅ '(t).r
⇀

u
⇀

r
⇀

u
⇀

[ (t) ⋅ (t)]
d

dt
r
⇀

r
⇀

'(t) ⋅ (t) + (t) ⋅ '(t)r
⇀

r
⇀

r
⇀

r
⇀

2 (t) ⋅ '(t)r⇀ r⇀

(t) ⋅ '(t)r
⇀

r
⇀

= [c]
d

dt

= 0

= 0

= 0

 Example : Using the Properties of Derivatives of Vector-Valued Functions13.2.3

(t) = (6t+8) +(4 +2t−3) +5tr
⇀

î t2
ĵ k̂

(t) = ( −3) +(2t+4) +( −3t) ,u
⇀ t2

î ĵ t3
k̂

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀

[ (t) × '(t)]
d

dt
u
⇀

u
⇀

'(t) = 6 +(8t+2) +5r
⇀

î ĵ k̂ '(t) = 2t +2 +(3 −3)u
⇀

î ĵ t2 k̂
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2. First, we need to adapt property v for this problem:

Recall that the cross product of any vector with itself is zero. Furthermore,  represents the second derivative of 

Therefore,

Calculate  and  for the vector-valued functions:

,

Hint

Follow the same steps as in Example .

Answer

Tangent Vectors and Unit Tangent Vectors
Recall that the derivative at a point can be interpreted as the slope of the tangent line to the graph at that point. In the case of a vector-
valued function, the derivative provides a tangent vector to the curve represented by the function. Consider the vector-valued function

The derivative of this function is

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀ = '(t) ⋅ (t) + (t) ⋅ '(t)r

⇀
u
⇀

r
⇀

u
⇀

= (6 +(8t+2) +5 ) ⋅ (( −3) +(2t+4) +( −3t) )î ĵ k̂ t2
î ĵ t3

k̂

+((6t+8) +(4 +2t−3) +5t ) ⋅ (2t +2 +(3 −3) )î t2
ĵ k̂ î ĵ t2

k̂

= 6( −3) +(8t+2)(2t+4) +5( −3t)t2 t3

+2t(6t+8) +2(4 +2t−3) +5t(3 −3)t2 t2

= 20 +42 +26t−16.t3 t2

[ (t) × '(t)] = '(t) × '(t) + (t) × ''(t).
d

dt
u⇀ u⇀ u⇀ u⇀ u⇀ u⇀

''(t)u⇀ (t) :u⇀

''(t) = [ '(t)] = [2t +2 +(3 −3) ] = 2 +6t .u⇀
d

dt
u⇀

d

dt
î ĵ t2 k̂ î k̂

[ (t) × '(t)]
d

dt
u⇀ u⇀ = 0 +(( −3) +(2t+4) +( −3t) ) ×(2 +6t )t2 î ĵ t3 k̂ î k̂

=

∣

∣

∣
∣
∣

î

−3t2

2

ĵ

2t+4

0

k̂

−3tt3

6t

∣

∣

∣
∣
∣

= 6t(2t+4) −(6t( −3) −2( −3t)) −2(2t+4)î t2 t3 ĵ k̂

= (12 +24t) +(12t−4 ) −(4t+8) .t2
î t3

ĵ k̂

 Exercise 13.2.3

[ (t) ⋅ '(t)]
d

dt
r
⇀

r
⇀ [ (t) × (t)]

d

dt
u
⇀

r
⇀

(t) = cos t +sin t −r
⇀

î ĵ e2t k̂

(t) = t +sin t +cos tu
⇀

î ĵ k̂

13.2.3

[ (t) ⋅ '(t)] = 8
d

dt
r
⇀

r
⇀ e4t

[ (t) × (t)] = −( (cos t+2 sin t) +cos 2t) +( (2t+1) −sin2t) +(t cos t+sin t−cos 2t)
d

dt
u
⇀

r
⇀

e2t î e2t ĵ k̂

(t) = cos t +sin tr
⇀

î ĵ (13.2.2)

'(t) = −sin t +cos tr
⇀

î ĵ
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If we substitute the value  into both functions we get

and

The graph of this function appears in Figure , along with the vectors  and .

Figure : The tangent line at a point is calculated from the derivative of the vector-valued function .

Notice that the vector  is tangent to the circle at the point corresponding to . This is an example of a tangent vector to

the plane curve defined by Equation .

Let  be a curve defined by a vector-valued function , and assume that  exists when  A tangent vector  at  is
any vector such that, when the tail of the vector is placed at point  on the graph, vector  is tangent to curve . Vector 

 is an example of a tangent vector at point . Furthermore, assume that . The principal unit tangent vector at 
 is defined to be

provided .

The unit tangent vector is exactly what it sounds like: a unit vector that is tangent to the curve. To calculate a unit tangent vector, first
find the derivative . Second, calculate the magnitude of the derivative. The third step is to divide the derivative by its magnitude.

Find the unit tangent vector for each of the following vector-valued functions:

a. 
b. 

Solution

a. 

t = π/6

( ) = +r
⇀ π

6

3
–√

2
î

1

2
ĵ

'( ) = − + .r
⇀ π

6

1

2
î

3
–√

2
ĵ

13.2.1 ( )r
⇀ π

6
( )r

⇀′ π

6

13.2.1 (t)r⇀

'( )r
⇀ π

6
t =

π

6
13.2.2

 Definition: principal unit tangent vector

C r
⇀

'(t)r
⇀ t = t0 r

⇀ t = t0

( )r
⇀ t0 r

⇀ C

'( )r
⇀ t0 t = t0 '(t) ≠ 0r

⇀

t

(t) = ,T
⇀ '(t)r

⇀

∥ '(t)∥r
⇀

∥ '(t)∥ ≠ 0r
⇀

'(t)r⇀

 Example : Finding a Unit Tangent Vector13.2.4

(t) = cos t +sin tr⇀ î ĵ

(t) = (3 +2t) +(2 −4 ) +(6t+5)u⇀ t2 î t3 ĵ k̂

First step:

Second step:

Third step:

'(t)r⇀

∥ '(t)∥r
⇀

(t)T
⇀

=

=

=

−sin t +cos tî ĵ

= 1(−sin t +(cos t)2 )2− −−−−−−−−−−−−−−√

= = −sin t +cos t
'(t)r

⇀

∥ '(t)∥r
⇀

−sin t +cos tî ĵ

1
î ĵ
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b. 

Find the unit tangent vector for the vector-valued function

Hint

Follow the same steps as in Example .

Answer

Integrals of Vector-Valued Functions

We introduced antiderivatives of real-valued functions in Antiderivatives and definite integrals of real-valued functions in The
Definite Integral. Each of these concepts can be extended to vector-valued functions. Also, just as we can calculate the derivative of a
vector-valued function by differentiating the component functions separately, we can calculate the antiderivative in the same manner.
Furthermore, the Fundamental Theorem of Calculus applies to vector-valued functions as well.

The antiderivative of a vector-valued function appears in applications. For example, if a vector-valued function represents the velocity
of an object at time t, then its antiderivative represents position. Or, if the function represents the acceleration of the object at a given
time, then the antiderivative represents its velocity.

Let , , and  be integrable real-valued functions over the closed interval 

1. The indefinite integral of a vector-valued function  is

The definite integral of a vector-valued function is

2. The indefinite integral of a vector-valued function  is

The definite integral of the vector-valued function is

First step:

Second step:

Third step:

'(t)r
⇀

∥ '(t)∥r
⇀

(t)T
⇀

=

=

=

=

=

=

(6t+2) −12 +6î t2 ĵ k̂

(6t+2 +(−12 +)2 t2)2 62
− −−−−−−−−−−−−−−−−−−−

√

144 +36 +24t+40t4 t2− −−−−−−−−−−−−−−−−−
√

2 36 +9 +6t+10t4 t2− −−−−−−−−−−−−−−−
√

=
'(t)r⇀

∥ '(t)∥r
⇀

(6t+2) −12 +6î t2 ĵ k̂

2 36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√

− +
3t+1

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
î

6t2

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
ĵ

3

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
k̂

 Exercise 13.2.4

(t) = ( −3) +(2t+1) +(t−2) .r
⇀ t2

î ĵ k̂

13.2.4

(t) = + +T
⇀ 2t

4 +5t2− −−−−−
√

î
2

4 +5t2− −−−−−
√

ĵ
1

4 +5t2− −−−−−
√

k̂

 Definition: Definite and Indefinite Integrals of Vector-Valued Functions

f g h [a, b].

(t) = f(t) +g(t)r
⇀

î ĵ

∫ [f(t) +g(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] .î ĵ î ĵ

[f(t) +g(t) ] dt = [ f(t)dt] +[ g(t)dt] .∫
b

a

î ĵ ∫
b

a

î ∫
b

a

ĵ

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

∫ [f(t) +g(t) +h(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] +[∫ h(t)dt] .î ĵ k̂ î ĵ k̂

[f(t) +g(t) +h(t) ] dt = [ f(t)dt] +[ g(t)dt] +[ h(t)dt] .∫
b

a

î ĵ k̂ ∫
b

a

î ∫
b

a

ĵ ∫
b

a

k̂
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Since the indefinite integral of a vector-valued function involves indefinite integrals of the component functions, each of these
component integrals contains an integration constant. They can all be different. For example, in the two-dimensional case, we can
have

where  and  are antiderivatives of  and , respectively. Then

where . Therefore, the integration constants becomes a constant vector.

Calculate each of the following integrals:

a. 

b. 

c. 

Solution

a. We use the first part of the definition of the integral of a space curve:

b. 

c. First calculate 

Next, substitute this back into the integral and integrate:

d. Use the second part of the definition of the integral of a space curve:

∫ f(t)dt = F (t) + and ∫ g(t)dt = G(t) + ,C1 C2

F G f g

∫ [f(t) +g(t) ] dtî ĵ = [∫ f(t)dt] +[∫ g(t)dt]î ĵ

= (F (t) + ) +(G(t) + )C1 î C2 ĵ

= F (t) +G(t) + +î ĵ C1 î C2 ĵ

= F (t) +G(t) +î ĵ C
⇀

= +C
⇀

C1 î C2 ĵ

 Example : Integrating Vector-Valued Functions13.2.5

∫ [(3 +2t) +(3t−6) +(6 +5 −4) ] dtt2
î ĵ t3 t2

k̂

∫ [⟨t, , ⟩× ⟨ , , t⟩] dtt2 t3 t3 t2

[sin2t +tan t + ] dt∫

π

3

0
î ĵ e−2t

k̂

∫ [(3 +2t) +(3t−6) +(6 +5 −4) ] dtt2 î ĵ t3 t2 k̂ = [∫ 3 +2t dt] +[∫ 3t−6 dt] +[∫ 6 +5 −4 dt]t2 î ĵ t3 t2 k̂

= ( + ) +( −6t) +( + −4t) + .t3 t2 î
3

2
t2 ĵ

3

2
t4 5

3
t3 k̂ C

⇀

⟨t, , ⟩× ⟨ , , t⟩ :t2 t3 t3 t2

⟨t, , ⟩× ⟨ , , t⟩t2 t3 t3 t2 =

∣

∣

∣
∣
∣

î

t

t3

ĵ

t2

t2

k̂

t3

t

∣

∣

∣
∣
∣

= ( (t) − ( )) −( − ( )) +(t( ) − ( ))t2 t3 t2 î t2 t3 t3 ĵ t2 t2 t3 k̂

= ( − ) +( − ) +( − ) .t3 t5 î t6 t2 ĵ t3 t5 k̂

∫ [⟨t, , ⟩× ⟨ , , t⟩] dtt2 t3 t3 t2 = ∫ ( − ) +( − ) +( − ) dtt3 t5 î t6 t2 ĵ t3 t5 k̂

=( − ) +( − ) +( − ) + .
t4

4

t6

6
î

t7

7

t3

3
ĵ

t4

4

t6

6
k̂ C

⇀
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Calculate the following integral:

Hint

Use the definition of the definite integral of a plane curve.

Answer

Summary
To calculate the derivative of a vector-valued function, calculate the derivatives of the component functions, then put them back
into a new vector-valued function.
Many of the properties of differentiation of scalar functions also apply to vector-valued functions.
The derivative of a vector-valued function  is also a tangent vector to the curve. The unit tangent vector  is calculated by
dividing the derivative of a vector-valued function by its magnitude.
The antiderivative of a vector-valued function is found by finding the antiderivatives of the component functions, then putting
them back together in a vector-valued function.
The definite integral of a vector-valued function is found by finding the definite integrals of the component functions, then putting
them back together in a vector-valued function.

Key Equations
Derivative of a vector-valued function

Principal unit tangent vector

Indefinite integral of a vector-valued function

Definite integral of a vector-valued function

[sin2t +tan t + ] dt∫

π

3

0
î ĵ e−2t k̂ = [ sin2t dt] +[ tan t dt] +[ dt]∫

π

3

0
î ∫

π

3

0
ĵ ∫

π

3

0
e−2t k̂

= (− cos 2t) −(ln | cos t|) −( )1
2

∣
∣
π/3

0
î ∣

∣
π/3

0
ĵ

1
2 e

−2t ∣
∣
π/3

0
k̂

= (− cos + cos 0) −(ln(cos )−ln(cos 0)) −( − )1
2

2π
3

1
2 î π

3 ĵ 1
2 e

−2π/3 1
2 e

−2(0) k̂

= ( + ) −(−ln2) −( − )1
4

1
2 î ĵ

1
2 e

−2π/3 1
2 k̂

= +(ln2) +( − ) .3
4 î ĵ

1
2

1
2 e

−2π/3
k̂

 Exercise 13.2.5

[(2t+4) +(3 −4t) ] dt∫
3

1
î t2 ĵ

[(2t+4) +(3 −4t) ] dt = 16 +10∫
3

1
î t2

ĵ î ĵ

(t)r⇀ (t)T
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt) − (t)r⇀ r⇀

Δt

(t) =T
⇀ '(t)r⇀

∥ '(t)∥r
⇀

∫ [f(t) +g(t) +h(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] +[∫ h(t)dt]î ĵ k̂ î ĵ k̂

[f(t) +g(t) +h(t) ] dt = [ f(t)dt] +[ g(t)dt] +[ h(t)dt]∫
b

a

î ĵ k̂ ∫
b

a

î ∫
b

a

ĵ ∫
b

a

k̂
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Glossary

definite integral of a vector-valued function
the vector obtained by calculating the definite integral of each of the component functions of a given vector-valued function, then
using the results as the components of the resulting function

derivative of a vector-valued function

the derivative of a vector-valued function  is , provided the limit exists

indefinite integral of a vector-valued function
a vector-valued function with a derivative that is equal to a given vector-valued function

principal unit tangent vector
a unit vector tangent to a curve C

tangent vector
to  at  any vector  such that, when the tail of the vector is placed at point  on the graph, vector  is tangent to
curve C

13.2: Derivatives and Integrals of Vector Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

13.2: Calculus of Vector-Valued Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(t)r
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt)− (t)r⇀ r⇀

Δt

(t)r
⇀ t = t0 v

⇀ ( )r
⇀ t0 v

⇀
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13.3: Arc Length and Curvature

Determine the length of a particle’s path in space by using the arc-length function.
Explain the meaning of the curvature of a curve in space and state its formula.
Describe the meaning of the normal and binormal vectors of a curve in space.

In this section, we study formulas related to curves in both two and three dimensions, and see how they are related to various
properties of the same curve. For example, suppose a vector-valued function describes the motion of a particle in space. We would
like to determine how far the particle has traveled over a given time interval, which can be described by the arc length of the path it
follows. Or, suppose that the vector-valued function describes a road we are building and we want to determine how sharply the
road curves at a given point. This is described by the curvature of the function at that point. We explore each of these concepts in
this section.

Arc Length for Vector Functions
We have seen how a vector-valued function describes a curve in either two or three dimensions. Recall that the formula for the arc
length of a curve defined by the parametric functions  is given by

In a similar fashion, if we define a smooth curve using a vector-valued function , where , the arc
length is given by the formula

In three dimensions, if the vector-valued function is described by  over the same interval 
, the arc length is given by

Plane curve: Given a smooth curve  defined by the function , where  lies within the interval ,
the arc length of  over the interval is

Space curve: Given a smooth curve  defined by the function , where  lies within the
interval , the arc length of  over the interval is

The two formulas are very similar; they differ only in the fact that a space curve has three component functions instead of two.
Note that the formulas are defined for smooth curves: curves where the vector-valued function  is differentiable with a non-

 Learning Objectives

x = x(t), y = y(t), ≤ t ≤t1 t2

s = dt.∫
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(x'(t) +(y'(t))2 )2
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√
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a
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s = dt.∫
b

a

(f '(t) +(g'(t) +(h'(t))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−

√

 Theorem: Arc-Length Formulas for Plane and Space curves
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b

a
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a
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b
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zero derivative. The smoothness condition guarantees that the curve has no cusps (or corners) that could make the formula
problematic.

Calculate the arc length for each of the following vector-valued functions:

a. 
b. 

Solution

a. Using Equation , , so

b. Using Equation , , so

Here we can use a table integration formula

so we obtain

Calculate the arc length of the parameterized curve

Hint

 Example : Finding the Arc Length13.3.1

(t) = (3t−2) +(4t+5) , 1 ≤ t ≤ 5r
⇀

î ĵ

(t) = ⟨t cos t, t sin t, 2t⟩, 0 ≤ t ≤ 2πr
⇀

13.3.2 '(t) = 3 +4r
⇀

î ĵ

s = ∥ '(t)∥dt∫
b

a

r⇀

= dt∫
5

1
+32 42− −−−−−

√

= 5dt = 5t = 20.∫
5

1

∣∣
5

1

13.3.4 '(t) = ⟨cos t− t sin t, sin t+ t cos t, 2⟩r⇀

s = ∥ '(t) ∥ dt∫
b

a

r
⇀

= dt∫
2π

0
(cos t− t sin t +(sin t+ t cos t +)2 )2 22

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
( t−2t sin t cos t+ t) +( t+2t sin t cos t+ t) +4cos2 t2 sin2 sin2 t2 cos2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
t+ t+ ( t+ t) +4cos2 sin2 t2 cos2 sin2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
+5t2− −−−−

√

∫ du = + ln u+ +C,+u2 a2− −−−−−√ u

2
+u2 a2− −−−−−√ a2

2
∣∣ +u2 a2− −−−−−√ ∣∣

dt∫
2π

0
+5t2− −−−−

√ = (t +5 ln t+
1

2
+5t2− −−−−

√ ∣∣ +5t2− −−−−
√ ∣∣)

2π

0

= (2π +5 ln(2π+ ))− ln
1

2
4 +5π2− −−−−−

√ 4 +5π2− −−−−−
√ 5

2
5–√

≈ 25.343 units.

 Exercise 13.3.1

(t) = ⟨2 +1, 2 −1, ⟩, 0 ≤ t ≤ 3.r
⇀ t2 t2 t3
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Use Equation .

Answer

 so  units

We now return to the helix introduced earlier in this chapter. A vector-valued function that describes a helix can be written in the
form

where  represents the radius of the helix,  represents the height (distance between two consecutive turns), and the helix
completes  turns. Let’s derive a formula for the arc length of this helix using Equation . First of all,

Therefore,

This gives a formula for the length of a wire needed to form a helix with  turns that has radius  and height .

Arc-Length Parameterization
We now have a formula for the arc length of a curve defined by a vector-valued function. Let’s take this one step further and
examine what an arc-length function is.

If a vector-valued function represents the position of a particle in space as a function of time, then the arc-length function measures
how far that particle travels as a function of time. The formula for the arc-length function follows directly from the formula for arc
length:

If the curve is in two dimensions, then only two terms appear under the square root inside the integral. The reason for using the
independent variable u is to distinguish between time and the variable of integration. Since  measures distance traveled as a
function of time,  measures the speed of the particle at any given time. Since we have a formula for  in Equation ,
we can differentiate both sides of the equation:

13.3.4

'(t) = ⟨4t, 4t, 3 ⟩,r
⇀ t2 s = ( − ) ≈ 37.7851

27 1133/2 323/2

(t) = R cos( ) +R sin( ) + t , 0 ≤ t ≤ h,r
⇀ 2πNt

h
î

2πNt

h
ĵ k̂

R h

N 13.3.4

'(t) = − sin( ) + cos( ) + .r
⇀ 2πNR

h

2πNt

h
î

2πNR

h

2πNt

h
ĵ k̂

s = ∥ '(t)∥dt∫
b

a

r
⇀

= dt∫
h

0
(− sin( ) +( cos( ) +

2πNR

h

2πNt

h
)

2 2πNR

h

2πNt

h
)

2

12

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dt∫
h

0
( ( )+ ( ))+1

4π2N 2R2

h2
sin2 2πNt

h
cos2 2πNt

h

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dt∫
h

0
+1

4π2N 2R2

h2

− −−−−−−−−−−

√

= [t +1
4π2N 2R2

h2

− −−−−−−−−−−

√ ]
h

0

= h
4 +π2N 2R2 h2

h2

− −−−−−−−−−−−

√

= .4 +π2N 2R2 h2− −−−−−−−−−−−
√

N R h

s = du.∫
t

a

(f '(u) +(g'(u) +(h'(u))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−

√ (13.3.5)
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If we assume that  defines a smooth curve, then the arc length is always increasing, so  for . Last, if  is a
curve on which  for all , then

which means that  represents the arc length as long as .

Let  describe a smooth curve for . Then the arc-length function is given by

Furthermore,

If  for all , then the parameter  represents the arc length from the starting point at .

A useful application of this theorem is to find an alternative parameterization of a given curve, called an arc-length
parameterization. Recall that any vector-valued function can be reparameterized via a change of variables. For example, if we
have a function  that parameterizes a circle of radius 3, we can change the parameter from  to

, obtaining a new parameterization . The new parameterization still defines a circle of radius 3, but
now we need only use the values  to traverse the circle once.

Suppose that we find the arc-length function  and are able to solve this function for  as a function of . We can then
reparameterize the original function  by substituting the expression for  back into . The vector-valued function is now
written in terms of the parameter . Since the variable  represents the arc length, we call this an arc-length parameterization of the
original function . One advantage of finding the arc-length parameterization is that the distance traveled along the curve
starting from  is now equal to the parameter . The arc-length parameterization also appears in the context of curvature
(which we examine later in this section) and line integrals.

Find the arc-length parameterization for each of the following curves:

a. 
b. 

Solution

a. First we find the arc-length function using Equation :

s'(t) = [ du]
d

dt
∫

t

a

(f '(u) +(g'(u) +(h'(u))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−

√

= [ ∥ '(u)∥du]
d

dt
∫

t

a

r⇀

= ∥ '(t)∥.r
⇀

(t)r
⇀ s'(t) > 0 t > a (t)r

⇀

∥ '(t)∥ = 1r
⇀ t

s(t) = ∥ '(u)∥ du = 1 du = t−a,∫
t

a

r
⇀ ∫

t

a

t a = 0

 Theorem: Arc-Length Function

(t)r⇀ t ≥ a

s(t) = ∥ '(u)∥ du∫
t

a

r⇀

= ∥ '(t)∥ > 0.
ds

dt
r
⇀

∥ '(t)∥ = 1r
⇀ t ≥ a t t = a

(t) = ⟨3 cos t, 3 sin t⟩, 0 ≤ t ≤ 2πr
⇀ t

4t (t) = ⟨3 cos 4t, 3 sin4t⟩r
⇀

0 ≤ t ≤ π/2

s(t) t s

(t)r
⇀ t (t)r

⇀

s s

(t)r
⇀

s = 0 s

 Example : Finding an Arc-Length Parameterization13.3.2

(t) = 4 cos t +4 sin t , t ≥ 0r
⇀

î ĵ

(t) = ⟨t+3, 2t−4, 2t⟩, t ≥ 3r
⇀

13.3.5
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b. which gives the relationship between the arc length  and the parameter  as  so, . Next we replace the
variable  in the original function  with the expression  to obtain

This is the arc-length parameterization of . Since the original restriction on  was given by , the restriction on s
becomes , or .

c. The arc-length function is given by Equation :

Therefore, the relationship between the arc length  and the parameter  is , so . Substituting this into
the original function  yields

This is an arc-length parameterization of . The original restriction on the parameter  was , so the restriction on 
is , or .

Find the arc-length function for the helix

Then, use the relationship between the arc length and the parameter  to find an arc-length parameterization of .

Hint

Start by finding the arc-length function.

Answer

, or . Substituting this into  gives

s(t) = ∥ '(u)∥ du∫
t

a

r
⇀

= ∥⟨−4 sinu, 4 cosu⟩∥ du∫
t

0

= du∫
t

0
(−4 sinu +(4 cosu)2 )2
− −−−−−−−−−−−−−−−−−

√

= du∫
t

0
16 u+16 usin2 cos2− −−−−−−−−−−−−−−−

√

= 4 du = 4t,∫
t

0

s t s = 4t; t = s/4

t (t) = 4 cos t +4 sin tr
⇀

î ĵ s/4

(s) = 4 cos( ) +4 sin( ) .r
⇀ s

4
î

s

4
ĵ

(t)r
⇀ t t ≥ 0

s/4 ≥ 0 s ≥ 0
13.3.5

s(t) = ∥ '(u)∥ du∫
t

a

r
⇀

= ∥⟨1, 2, 2⟩∥ du∫
t

3

= du∫
t

3
+ +12 22 22− −−−−−−−−−

√

= 3 du∫
t

3

= 3t−9.

s t s = 3t−9 t = +3s

3

(t) = ⟨t+3, 2t−4, 2t⟩r
⇀

(s) = ⟨( +3)+3, 2( +3)−4, 2( +3)⟩ = ⟨ +6, +2, +6⟩.r⇀
s

3

s

3

s

3

s

3

2s

3

2s

3

(t)r⇀ t t ≥ 3 s

(s/3) +3 ≥ 3 s ≥ 0

 Exercise 13.3.2

(t) = ⟨3 cos t, 3 sin t, 4t⟩, t ≥ 0.r⇀

t (t)r⇀

s = 5t t = s/5 (t) = ⟨3 cos t, 3 sin t, 4t⟩r
⇀
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Curvature
An important topic related to arc length is curvature. The concept of curvature provides a way to measure how sharply a smooth
curve turns. A circle has constant curvature. The smaller the radius of the circle, the greater the curvature.

Think of driving down a road. Suppose the road lies on an arc of a large circle. In this case you would barely have to turn the wheel
to stay on the road. Now suppose the radius is smaller. In this case you would need to turn more sharply to stay on the road. In the
case of a curve other than a circle, it is often useful first to inscribe a circle to the curve at a given point so that it is tangent to the
curve at that point and “hugs” the curve as closely as possible in a neighborhood of the point (Figure ). The curvature of the
graph at that point is then defined to be the same as the curvature of the inscribed circle.

Figure : The graph represents the curvature of a function  The sharper the turn in the graph, the greater the
curvature, and the smaller the radius of the inscribed circle.

Let  be a smooth curve in the plane or in space given by , where  is the arc-length parameter. The curvature  at  is

Visit this video for more information about the curvature of a space curve.

The formula in the definition of curvature is not very useful in terms of calculation. In particular, recall that  represents the
unit tangent vector to a given vector-valued function , and the formula for  is

To use the formula for curvature, it is first necessary to express  in terms of the arc-length parameter , then find the unit
tangent vector  for the function , then take the derivative of  with respect to . This is a tedious process.
Fortunately, there are equivalent formulas for curvature.

If  is a smooth curve given by , then the curvature  of  at  is given by

If  is a three-dimensional curve, then the curvature can be given by the formula

If  is the graph of a function  and both  and  exist, then the curvature  at point  is given by

(s) = ⟨3 cos( ), 3 sin( ), ⟩, s ≥ 0r
⇀ s

5

s

5

4s

5

13.3.1

13.3.1 y = f(x).

Definition: Curvature

C (s)r
⇀ s κ s

κ = = ∥ '(s)∥.∥
∥∥
dT

⇀

ds

∥
∥∥ T

⇀

(t)T
⇀

(t)r
⇀ (t)T

⇀

(t) = .T
⇀ '(t)r

⇀

∥ '(t)∥r
⇀

(t)r
⇀ s

(s)T
⇀

(s)r
⇀ (s)T

⇀
s

 Theorem: Alternate Formulas of Curvature

C (t)r⇀ κ C t

κ = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀
(13.3.6)

C

κ = .
∥ '(t) × ''(t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3
(13.3.7)

C y = f(x) y' y′′ κ (x, y)

κ = .
| |y′′

[1 +(y')2]3/2
(13.3.8)
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The first formula follows directly from the chain rule:

where  is the arc length along the curve . Dividing both sides by , and taking the magnitude of both sides gives

Since , this gives the formula for the curvature  of a curve  in terms of any parameterization of :

In the case of a three-dimensional curve, we start with the formulas  and .
Therefore, . We can take the derivative of this function using the scalar product formula:

Using these last two equations we get

Since , this reduces to

Since  is parallel to , and  is orthogonal to , it follows that  and  are orthogonal. This means that 
, so

Now we solve this equation for  and use the fact that :

Then, we divide both sides by . This gives

This proves . To prove , we start with the assumption that curve  is defined by the function . Then, we
can define . Using the previous formula for curvature:

 Proof

= ,
dT

⇀

dt

dT
⇀

ds

ds

dt

s C ds/dt

= .∥
∥∥
dT

⇀

ds

∥
∥∥

∥

∥

∥
∥
∥

'(t)T
⇀

ds

dt

∥

∥

∥
∥
∥

ds/dt = ∥ '(t)∥r⇀ κ C C

κ = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀

(t) = ( '(t))/∥ '(t)∥T
⇀

r⇀ r⇀ ds/dt = ∥ '(t)∥r⇀

'(t) = (ds/dt) (t)r
⇀

T
⇀

'' (t) = (t) + '(t).r⇀
sd2

dt2
T
⇀ ds

dt
T
⇀

'(t) × '' (t)r
⇀

r
⇀ = (t) ×( (t) + '(t))

ds

dt
T
⇀ sd2

dt2
T
⇀ ds

dt
T
⇀

= (t) × (t) +( (t) × '(t).
ds

dt

sd2

dt2
T
⇀

T
⇀ ds

dt
)2

T
⇀

T
⇀

(t) × (t) = 0T
⇀

T
⇀

'(t) × ''(t) = (t) × '(t).r⇀ r⇀ ( )
ds

dt

2

T
⇀

T
⇀

'T
⇀

N
⇀

T
⇀

N
⇀

T
⇀

'T
⇀

∥ × '∥ = ∥ ∥∥ '∥ sin(π/2) = ∥ '∥T
⇀

T
⇀

T
⇀

T
⇀

T
⇀

∥ '(t) × '' (t)∥ = ∥ '(t)∥.r
⇀

r
⇀ ( )

ds

dt

2

T
⇀

∥ '(t)∥T
⇀

ds/dt = ∥ '(t)∥r
⇀

∥ '(t)∥ = .T
⇀ ∥ '(t) × '' (t)∥r⇀ r⇀

∥ '(t)r⇀ ∥2

∥ '(t)∥r⇀

κ = = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀

∥ '(t) × '' (t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3

13.3.7 13.3.8 C y = f(x)

(t) = x +f(x) +0r⇀ î ĵ k̂
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Therefore,

Find the curvature for each of the following curves at the given point:

a. 

b. 

Solution

a. This function describes a helix.

The curvature of the helix at  can be found by using . First, calculate :

Next, calculate 

Last, apply  :

'(t)r
⇀

'' (t)r
⇀

'(t) × '' (t)r
⇀

r
⇀

= +f '(x)î ĵ

= f '' (x) ĵ

= = f '' (x) .

∣

∣

∣
∣
∣

î

1

0

ĵ

f '(x)

f '' (x)

k̂

0

0

∣

∣

∣
∣
∣

k̂

κ = =
∥ '(t) × '' (t)∥r

⇀
r
⇀

∥ '(t)r
⇀ ∥3

|f '' (x)|

(1 +[f '(x)]2)3/2

 Example : Finding Curvature13.3.3

(t) = 4 cos t +4 sin t +3t , t =r
⇀

î ĵ k̂
4π

3
f(x) = , x = 24x −x2− −−−−−√

t = (4π)/3 13.3.6 (t)T
⇀

(t)T
⇀

=
'(t)r⇀

∥ '(t)∥r⇀

=
⟨−4 sin t, 4 cos t, 3⟩

(−4 sin t +(4 cos t +)2 )2 32
− −−−−−−−−−−−−−−−−−−−−

√

= ⟨− sin t, cos t, ⟩.
4

5

4

5

3

5

'(t) :T
⇀

'(t) = ⟨− cos t, − sin t, 0⟩.T
⇀ 4

5

4

5

13.3.6
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The curvature of this helix is constant at all points on the helix.

2. This function describes a semicircle.

To find the curvature of this graph, we must use . First, we calculate  and 

Then, we apply :

κ = =
∥ '(t)∥T

⇀

∥ '(t)∥r
⇀

∥⟨− cos t, − sin t, 0⟩∥
4

5

4

5
∥⟨−4 sin t, 4 cos t, 3⟩∥

=

(− cos t +(− sin t +
4

5
)2 4

5
)2 02

− −−−−−−−−−−−−−−−−−−−−−−
√

(−4 sin t +(4 cos t +)2 )2 32
− −−−−−−−−−−−−−−−−−−−−

√

= = .
4/5

5

4

25

13.3.8 y' y'' :

y

y'

y''

= = (4x−4x−x2− −−−−−
√ x2)1/2

= (4x− (4 −2x) = (2 −x)(4x−
1

2
x2)−1/2 x2)−1/2

= −(4x− +(2 −x)(− )(4x− (4 −2x)x2)−1/2 1

2
x2)−3/2

= − −
4x−x2

(4x−x2)3/2

(2 −x)2

(4x−x2)3/2

=
−4x−(4 −4x+ )x2 x2

(4x−x2)3/2

= − .
4

(4x−x2)3/2
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The curvature of this circle is equal to the reciprocal of its radius. There is a minor issue with the absolute value in  ;
however, a closer look at the calculation reveals that the denominator is positive for any value of .

Find the curvature of the curve defined by the function

at the point .

Hint

Use .

Answer

The Normal and Binormal Vectors

We have seen that the derivative  of a vector-valued function is a tangent vector to the curve defined by , and the unit
tangent vector  can be calculated by dividing  by its magnitude. When studying motion in three dimensions, two other
vectors are useful in describing the motion of a particle along a path in space: the principal unit normal vector and the binormal
vector.

Let  be a three-dimensional smooth curve represented by  over an open interval . If , then the principal unit
normal vector at  is defined to be

The binormal vector at  is defined as

where  is the unit tangent vector.

Note that, by definition, the binormal vector is orthogonal to both the unit tangent vector and the normal vector. Furthermore, 
is always a unit vector. This can be shown using the formula for the magnitude of a cross product.

κ =
| |y′′

[1 +(y')2]3/2

= =

−∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[1 +((2 −x)(4x−x2)−1/2)2]
3/2

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[1 +
(2 −x)2

4x−x2
]

3/2

= = ⋅

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[
4x− + −4x+4x2 x2

4x−x2
]

3/2

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

(4x−x2)3/2

8

= .
1

2

13.3.8
x

 Exercise 13.3.3

y = 3 −2x+4x2

x = 2

13.3.8

κ = ≈ 0.00596

1013/2

'(t)r
⇀ (t)r

⇀

(t)T
⇀

'(t)r
⇀

Definition: Binormal Vectors

C r⇀ I '(t) ≠T
⇀

0
⇀

t

(t) = .N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀ (13.3.9)

t

(t) = (t) × (t),B
⇀

T
⇀

N
⇀

(13.3.10)

(t)T
⇀

(t)B
⇀
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where  is the angle between  and . Since  is the derivative of a unit vector, property (vii) of the derivative of a
vector-valued function tells us that  and  are orthogonal to each other, so . Furthermore, they are both unit
vectors, so their magnitude is 1. Therefore,  and  is a unit vector.

The principal unit normal vector can be challenging to calculate because the unit tangent vector involves a quotient, and this
quotient often has a square root in the denominator. In the three-dimensional case, finding the cross product of the unit tangent
vector and the unit normal vector can be even more cumbersome. Fortunately, we have alternative formulas for finding these two
vectors, and they are presented in Motion in Space.

For each of the following vector-valued functions, find the principal unit normal vector. Then, if possible, find the binormal
vector.

1. 
2. 

Solution

1. This function describes a circle.

To find the principal unit normal vector, we first must find the unit tangent vector 

∥ (t)∥ = ∥ (t) × (t)∥ = ∥ (t)∥∥ (t)∥ sinθ,B
⇀

T
⇀

N
⇀

T
⇀

N
⇀

θ (t)T
⇀

(t)N
⇀

(t)N
⇀

(t)T
⇀

(t)N
⇀

θ = π/2

∥ (t)∥∥ (t)∥ sinθ = (1)(1) sin(π/2) = 1T
⇀

N
⇀

(t)B
⇀

 Example : Finding the Principal Unit Normal Vector and Binormal Vector13.3.4

(t) = 4 cos t −4 sin tr
⇀

î ĵ

(t) = (6t+2) +5 −8tr
⇀

î t2 ĵ k̂

(t) :T
⇀

(t)T
⇀

=
'(t)r

⇀

∥ '(t)∥r⇀

=
−4 sin t −4 cos tî ĵ

(−4 sin t +(−4 cos t)2 )2− −−−−−−−−−−−−−−−−−−√

=
−4 sin t −4 cos tî ĵ

16 t+16 tsin2 cos2
− −−−−−−−−−−−−−−

√

=
−4 sin t −4 cos tî ĵ

16( t+ t)sin2 cos2
− −−−−−−−−−−−−−

√

=
−4 sin t −4 cos tî ĵ

4

= −sin t −cos t .î ĵ
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Next, we use  :

Notice that the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of :

Furthermore, the principal unit normal vector points toward the center of the circle from every point on the circle. Since 
defines a curve in two dimensions, we cannot calculate the binormal vector.

2. This function looks like this:

To find the principal unit normal vector, we first find the unit tangent vector 

13.3.9

(t)N
⇀

=
'(t)T

⇀

∥ '(t)∥T
⇀

=
−cos t +sin tî ĵ

(−cos t +(sin t)2 )2− −−−−−−−−−−−−−−
√

=
−cos t +sin tî ĵ

t+ tcos2 sin2− −−−−−−−−−−√

= −cos t +sin t .î ĵ

t

(t) ⋅ (t)T
⇀

N
⇀

= ⟨−sin t, −cos t⟩ ⋅ ⟨−cos t, sin t⟩

= sin t cos t−cos t sin t

= 0.

(t)r⇀

(t) :T
⇀
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Next, we calculate  and :

Therefore, according to  :

Once again, the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of :

(t)T
⇀

=
'(t)r⇀

∥ '(t)∥r
⇀

=
6 +10t −8î ĵ k̂

+(10t +(−862 )2 )2
− −−−−−−−−−−−−−−

√

=
6 +10t −8î ĵ k̂

36 +100 +64t2− −−−−−−−−−−−√

=
6 +10t −8î ĵ k̂

100( +1)t2− −−−−−−−−
√

=
3 −5t −4î ĵ k̂

5 +1t2− −−−−√

= ( +1 − t( +1 − ( +1 .
3

5
t2 )−1/2

î t2 )−1/2
ĵ

4

5
t2 )−1/2

k̂

'(t)T
⇀

∥ '(t)∥T
⇀

'(t)T
⇀

∥ '(t)∥T
⇀

= (− )( +1 (2t) −(( +1 − t( )( +1 (2t)) − (− )( +1 (2t)
3

5

1

2
t2 )−3/2

î t2 )−1/2 1

2
t2 )−3/2

ĵ
4

5

1

2
t2 )−3/2

k̂

= − − +
3t

5( +1t2 )3/2
î

1

( +1t2 )3/2
ĵ

4t

5( +1t2 )3/2
k̂

= (− +(− +(
3t

5( +1t2 )3/2
)

2 1

( +1t2 )3/2
)

2 4t

5( +1t2 )3/2
)

2− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= + +
9t2

25( +1t2 )3

1

( +1t2 )3

16t2

25( +1t2 )3

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

=
25 +25t2

25( +1t2 )3

− −−−−−−−−

√

=
1

( +1t2 )2

− −−−−−−−

√

= .
1

+1t2

13.3.9

(t)N
⇀

=
'(t)T

⇀

∥ '(t)∥T
⇀

=(− − + )( +1)
3t

5( +1t2 )3/2
î

1

( +1t2 )3/2
ĵ

4t

5( +1t2 )3/2
k̂ t2

= − − +
3t

5( +1t2 )1/2
î

5

5( +1t2 )1/2
ĵ

4t

5( +1t2 )1/2
k̂

= − .
3t +5 −4tî ĵ k̂

5 +1t2− −−−−√

t
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Last, since  represents a three-dimensional curve, we can calculate the binormal vector using  :

Find the unit normal vector for the vector-valued function  and evaluate it at .

Hint

First, find , then use .

Answer

For any smooth curve in three dimensions that is defined by a vector-valued function, we now have formulas for the unit tangent
vector , the unit normal vector , and the binormal vector . The unit normal vector and the binormal vector form a plane that is
perpendicular to the curve at any point on the curve, called the normal plane. In addition, these three vectors form a frame of
reference in three-dimensional space called the Frenet frame of reference (also called the TNB frame) (Figure ). Last, the
plane determined by the vectors  and  forms the osculating plane of  at any point  on the curve.

(t) ⋅ (t)T
⇀

N
⇀

=( ) ⋅(− )
3 −5t −4î ĵ k̂

5 +1t2− −−−−√

3t +5 −4tî ĵ k̂

5 +1t2− −−−−√

=
3(−3t) −5t(−5) −4(4t)

25( +1)t2

=
−9t+25t−16t

25( +1)t2

= 0.

(t)r
⇀ 13.3.10

(t)B
⇀

= (t) × (t)T
⇀

N
⇀

=

∣

∣

∣
∣
∣
∣
∣

î

3

5 +1t2− −−−−
√

−
3t

5 +1t2− −−−−√

ĵ

−
5t

5 +1t2− −−−−
√

−
5

5 +1t2− −−−−√

k̂

−
4

5 +1t2− −−−−
√

4t

5 +1t2− −−−−√

∣

∣

∣
∣
∣
∣
∣

=((− )( )−(− )(− ))
5t

5 +1t2− −−−−√

4t

5 +1t2− −−−−√

4

5 +1t2− −−−−√

5

5 +1t2− −−−−√
î

−(( )( )−(− )(− ))
3

5 +1t2− −−−−√

4t

5 +1t2− −−−−√

4

5 +1t2− −−−−√

3t

5 +1t2− −−−−√
ĵ

+(( )(− )−(− )(− ))
3

5 +1t2− −−−−√

5

5 +1t2− −−−−√

5t

5 +1t2− −−−−√

3t

5 +1t2− −−−−√
k̂

=( ) +( )
−20 −20t2

25( +1)t2
î

−15 −15t2

25( +1)t2
k̂

= −20( ) −15( )
+1t2

25( +1)t2 î
+1t2

25( +1)t2 k̂

= − − .
4

5
î

3

5
k̂

 Exercise 13.3.4

(t) = ( −3t) +(4t+1)r
⇀ t2 î ĵ t = 2

(t)T
⇀

13.3.9

(2) = ( − )N
⇀ 2–√

2
î ĵ

T
⇀

N
⇀

B
⇀

13.3.2

T
⇀

N
⇀

C P
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Figure : This figure depicts a Frenet frame of reference. At every point  on a three-dimensional curve, the unit tangent,
unit normal, and binormal vectors form a three-dimensional frame of reference.

Suppose we form a circle in the osculating plane of  at point  on the curve. Assume that the circle has the same curvature as the
curve does at point  and let the circle have radius . Then, the curvature of the circle is given by . We call  the radius of
curvature of the curve, and it is equal to the reciprocal of the curvature. If this circle lies on the concave side of the curve and is
tangent to the curve at point , then this circle is called the osculating circle of  at , as shown in Figure .

Figure : In this osculating circle, the circle is tangent to curve  at point  and shares the same curvature.

For more information on osculating circles, see this demonstration on curvature and torsion, this article on osculating circles, and
this discussion of Serret formulas.

To find the equation of an osculating circle in two dimensions, we need find only the center and radius of the circle.

Find the equation of the osculating circle of the curve defined by the function  at .

Solution

Figure  shows the graph of .

Figure : We want to find the osculating circle of this graph at the point where .

First, let’s calculate the curvature at :

13.3.2 P

C P

P r 1
r r

P C P 13.3.3

13.3.3 C P

 Example : Finding the Equation of an Osculating Circle13.3.5

y = −3x+1x3 x = 1

13.3.4 y = −3x+1x3

13.3.4 x = 1

x = 1
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This gives . Therefore, the radius of the osculating circle is given by . Next, we then calculate the

coordinates of the center of the circle. When , the slope of the tangent line is zero. Therefore, the center of the osculating
circle is directly above the point on the graph with coordinates . The center is located at . The formula for a
circle with radius  and center  is given by . Therefore, the equation of the osculating circle is 

. The graph and its osculating circle appears in the following graph.

Figure : The osculating circle has radius .

Find the equation of the osculating circle of the curve defined by the vector-valued function  at .

Hint

Use  to find the curvature of the graph, then draw a graph of the function around  to help visualize the circle in
relation to the graph.

Answer

At the point , the curvature is equal to . Therefore, the radius of the osculating circle is .

A graph of this function appears next:

κ = = .
|f '' (x)|

(1 +[f '(x)]2)
3/2

|6x|

(1 +[3 −3x2 ]2)3/2

κ = 6 R = =1
κ

1

6
x = 1

(1, −1) (1, − )5
6

r (h, k) (x−h +(y−k =)2 )2 r2

(x−1 +(y+ =)2 5
6 )2 1

36

13.3.5 R = 1
6

 Exercise 13.3.5

y = 2 −4x+5x2 x = 1

13.3.8 x = 1

κ = 4

[1+(4x−4)2]3/2
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The vertex of this parabola is located at the point . Furthermore, the center of the osculating circle is directly above
the vertex. Therefore, the coordinates of the center are . The equation of the osculating circle is

.

Key Concepts

The arc-length function for a vector-valued function is calculated using the integral formula . This

formula is valid in both two and three dimensions.
The curvature of a curve at a point in either two or three dimensions is defined to be the curvature of the inscribed circle at that
point. The arc-length parameterization is used in the definition of curvature.
There are several different formulas for curvature. The curvature of a circle is equal to the reciprocal of its radius.
The principal unit normal vector at  is defined to be

The binormal vector at  is defined as , where  is the unit tangent vector.
The Frenet frame of reference is formed by the unit tangent vector, the principal unit normal vector, and the binormal vector.
The osculating circle is tangent to a curve at a point and has the same curvature as the tangent curve at that point.

Key Equations
Arc length of space curve 

Arc-length function 

Principal unit normal vector 

Binormal vector 

Glossary

arc-length function
a function  that describes the arc length of curve  as a function of 

arc-length parameterization
a reparameterization of a vector-valued function in which the parameter is equal to the arc length

binormal vector
a unit vector orthogonal to the unit tangent vector and the unit normal vector

curvature
the derivative of the unit tangent vector with respect to the arc-length parameter

Frenet frame of reference
(TNB frame) a frame of reference in three-dimensional space formed by the unit tangent vector, the unit normal vector, and the
binormal vector

(1, 3)

(1, )13
4

(x−1 +(y− =)2 13
4

)2 1
16

s(t) = ∥ '(t)∥ dt∫
b

a

r
⇀

t

(t) = .N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀

t (t) = (t) × (t)B
⇀

T
⇀

N
⇀

(t)T
⇀

s = dt = ∥ '(t)∥ dt∫
b

a

[f '(t) +[g'(t) +[h'(t)]2 ]2 ]2
− −−−−−−−−−−−−−−−−−−−−√ ∫

b

a

r
⇀

s(t) = du or s(t) = ∥ '(u)∥ du∫
t

a

f '(u) +(g'(u) +(h'(u))2 )2 )2− −−−−−−−−−−−−−−−−−−−−−
√ ∫

t

a

r⇀

κ = or κ = or κ =
∥ '(t)∥T

⇀

∥ '(t)∥r⇀
∥ '(t)× ''(t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3

|y''|

[1+(y')2]3/2

(t) =N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀

(t) = (t) × (t)B
⇀

T
⇀

N
⇀

s(t) C t

https://libretexts.org/
https://openstax.org/
https://math.libretexts.org/@go/page/4533?pdf


Access for free at OpenStax 13.3.18 https://math.libretexts.org/@go/page/4533

normal plane
a plane that is perpendicular to a curve at any point on the curve

osculating circle
a circle that is tangent to a curve  at a point  and that shares the same curvature

osculating plane
the plane determined by the unit tangent and the unit normal vector

principal unit normal vector

a vector orthogonal to the unit tangent vector, given by the formula 

radius of curvature
the reciprocal of the curvature

smooth
curves where the vector-valued function  is differentiable with a non-zero derivative

This page titled 13.3: Arc Length and Curvature is shared under a not declared license and was authored, remixed, and/or curated by OpenStax.

13.3: Arc Length and Curvature by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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13.4: Motion in Space- Velocity and Acceleration

Describe the velocity and acceleration vectors of a particle moving in space.
Explain the tangential and normal components of acceleration.
State Kepler’s laws of planetary motion.

We have now seen how to describe curves in the plane and in space, and how to determine their properties, such as arc length and
curvature. All of this leads to the main goal of this chapter, which is the description of motion along plane curves and space curves.
We now have all the tools we need; in this section, we put these ideas together and look at how to use them.

Motion Vectors in the Plane and in Space
Our starting point is using vector-valued functions to represent the position of an object as a function of time. All of the following
material can be applied either to curves in the plane or to space curves. For example, when we look at the orbit of the planets, the
curves defining these orbits all lie in a plane because they are elliptical. However, a particle traveling along a helix moves on a
curve in three dimensions.

Let  be a twice-differentiable vector-valued function of the parameter  that represents the position of an object as a
function of time.

The velocity vector  of the object is given by

The acceleration vector  is defined to be

The speed is defined to be

Since  can be in either two or three dimensions, these vector-valued functions can have either two or three components. In two
dimensions, we define  and in three dimensions . Then the velocity,
acceleration, and speed can be written as shown in the following table.

Table : Formulas for Position, Velocity, Acceleration, and Speed
Quantity Two Dimensions Three Dimensions

Position

Velocity

Acceleration

Speed

A particle moves in a parabolic path defined by the vector-valued function , where  measures time in
seconds.

1. Find the velocity, acceleration, and speed as functions of time.
2. Sketch the curve along with the velocity vector at time .

Solution

 Learning Objectives

 Definition: Speed, Velocity, and Acceleration

(t)r
⇀ t

(t)v⇀

Velocity = (t) = '(t).v
⇀

r
⇀ (13.4.1)

(t)a⇀

Acceleration = (t) = '(t) = '' (t).a
⇀

v
⇀

r
⇀ (13.4.2)

Speed = v(t) = ∥ (t)∥ = ∥ '(t)∥ = .v
⇀

r
⇀ ds

dt
(13.4.3)

(t)r⇀

(t) = x(t) +y(t)r⇀ î ĵ (t) = x(t) +y(t) +z(t)r⇀ î ĵ k̂

13.4.1

(t) = x(t) + y(t)r⇀ î ĵ (t) = x(t) + y(t) + z(t)r⇀ î ĵ k̂

(t) = x'(t) + y'(t)v⇀ î ĵ (t) = x'(t) + y'(t) + z'(t)v⇀ î ĵ k̂

(t) = x''(t) + y''(t)a⇀ î ĵ (t) = x''(t) + y''(t) + z''(t)a⇀ î ĵ k̂
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 Example : Studying Motion Along a Parabola13.4.1

(t) = +r⇀ t2 î 5 − t2− −−−−√ ĵ t
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1. We use Equations , , and :

2. The graph of  is a portion of a parabola (Figure ). 
 
When , . 
 
Thus the particle would be located at the point  when . 
 
The velocity vector at  is

and the acceleration vector at  is

Notice that the velocity vector is tangent to the path, as is always the case.

Figure : This graph depicts the velocity vector at time  for a particle moving in a parabolic path.
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A particle moves in a path defined by the vector-valued function , where 
measures time in seconds and where distance is measured in feet. Find the velocity, acceleration, and speed as functions of
time.

Hint

Use Equations , , and .

Answer

The units for velocity and speed are feet per second, and the units for acceleration are feet per second squared.

To gain a better understanding of the velocity and acceleration vectors, imagine you are driving along a curvy road. If you do not
turn the steering wheel, you would continue in a straight line and run off the road. The speed at which you are traveling when you
run off the road, coupled with the direction, gives a vector representing your velocity, as illustrated in Figure .

Figure : At each point along a road traveled by a car, the velocity vector of the car is tangent to the path traveled by the car.

However, the fact that you must turn the steering wheel to stay on the road indicates that your velocity is always changing (even if
your speed is not) because your direction is constantly changing to keep you on the road. As you turn to the right, your acceleration
vector also points to the right. As you turn to the left, your acceleration vector points to the left. This indicates that your velocity
and acceleration vectors are constantly changing, regardless of whether your actual speed varies (Figure ).

Figure : The dashed line represents the trajectory of an object (a car, for example). The acceleration vector points toward the
inside of the turn at all times.

Components of the Acceleration Vector
We can combine some of the concepts discussed in Arc Length and Curvature with the acceleration vector to gain a deeper
understanding of how this vector relates to motion in the plane and in space. Recall that the unit tangent vector  and the unit

 Exercise 13.4.1

(t) = ( −3t) +(2t−4) +(t+2)r⇀ t2 î ĵ k̂ t
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normal vector  form an osculating plane at any point  on the curve defined by a vector-valued function . The following
theorem shows that the acceleration vector  lies in the osculating plane and can be written as a linear combination of the unit
tangent and the unit normal vectors.

The acceleration vector  of an object moving along a curve traced out by a twice-differentiable function  lies in the
plane formed by the unit tangent vector  and the principal unit normal vector  to . Furthermore,

Here,  is the speed of the object and  is the curvature of  traced out by .

Because  and , we have .

Now we differentiate this equation:

Since , we know , so

A formula for curvature is , so .

This gives 

The coefficients of  and  are referred to as the tangential component of acceleration and the normal component of
acceleration, respectively. We write  to denote the tangential component and  to denote the normal component.

Let  be a vector-valued function that denotes the position of an object as a function of time. Then  is the
acceleration vector. The tangential and normal components of acceleration  and  are given by the formulas

and

These components are related by the formula

Here  is the unit tangent vector to the curve defined by , and  is the unit normal vector to the curve defined by 
.

N
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 Theorem : The Plane of the Acceleration Vector13.4.1
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 Theorem : Tangential and Normal Components of Acceleration13.4.2
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The normal component of acceleration is also called the centripetal component of acceleration or sometimes the radial component
of acceleration. To understand centripetal acceleration, suppose you are traveling in a car on a circular track at a constant speed.
Then, as we saw earlier, the acceleration vector points toward the center of the track at all times. As a rider in the car, you feel a
pull toward the outside of the track because you are constantly turning. This sensation acts in the opposite direction of centripetal
acceleration. The same holds true for non-circular paths. The reason is that your body tends to travel in a straight line and resists
the force resulting from acceleration that push it toward the side. Note that at point  in Figure  the acceleration vector is
pointing backward. This is because the car is decelerating as it goes into the curve.

Figure : The tangential and normal components of acceleration can be used to describe the acceleration vector.

The tangential and normal unit vectors at any given point on the curve provide a frame of reference at that point. The tangential and
normal components of acceleration are the projections of the acceleration vector onto  and , respectively.

A particle moves in a path defined by the vector-valued function , where  measures
time in seconds and distance is measured in feet.

a. Find  and  as functions of .
b. Find  and  at time .

Solution

a. Let’s start deriving the velocityand acceleration functions:

Now we apply Equation :

Now we can apply Equation :

B 13.4.4

13.4.4

T
⇀

N
⇀

 Example : Finding Components of Acceleration13.4.2
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b. We must evaluate each of the answers from part a at :

The units of acceleration are feet per second squared, as are the units of the normal and tangential components of
acceleration.

An object moves in a path defined by the vector-valued function , where  measures time in seconds.

a. Find  and  as functions of .
b. Find  and  at time .

Hint

Use Equations  and 

Answer
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b.

 

Projectile Motion
Now let’s look at an application of vector functions. In particular, let’s consider the effect of gravity on the motion of an object as it
travels through the air, and how it determines the resulting trajectory of that object. In the following, we ignore the effect of air
resistance. This situation, with an object moving with an initial velocity but with no forces acting on it other than gravity, is known
as projectile motion. It describes the motion of objects from golf balls to baseballs, and from arrows to cannonballs.

First we need to choose a coordinate system. If we are standing at the origin of this coordinate system, then we choose the positive 
-axis to be up, the negative -axis to be down, and the positive -axis to be forward (i.e., away from the thrower of the object).

The effect of gravity is in a downward direction, so Newton’s second law tells us that the force on the object resulting from gravity
is equal to the mass of the object times the acceleration resulting from gravity, or , where  represents the force from
gravity and  represents the acceleration resulting from gravity at Earth’s surface. The value of  in the English system of
measurement is approximately 32 ft/sec  and it is approximately 9.8 m/sec  in the metric system. This is the only force acting on
the object. Since gravity acts in a downward direction, we can write the force resulting from gravity in the form , as
shown in Figure .
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Figure : An object is falling under the influence of gravity.

Newton’s second law also tells us that , where  represents the acceleration vector of the object. This force must be equal
to the force of gravity at all times, so we therefore know that

Now we use the fact that the acceleration vector is the first derivative of the velocity vector. Therefore, we can rewrite the last
equation in the form

By taking the antiderivative of each side of this equation we obtain

for some constant vector . To determine the value of this vector, we can use the velocity of the object at a fixed time, say at time 
. We call this velocity the initial velocity: . Therefore,  and . This gives the

velocity vector as .

Next we use the fact that velocity  is the derivative of position . This gives the equation

Taking the antiderivative of both sides of this equation leads to

with another unknown constant vector . To determine the value of , we can use the position of the object at a given time, say
at time . We call this position the initial position: . Therefore, . This
gives the position of the object at any time as

Let’s take a closer look at the initial velocity and initial position. In particular, suppose the object is thrown upward from the origin
at an angle  to the horizontal, with initial speed . How can we modify the previous result to reflect this scenario? First, we can
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assume it is thrown from the origin. If not, then we can move the origin to the point from where it is thrown. Therefore, , as
shown in Figure .

Figure : Projectile motion when the object is thrown upward at an angle θ. The horizontal motion is at constant velocity and
the vertical motion is at constant acceleration.

We can rewrite the initial velocity vector in the form . Then the equation for the position function 
becomes

The coefficient of  represents the horizontal component of  and is the horizontal distance of the object from the origin at time 
. The maximum value of the horizontal distance (measured at the same initial and final altitude) is called the range . The

coefficient of  represents the vertical component of  and is the altitude of the object at time . The maximum value of the
vertical distance is the height .

During an Independence Day celebration, a cannonball is fired from a cannon on a cliff toward the water. The cannon is aimed
at an angle of 30° above horizontal and the initial speed of the cannonball is 600 ft/sec. The cliff is 100 ft above the water
(Figure ).

a. Find the maximum height of the cannonball.
b. How long will it take for the cannonball to splash into the sea?
c. How far out to sea will the cannonball hit the water?
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 Example : Motion of a Cannonball13.4.3
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Figure : The flight of a cannonball (ignoring air resistance) is projectile motion.

Solution

We use the equation

with , , and . Then the position equation becomes

a. The cannonball reaches its maximum height when the vertical component of its velocity is zero, because the cannonball is
neither rising nor falling at that point. The velocity vector is

Therefore, the vertical component of velocity is given by the expression . Setting this expression equal to zero
and solving for t gives  sec. The height of the cannonball at this time is given by the vertical component of the
position vector, evaluated at .

Therefore, the maximum height of the cannonball is 1406.39 ft above the cannon, or 1506.39 ft above sea level.
b. When the cannonball lands in the water, it is 100 ft below the cannon. Therefore, the vertical component of the position

vector is equal to −100. Setting the vertical component of  equal to −100 and solving, we obtain

13.4.7
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θ = 30∘ g = 32
ft

sec2
= 600v0

ft

sec2

(t)s⇀ = 600t(cos ) +(600t sin − (32) )30∘ î 30∘ 1
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The positive value of  that solves this equation is approximately 19.08. Therefore, the cannonball hits the water after
approximately 19.08 sec.

c. To find the distance out to sea, we simply substitute the answer from part (b) into :

Therefore, the ball hits the water about 9914.26 ft away from the base of the cliff. Notice that the vertical component of the
position vector is very close to −100, which tells us that the ball just hit the water. Note that 9914.26 feet is not the true
range of the cannon since the cannonball lands in the ocean at a location below the cannon. The range of the cannon would
be determined by finding how far out the cannonball is when its height is 100 ft above the water (the same as the altitude of
the cannon).

An archer fires an arrow at an angle of 40° above the horizontal with an initial speed of 98 m/sec. The height of the archer is
171.5 cm. Find the horizontal distance the arrow travels before it hits the ground.

Hint

The equation for the position vector needs to account for the height of the archer in meters.

Answer

967.15 m

One final question remains: In general, what is the maximum distance a projectile can travel, given its initial speed? To determine
this distance, we assume the projectile is fired from ground level and we wish it to return to ground level. In other words, we want
to determine an equation for the range. In this case, the equation of projectile motion is

Setting the second component equal to zero and solving for  yields

Therefore, either  or . We are interested in the second value of , so we substitute this into , which gives
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t

t sinθ− g = 0v0
1

2
t2

t( sinθ− gt) = 0v0
1

2

t = 0 t =
2 sinθv0

g
t (t)s

⇀

https://libretexts.org/
https://math.libretexts.org/@go/page/4534?pdf


13.4.12 https://math.libretexts.org/@go/page/4534

Thus, the expression for the range of a projectile fired at an angle  is

The only variable in this expression is . To maximize the distance traveled, take the derivative of the coefficient of i with respect
to  and set it equal to zero:

This value of  is the smallest positive value that makes the derivative equal to zero. Therefore, in the absence of air resistance,
the best angle to fire a projectile (to maximize the range) is at a 45° angle. The distance it travels is given by

Therefore, the range for an angle of 45° is  units.

Kepler’s Laws
During the early 1600s, Johannes Kepler was able to use the amazingly accurate data from his mentor Tycho Brahe to formulate his
three laws of planetary motion, now known as Kepler’s laws of planetary motion. These laws also apply to other objects in the
solar system in orbit around the Sun, such as comets (e.g., Halley’s comet) and asteroids. Variations of these laws apply to satellites
in orbit around Earth.

1. The path of any planet about the Sun is elliptical in shape, with the center of the Sun located at one focus of the ellipse (the
law of ellipses).

2. A line drawn from the center of the Sun to the center of a planet sweeps out equal areas in equal time intervals (the law of
equal areas) (Figure ).

3. The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of the lengths of their semimajor
orbital axes (the Law of Harmonies).
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Figure : Kepler’s first and second laws are pictured here. The Sun is located at a focus of the elliptical orbit of any
planet. Furthermore, the shaded areas are all equal, assuming that the amount of time measured as the planet moves is the same
for each region.

Kepler’s third law is especially useful when using appropriate units. In particular, 1 astronomical unit is defined to be the average
distance from Earth to the Sun, and is now recognized to be 149,597,870,700 m or, approximately 93,000,000 mi. We therefore
write 1 A.U. = 93,000,000 mi. Since the time it takes for Earth to orbit the Sun is 1 year, we use Earth years for units of time. Then,
substituting 1 year for the period of Earth and 1 A.U. for the average distance to the Sun, Kepler’s third law can be written as

for any planet in the solar system, where  is the period of that planet measured in Earth years and  is the average distance
from that planet to the Sun measured in astronomical units. Therefore, if we know the average distance from a planet to the Sun (in
astronomical units), we can then calculate the length of its year (in Earth years), and vice versa.

Kepler’s laws were formulated based on observations from Brahe; however, they were not proved formally until Sir Isaac Newton
was able to apply calculus. Furthermore, Newton was able to generalize Kepler’s third law to other orbital systems, such as a moon
orbiting around a planet. Kepler’s original third law only applies to objects orbiting the Sun.

Let’s now prove Kepler’s first law using the calculus of vector-valued functions. First we need a coordinate system. Let’s place
the Sun at the origin of the coordinate system and let the vector-valued function  represent the location of a planet as a
function of time. Newton proved Kepler’s law using his second law of motion and his law of universal gravitation. Newton’s
second law of motion can be written as , where  represents the net force acting on the planet. His law of universal

gravitation can be written in the form , which indicates that the force resulting from the gravitational

attraction of the Sun points back toward the Sun, and has magnitude  (Figure ).

Figure : The gravitational force between Earth and the Sun is equal to the mass of the earth times its acceleration.

Setting these two forces equal to each other, and using the fact that , we obtain
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which can be rewritten as

This equation shows that the vectors  and  are parallel to each other, so . Next, let’s differentiate 
 with respect to time:

This proves that  is a constant vector, which we call . Since  and  are both perpendicular to  for all values of ,
they must lie in a plane perpendicular to . Therefore, the motion of the planet lies in a plane.

Next we calculate the expression :

The last equality in Equation  is from the triple cross product formula (Introduction to Vectors in Space). We need an
expression for . To calculate this, we differentiate  with respect to time:

Since , we also have

Combining Equation  and Equation , we get

Substituting this into Equation  gives us

However,
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Therefore, Equation  becomes

Since  is a constant vector, we can integrate both sides and obtain

where  is a constant vector. Our goal is to solve for . Let’s start by calculating :

However, , so

Since , we have

Note that , where  is the angle between  and . Therefore,

Solving for ,

where . This is the polar equation of a conic with a focus at the origin, which we set up to be the Sun. It is a
hyperbola if , a parabola if , or an ellipse if . Since planets have closed orbits, the only possibility is an
ellipse. However, at this point it should be mentioned that hyperbolic comets do exist. These are objects that are merely passing
through the solar system at speeds too great to be trapped into orbit around the Sun. As they pass close enough to the Sun, the
gravitational field of the Sun deflects the trajectory enough so the path becomes hyperbolic.

Kepler’s third law of planetary motion can be modified to the case of one object in orbit around an object other than the Sun, such
as the Moon around the Earth. In this case, Kepler’s third law becomes

where m is the mass of the Moon and M is the mass of Earth, a represents the length of the major axis of the elliptical orbit, and P
represents the period.
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Given that the mass of the Moon is  kg, the mass of Earth is  kg, , and
the period of the moon is 27.3 days, let’s find the length of the major axis of the orbit of the Moon around Earth.

Solution

It is important to be consistent with units. Since the universal gravitational constant contains seconds in the units, we need to
use seconds for the period of the Moon as well:

Substitute all the data into Equation  and solve for :

Analysis

According to solarsystem.nasa.gov, the actual average distance from the Moon to Earth is 384,400 km. This is calculated using
reflectors left on the Moon by Apollo astronauts back in the 1960s.

Titan is the largest moon of Saturn. The mass of Titan is approximately . The mass of Saturn is approximately 
 kg. Titan takes approximately 16 days to orbit Saturn. Use this information, along with the universal gravitation

constant  to estimate the distance from Titan to Saturn.

Hint

Make sure your units agree, then use Equation .

Answer

We now return to the chapter opener, which discusses the motion of Halley’s comet around the Sun. Kepler’s first law states
that Halley’s comet follows an elliptical path around the Sun, with the Sun as one focus of the ellipse. The period of Halley’s
comet is approximately 76.1 years, depending on how closely it passes by Jupiter and Saturn as it passes through the outer
solar system. Let’s use  years. What is the average distance of Halley’s comet from the Sun?

 Example : Using Kepler’s Third Law for Nonheliocentric Orbits13.4.4

7.35 ×1022 5.97 ×1024 G= 6.67 × m/kg ⋅10−11 sec2
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a = 3.84 × m108

≈ 384, 000 km.

 Exercise 13.4.4

1.35 × kg1023

5.68 ×1026

G= 6.67 × m/kg ⋅10−11 sec2

13.4.12

a ≈ 1.224 × m = 1, 224, 000km109

 Example : Halley’s Comet13.4.5
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Solution

Using the equation  with , we obtain , so  A.U. This comes out to approximately 
 mi.

A natural question to ask is: What are the maximum (aphelion) and minimum (perihelion) distances from Halley’s Comet to
the Sun? The eccentricity of the orbit of Halley’s Comet is 0.967 (Source:
http://nssdc.gsfc.nasa.gov/planetary...cometfact.html). Recall that the formula for the eccentricity of an ellipse is ,
where a is the length of the semimajor axis and c is the distance from the center to either focus. Therefore, 
and  A.U. Subtracting this from a gives the perihelion distance  A.U. According
to the National Space Science Data Center (Source: http://nssdc.gsfc.nasa.gov/planetary...cometfact.html), the perihelion
distance for Halley’s comet is 0.587 A.U. To calculate the aphelion distance, we add

This is approximately  mi. The average distance from Pluto to the Sun is 39.5 A.U. (Source:
http://www.oarval.org/furthest.htm), so it would appear that Halley’s Comet stays just within the orbit of Pluto.

How fast can a racecar travel through a circular turn without skidding and hitting the wall? The answer could depend on
several factors:

The weight of the car;
The friction between the tires and the road;
The radius of the circle;
The “steepness” of the turn.

In this project we investigate this question for NASCAR racecars at the Bristol Motor Speedway in Tennessee. Before
considering this track in particular, we use vector functions to develop the mathematics and physics necessary for answering
questions such as this.

A car of mass  moves with constant angular speed  around a circular curve of radius  (Figure ). The curve is
banked at an angle . If the height of the car off the ground is , then the position of the car at time  is given by the function 

.

Figure : Views of a race car moving around a track.

=T 2 D3 T = 76.1 = 5791.21D3 D ≈ 17.96

1.67 ×109

e = c/a
0.967 = c/17.96

c ≈ 17.37 p = a−c = 17.96 −17.37 = 0.59

P = a+c = 17.96 +17.37 = 35.33 A.U.

3.3 ×109

 NAVIGATING A BANKED TURN

m ω R 13.4.9
θ h t

(t) =< R cos(ωt),R sin(ωt),h >r⇀

13.4.9

https://libretexts.org/
https://math.libretexts.org/@go/page/4534?pdf
http://nssdc.gsfc.nasa.gov/planetary/factsheet/cometfact.html
http://nssdc.gsfc.nasa.gov/planetary/factsheet/cometfact.html
http://www.oarval.org/furthest.htm


13.4.18 https://math.libretexts.org/@go/page/4534

1. Find the velocity function  of the car. Show that  is tangent to the circular curve. This means that, without a force to
keep the car on the curve, the car will shoot off of it.

2. Show that the speed of the car is . Use this to show that .
3. Find the acceleration . Show that this vector points toward the center of the circle and that .
4. The force required to produce this circular motion is called the centripetal force, and it is denoted . This force points

toward the center of the circle (not toward the ground). Show that .

As the car moves around the curve, three forces act on it: gravity, the force exerted by the road (this force is perpendicular to
the ground), and the friction force (Figure ). Because describing the frictional force generated by the tires and the road
is complex, we use a standard approximation for the frictional force. Assume that  for some positive constant . The
constant  is called the coefficient of friction.

Figure : The car has three forces acting on it: gravity (denoted by ), the friction force , and the force exerted by
the road .

Let  denote the maximum speed the car can attain through the curve without skidding. In other words,  is the fastest
speed at which the car can navigate the turn. When the car is traveling at this speed, the magnitude of the centripetal force is

The next three questions deal with developing a formula that relates the speed  to the banking angle .

5. Show that . Conclude that .
6. The centripetal force is the sum of the forces in the horizontal direction, since the centripetal force points toward the center

of the circular curve. Show that

Conclude that

7. Show that . Conclude that the maximum speed does not actually
depend on the mass of the car. 
Now that we have a formula relating the maximum speed of the car and the banking angle, we are in a position to answer
the questions like the one posed at the beginning of the project. 
The Bristol Motor Speedway is a NASCAR short track in Bristol, Tennessee. The track has the approximate shape shown
in Figure . Each end of the track is approximately semicircular, so when cars make turns they are traveling along an
approximately circular curve. If a car takes the inside track and speeds along the bottom of turn 1, the car travels along a
semicircle of radius approximately 211 ft with a banking angle of 24°. If the car decides to take the outside track and speeds
along the top of turn 1, then the car travels along a semicircle with a banking angle of 28°. (The track has variable angle
banking.)
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Figure : At the Bristol Motor Speedway, Bristol, Tennessee (a), the turns have an inner radius of about 211 ft and a
width of 40 ft (b). (credit: part (a) photo by Raniel Diaz, Flickr)

The coefficient of friction for a normal tire in dry conditions is approximately 0.7. Therefore, we assume the coefficient for a
NASCAR tire in dry conditions is approximately 0.98.

Before answering the following questions, note that it is easier to do computations in terms of feet and seconds, and then
convert the answers to miles per hour as a final step.

8. In dry conditions, how fast can the car travel through the bottom of the turn without skidding?
9. In dry conditions, how fast can the car travel through the top of the turn without skidding?

10. In wet conditions, the coefficient of friction can become as low as 0.1. If this is the case, how fast can the car travel through
the bottom of the turn without skidding?

11. Suppose the measured speed of a car going along the outside edge of the turn is 105 mph. Estimate the coefficient of
friction for the car’s tires.

Key Concepts
If  represents the position of an object at time t, then  represents the velocity and  represents the acceleration of
the object at time t. The magnitude of the velocity vector is speed.
The acceleration vector always points toward the concave side of the curve defined by . The tangential and normal
components of acceleration  and  are the projections of the acceleration vector onto the unit tangent and unit normal
vectors to the curve.
Kepler’s three laws of planetary motion describe the motion of objects in orbit around the Sun. His third law can be modified to
describe motion of objects in orbit around other celestial objects as well.
Newton was able to use his law of universal gravitation in conjunction with his second law of motion and calculus to prove
Kepler’s three laws.

Key Equations
Velocity

Acceleration

Speed

Tangential component of acceleration

Normal component of acceleration

13.4.11

(t)r
⇀ (t)r

⇀′
''(t)r

⇀

(t)r
⇀

a
T
⇀ a

N
⇀

(t) = '(t)v
⇀

r
⇀

(t) = '(t) = ''(t)a
⇀

v
⇀

r
⇀

v(t) = || (t)|| = || '(t)|| =v
⇀

r
⇀ ds

dt

= ⋅ =a
T
⇀ a

⇀
T
⇀ ⋅v

⇀
a
⇀

|| ||v
⇀

https://libretexts.org/
https://math.libretexts.org/@go/page/4534?pdf


13.4.20 https://math.libretexts.org/@go/page/4534

Glossary

acceleration vector
the second derivative of the position vector

Kepler’s laws of planetary motion
three laws governing the motion of planets, asteroids, and comets in orbit around the Sun

normal component of acceleration

the coefficient of the unit normal vector  when the acceleration vector is written as a linear combination of  and 

projectile motion
motion of an object with an initial velocity but no force acting on it other than gravity

tangential component of acceleration

the coefficient of the unit tangent vector  when the acceleration vector is written as a linear combination of  and 

velocity vector
the derivative of the position vector
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14.1: Functions of Several Variables

Recognize a function of two variables and identify its domain and range.
Sketch a graph of a function of two variables.
Sketch several traces or level curves of a function of two variables.
Recognize a function of three or more variables and identify its level surfaces.

Our first step is to explain what a function of more than one variable is, starting with functions of two independent variables. This
step includes identifying the domain and range of such functions and learning how to graph them. We also examine ways to relate
the graphs of functions in three dimensions to graphs of more familiar planar functions.

Functions of Two Variables
The definition of a function of two variables is very similar to the definition for a function of one variable. The main difference is
that, instead of mapping values of one variable to values of another variable, we map ordered pairs of variables to another variable.

A function of two variables  maps each ordered pair  in a subset  of the real plane  to a unique real
number z. The set  is called the domain of the function. The range of  is the set of all real numbers z that has at least one
ordered pair  such that  as shown in Figure .

Figure : The domain of a function of two variables consists of ordered pairs .

Determining the domain of a function of two variables involves taking into account any domain restrictions that may exist. Let’s
take a look.

Find the domain and range of each of the following functions:

a. 
b. 

Solution

a. This is an example of a linear function in two variables. There are no values or combinations of  and  that cause  to
be undefined, so the domain of  is . To determine the range, first pick a value for z. We need to find a solution to the
equation  or  One such solution can be obtained by first setting , which yields the equation

. The solution to this equation is , which gives the ordered pair  as a solution to the

equation  for any value of . Therefore, the range of the function is all real numbers, or .

b. For the function  to have a real value, the quantity under the square root must be nonnegative:

This inequality can be written in the form

 Learning Objectives

 Definition: function of two variables

z = f(x, y) (x, y) D R2

D f

(x, y) ∈ D f(x, y) = z 14.1.1

14.1.1 (x,y)

 Example : Domains and Ranges for Functions of Two Variables14.1.1

f(x, y) = 3x+5y+2
g(x, y) = 9 − −x2 y2− −−−−−−−−

√

x y f(x, y)
f R2

f(x, y) = z, 3x−5y+2 = z. y = 0

3x+2 = z x =
z−2

3
( , 0)
z−2

3
f(x, y) = z z R

g(x, y)

9 − − ≥ 0.x2 y2
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Therefore, the domain of  is . The graph of this set of points can be described as a disk of
radius 3 centered at the origin. The domain includes the boundary circle as shown in the following graph.

Figure : The domain of the function  is a closed disk of radius 3.

To determine the range of  we start with a point  on the boundary of the domain, which is
defined by the relation . It follows that  and

If  (in other words, , then

This is the maximum value of the function. Given any value  between  and , we can find an entire set of points inside the
domain of  such that 

Since , this describes a circle of radius  centered at the origin. Any point on this circle satisfies the equation
. Therefore, the range of this function can be written in interval notation as 

Find the domain and range of the function .

Hint

+ ≤ 9.x2 y2

g(x, y) {(x, y) ∈ ∣ + ≤ 9}R2 x2 y2

14.1.2 g(x,y) = 9 − −x2 y2− −−−−−−−−
√

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√ ( , )x0 y0

+ = 9x2 y2 + = 9x2
0

y2
0

g( , ) =x0 y0 9 − −x2
0 y2

0

− −−−−−−−−
√

= 9 −( + )x2
0 y2

0

− −−−−−−−−−−
√

= 9 −9
− −−−

√

= 0.

+ = 0x2
0 y2

0 = = 0)x0 y0

g( , ) =x0 y0 9 − −x2
0 y2

0

− −−−−−−−−
√

= 9 −( + )x2
0 y2

0

− −−−−−−−−−−
√

= = 3.9 −0− −−−
√

c 0 3
g g(x, y) = c :

= c9 − −x2 y2
− −−−−−−−−

√

9 − − =x2 y2 c2

+ = 9 − .x2 y2 c2

9 − > 0c2 9 −c2− −−−−
√

g(x, y) = c [0, 3].

 Exercise 14.1.1

f(x, y) = 36 −9 −9x2 y2− −−−−−−−−−−−√
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Determine the set of ordered pairs that do not make the radicand negative.

Solution

The domain is  the shaded circle defined by the inequality , which has a circle of radius 
 as its boundary. The range is 

Graphing Functions of Two Variables

Suppose we wish to graph the function  This function has two independent variables (  and ) and one dependent
variable . When graphing a function  of one variable, we use the Cartesian plane. We are able to graph any ordered
pair  in the plane, and every point in the plane has an ordered pair  associated with it. With a function of two variables,
each ordered pair  in the domain of the function is mapped to a real number . Therefore, the graph of the function  consists
of ordered triples . The graph of a function  of two variables is called a surface.

To understand more completely the concept of plotting a set of ordered triples to obtain a surface in three-dimensional space,
imagine the  coordinate system laying flat. Then, every point in the domain of the function f has a unique -value associated
with it. If  is positive, then the graphed point is located above the -plane, if  is negative, then the graphed point is located
below the -plane. The set of all the graphed points becomes the two-dimensional surface that is the graph of the function .

Create a graph of each of the following functions:

a. 
b. 

Solution

a. In Example , we determined that the domain of  is  and the
range is . When  we have . Therefore any point on the circle of radius 
centered at the origin in the -plane maps to  in . If , then  so any point on the circle of
radius  centered at the origin in the -plane maps to  in . As  gets closer to zero, the value of 
approaches . When , then . This is the origin in the -plane If  is equal to any other value
between  and , then  equals some other constant between  and . The surface described by this function is a
hemisphere centered at the origin with radius  as shown in the following graph.

{(x, y)| + ≤ 4}x2 y2 + ≤ 4x2 y2

2 [0, 6].

z = f(x, y). x y

(z) y = f(x)
(x, y) (x, y)

(x, y) z f

(x, y, z) z = f(x, y)

(x, y) z

z xy z

xy f

 Example : Graphing Functions of Two Variables14.1.2

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√
f(x, y) = +x2 y2

14.1.2 g(x, y) = 9 − −x2 y2− −−−−−−−−
√ {(x, y) ∈ ∣ + ≤ 9}R2 x2 y2

{z ∈ ∣ 0 ≤ z ≤ 3}R2 + = 9x2 y2 g(x, y) = 0 3
xy z = 0 R3 + = 8x2 y2 g(x, y) = 1,

2 2
–

√ xy z = 1 R3 +x2 y2 z

3 + = 0x2 y2 g(x, y) = 3 xy +x2 y2

0 9 g(x, y) 0 3
3
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Figure : Graph of the hemisphere represented by the given function of two variables.

b. This function also contains the expression . Setting this expression equal to various values starting at zero, we obtain
circles of increasing radius. The minimum value of  is zero (attained when . When , the
function becomes , and when , then the function becomes . These are cross-sections of the graph, and are
parabolas. Recall from Introduction to Vectors in Space that the name of the graph of  is a paraboloid. The
graph of  appears in the following graph.

Figure : A paraboloid is the graph of the given function of two variables.

14.1.3

+x2 y2

f(x, y) = +x2 y2 x = y = 0. x = 0
z = y2 y = 0 z = x2

f(x, y) = +x2 y2

f

14.1.4
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A profit function for a hardware manufacturer is given by

where  is the number of nuts sold per month (measured in thousands) and  represents the number of bolts sold per month
(measured in thousands). Profit is measured in thousands of dollars. Sketch a graph of this function.

Solution

This function is a polynomial function in two variables. The domain of  consists of  coordinate pairs that yield a
nonnegative profit:

This is a disk of radius  centered at . A further restriction is that both  and  must be nonnegative. When  and 
 Note that it is possible for either value to be a noninteger; for example, it is possible to sell  thousand

nuts in a month. The domain, therefore, contains thousands of points, so we can consider all points within the disk. For any 
, we can solve the equation 

Since  we know that  so the previous equation describes a circle with radius  centered at the point 
. Therefore. the range of  is  The graph of  is also a paraboloid, and this paraboloid points

downward as shown.

Figure : The graph of the given function of two variables is also a paraboloid.

Level Curves

If hikers walk along rugged trails, they might use a topographical map that shows how steeply the trails change. A topographical
map contains curved lines called contour lines. Each contour line corresponds to the points on the map that have equal elevation
(Figure ). A level curve of a function of two variables  is completely analogous to a contour line on a topographical
map.

 Example : Nuts and Bolts14.1.3

f(x, y) = 16 −(x−3 −(y−2 ,)2 )2

x y

f (x, y)

16 −(x−3 −(y−2 ≥ 0)2 )2

(x−3 +(y−2 ≤ 16.)2 )2

4 (3, 2) x y x = 3
y = 2, f(x, y) = 16. 2.5

z < 16 f(x, y) = 16 :

16 −(x−3 −(y−2 = z)2 )2

(x−3 +(y−2 = 16 −z.)2 )2

z < 16, 16 −z > 0, 16 −z
− −−−−

√
(3, 2) f(x, y) {z ∈ R|z ≤ 16}. f(x, y)

14.1.5

14.1.6 f(x, y)
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Figure : (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A
perspective photo of Devil’s Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the center
of the topographical map.

Given a function  and a number  in the range of , a level curve of a function of two variables for the value  is
defined to be the set of points satisfying the equation 

Returning to the function , we can determine the level curves of this function. The range of  is the
closed interval . First, we choose any number in this closed interval—say, . The level curve corresponding to  is
described by the equation

To simplify, square both sides of this equation:

Now, multiply both sides of the equation by  and add  to each side:

This equation describes a circle centered at the origin with radius . Using values of  between  and  yields other circles also
centered at the origin. If , then the circle has radius , so it consists solely of the origin. Figure  is a graph of the level
curves of this function corresponding to  and . Note that in the previous derivation it may be possible that we
introduced extra solutions by squaring both sides. This is not the case here because the range of the square root function is
nonnegative.

14.1.6

 Definition: level curves

f(x, y) c f c

f(x, y) = c.

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√ g

[0, 3] c = 2 c = 2

= 2.9 − −x2 y2
− −−−−−−−−

√

9 − − = 4.x2 y2

−1 9

+ = 5.x2 y2

5
–

√ c 0 3
c = 3 0 14.1.7

c = 0, 1, 2, 3
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Figure : Level curves of the function , using  and  corresponds to the origin).

A graph of the various level curves of a function is called a contour map.

Given the function , find the level curve corresponding to . Then create a contour
map for this function. What are the domain and range of ?

Solution

To find the level curve for  we set  and solve. This gives

.

We then square both sides and multiply both sides of the equation by :

Now, we rearrange the terms, putting the  terms together and the  terms together, and add  to each side:

Next, we group the pairs of terms containing the same variable in parentheses, and factor  from the first pair:

Then we complete the square in each pair of parentheses and add the correct value to the right-hand side:

Next, we factor the left-hand side and simplify the right-hand side:

Last, we divide both sides by 

This equation describes an ellipse centered at  The graph of this ellipse appears in the following graph.

14.1.7 g(x,y) = 9 − −x2 y2− −−−−−−−−
√ c = 0, 1, 2, 3(c = 3

 Example : Making a Contour Map14.1.4

f(x, y) = 8 +8x−4y−4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0

f

c = 0, f(x, y) = 0

0 = 8 +8x−4y−4 −x2 y2− −−−−−−−−−−−−−−−−−
√

−1

4 + −8x+4y−8 = 0.x2 y2

x y 8

4 −8x+ +4y = 8.x2 y2

4

4( −2x) +( +4y) = 8.x2 y2

4( −2x+1) +( +4y+4) = 8 +4(1) +4.x2 y2

4(x−1 +(y+2 = 16.)2 )2

16 :

+ = 1.
(x−1)2

4

(y+2)2

16

(1, −2).
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Figure : Level curve of the function  corresponding to 

We can repeat the same derivation for values of  less than  Then, Equation  becomes

for an arbitrary value of . Figure  shows a contour map for  using the values  and . When  the
level curve is the point .

Figure : Contour map for the function  using the values  and .

Finding the Domain & Range

Since this is a square root function, the radicand must not be negative. So we have

Recognizing that the boundary of the domain is an ellipse, we repeat the steps we showed above to obtain

So the domain of  can be written: 

To find the range of  we need to consider the possible outputs of this square root function. We know the output cannot be
negative, so we need to next check if its output is ever  From the work we completed above to find the level curve for 

14.1.8 f(x,y) = 8 + 8x− 4y− 4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0

c 4. ???

+ = 1
4(x−1)2

16 −c2

(y+2)2

16 −c2

c 14.1.9 f(x, y) c = 0, 1, 2, 3 c = 4,
(−1, 2)

14.1.9 f(x,y) = 8 + 8x− 4y− 4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0, 1, 2, 3, 4

8 +8x−4y−4 − ≥ 0x2 y2

+ ≤ 1
(x−1)2

4

(y+2)2

16

f {(x, y) | + ≤ 1}.
(x−1)2

4

(y+2)2

16

f ,
0. c = 0,
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we know the value of  is  for any point on that level curve (on the ellipse, ). So we know the lower
bound of the range of this function is 

To determine the upper bound for the range of the function in this problem, it's easier if we first complete the square under the
radical.

Now that we have  in this form, we can see how large the radicand can be. Since we are subtracting two perfect squares from 
 we know that the value of the radicand cannot be greater than  At the point  we can see the radicand will be 16

(since we will be subtracting  from  at this point. This gives us the maximum value of , that is 

So the range of this function is 

Find and graph the level curve of the function  corresponding to 

Hint

First, set  and then complete the square.

Solution

The equation of the level curve can be written as  which is a circle with radius  centered at 

Another useful tool for understanding the graph of a function of two variables is called a vertical trace. Level curves are always
graphed in the , but as their name implies, vertical traces are graphed in the - or -planes.

f 0 + = 1
(x−1)

2

4

(y+2)
2

16

0.

f(x, y) = 8 +8x−4y−4 −x2 y2
− −−−−−−−−−−−−−−−−−

√

= 8 −4( −2x ) −( +4y )x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−

√

= 8 −4( −2x+1 −1) −( +4y+4 −4)x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 8 −4( −2x+1) +4 −( +4y+4) +4x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 16 −4(x−1 −(y+2)2 )2
− −−−−−−−−−−−−−−−−−−−

√

f

16, 16. (1, −2),
0 16 f f(1, −2) = = 4.16

−−
√

[0, 4].

 Exercise 14.1.2

g(x, y) = + −6x+2yx2 y2 c = 15.

g(x, y) = 15

(x−3 +(y+1 = 25,)2 )2 5
(3, −1).

xy−plane xz yz
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Consider a function  with domain . A vertical trace of the function can be either the set of points that
solves the equation  for a given constant  or  for a given constant 

Find vertical traces for the function  corresponding to  and , and , and .

Solution

First set  in the equation 

This describes a cosine graph in the plane . The other values of z appear in the following table.

Vertical Traces Parallel to the  for the Function 

Vertical Trace for 

0

In a similar fashion, we can substitute the  in the equation  to obtain the traces in the  as listed
in the following table.

Vertical Traces Parallel to the  for the Function 

Vertical Trace for 

0

The three traces in the  are cosine functions; the three traces in the  are sine functions. These curves
appear in the intersections of the surface with the planes  and  as shown in the

following figure.

 Definition: vertical traces

z = f(x, y) D ⊆ R
2

f(a, y) = z x = a f(x, b) = z y = b.

 Example : Finding Vertical Traces14.1.5

f(x, y) = sinx cosy x = − , 0,
π

4

π

4
y = − , 0

π

4

π

4

x = −
π

4
z = sinx cosy :

z = sin(− ) cosy = − ≈ −0.7071 cosy.
π

4

cosy2
–

√

2

x = −
π

4
xz −Plane f(x,y) = sin x cos y

c x = c

−
π

4 z = −
cosy2

–
√

2

z = 0

π

4 z =
cosy2

–
√

2

y−values f(x, y) yz−plane,

yz −Plane f(x,y) = sin x cos y

d y = d

π

4 z =
sinx2

–
√

2

z = sinx

−
π

4 z =
sinx2

–
√

2

xz−plane yz−plane

x = − , x = 0, x =
π

4

π

4
y = − , y = 0, y =

π

4

π

4
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Figure : Vertical traces of the function  are cosine curves in the  (a) and sine curves in the 
 (b).

Determine the equation of the vertical trace of the function  corresponding to , and
describe its graph.

Hint

Set  in the equation  and complete the square.

Solution

. This function describes a parabola opening downward in the plane .

Functions of two variables can produce some striking-looking surfaces. Figure  shows two examples.

Figure : Examples of surfaces representing functions of two variables: (a) a combination of a power function and a sine
function and (b) a combination of trigonometric, exponential, and logarithmic functions.

Functions of More Than Two Variables

So far, we have examined only functions of two variables. However, it is useful to take a brief look at functions of more than two
variables. Two such examples are

14.1.10 f(x,y) xz −planes

yz −planes

 Exercise 14.1.3

g(x, y) = − − +2x+4y−1x2 y2 y = 3

y = 3 z = − − +2x+4y−1x2 y2

z = 3 −(x−1)2 y = 3

14.1.11

14.1.11
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and

In the first function,  represents a point in space, and the function  maps each point in space to a fourth quantity, such as
temperature or wind speed. In the second function,  can represent a point in the plane, and  can represent time. The function
might map a point in the plane to a third quantity (for example, pressure) at a given time . The method for finding the domain of a
function of more than two variables is analogous to the method for functions of one or two variables.

Find the domain of each of the following functions:

a. 

b. 

Solution:

a. For the function  to be defined (and be a real value), two conditions must hold:

1. The denominator cannot be zero.
2. The radicand cannot be negative.

Combining these conditions leads to the inequality

Moving the variables to the other side and reversing the inequality gives the domain as

which describes a ball of radius  centered at the origin. (Note: The surface of the ball is not included in this domain.)

b. For the function  to be defined (and be a real value), two conditions must hold:

1. The radicand cannot be negative.
2. The denominator cannot be zero.

Since the radicand cannot be negative, this implies , and therefore that . Since the denominator cannot
be zero, , or , Which can be rewritten as , which are the equations of two lines passing
through the origin. Therefore, the domain of  is

Find the domain of the function .

Hint

Check for values that make radicands negative or denominators equal to zero.

Solution

f(x, y, z) = −2xy+ +3yz− +4x−2y+3x−6x2 y2 z2

  
a polynomial in three variables

g(x, y, t) = ( −4xy+ ) sin t−(3x+5y) cos t.x2 y2

(x, y, z) f

(x, y) t

t

 Example : Domains for Functions of Three Variables14.1.6

f(x, y, z) =
3x−4y+2z

9 − − −x2 y2 z2− −−−−−−−−−−−−
√

g(x, y, t) =
2t−4
− −−−−

√

−x2 y2

f(x, y, z) =
3x−4y+2z

9 − − −x2 y2 z2− −−−−−−−−−−−−√

9 − − − > 0.x2 y2 z2

domain(f) = {(x, y, z) ∈ ∣ + + < 9},R3 x2 y2 z2

3

g(x, y, t) =
2t−4
− −−−−

√

−x2 y2

2t−4 ≥ 0 t ≥ 2
− ≠ 0x2 y2 ≠x2 y2 y = ±x

g

domain(g) = {(x, y, t)|y ≠ ±x, t ≥ 2}.

 Exercise 14.1.4

h(x, y, t) = (3t−6) y−4 +4x2
− −−−−−−−−

√

domain(h) = {(x, y, t) ∈ ∣ y ≥ 4 −4}R
3 x2
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Functions of two variables have level curves, which are shown as curves in the  However, when the function has three
variables, the curves become surfaces, so we can define level surfaces for functions of three variables.

Given a function  and a number  in the range of , a level surface of a function of three variables is defined to be the
set of points satisfying the equation 

Find the level surface for the function  corresponding to .

Solution

The level surface is defined by the equation  This equation describes a hyperboloid of one sheet as shown
in Figure .

Figure : A hyperboloid of one sheet with some of its level surfaces.

xy−plane.

 Definition: level surface of a function of three variables

f(x, y, z) c f

f(x, y, z) = c.

 Example : Finding a Level Surface14.1.7

f(x, y, z) = 4 +9 −x2 y2 z2 c = 1

4 +9 − = 1.x2 y2 z2

14.1.12

14.1.12
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Find the equation of the level surface of the function

corresponding to  and describe the surface, if possible.

Hint

Set  and complete the square.

Solution

((x−1)^2+(y+2)^2+(z−3)^2=16\) describes a sphere of radius  centered at the point 

Summary
The graph of a function of two variables is a surface in  and can be studied using level curves and vertical traces.
A set of level curves is called a contour map.

Key Equations
Vertical trace

 for  or  for 

Level surface of a function of three variables

Glossary

contour map
a plot of the various level curves of a given function 

function of two variables
a function  that maps each ordered pair  in a subset  of  to a unique real number 

graph of a function of two variables
a set of ordered triples  that satisfies the equation  plotted in three-dimensional Cartesian space

level curve of a function of two variables
the set of points satisfying the equation  for some real number  in the range of 

level surface of a function of three variables
the set of points satisfying the equation  for some real number  in the range of 

surface
the graph of a function of two variables, 

vertical trace
the set of ordered triples  that solves the equation  for a given constant  or the set of ordered triples 

 that solves the equation  for a given constant 

14.1: Functions of Several Variables is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

14.1: Functions of Several Variables by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

 Exercise 14.1.5

g(x, y, z) = + + −2x+4y−6zx2 y2 z2

c = 2,

g(x, y, z) = c

4 (1, −2, 3).

R
3

f(a, y) = z x = a f(x, b) = z y = b

f(x, y, z) = c

f(x, y)

z = f(x, y) (x, y) D R2 z

(x, y, z) z = f(x, y)

f(x, y) = c c f

f(x, y, z) = c c f

z = f(x, y)

(c, y, z) f(c, y) = z x = c

(x, d, z) f(x, d) = z y = d
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14.2: Limits and Continuity

Calculate the limit of a function of two variables.
Learn how a function of two variables can approach different values at a boundary point, depending on the path of
approach.
State the conditions for continuity of a function of two variables.
Verify the continuity of a function of two variables at a point.
Calculate the limit of a function of three or more variables and verify the continuity of the function at a point.

We have now examined functions of more than one variable and seen how to graph them. In this section, we see how to take the
limit of a function of more than one variable, and what it means for a function of more than one variable to be continuous at a point
in its domain. It turns out these concepts have aspects that just don’t occur with functions of one variable.

Limit of a Function of Two Variables
Recall from Section 2.5 that the definition of a limit of a function of one variable:

Let  be defined for all  in an open interval containing . Let  be a real number. Then

if for every  there exists a , such that if  for all  in the domain of , then

Before we can adapt this definition to define a limit of a function of two variables, we first need to see how to extend the idea of an
open interval in one variable to an open interval in two variables.

Consider a point  A  disk centered at point  is defined to be an open disk of radius  centered at point 
—that is,

as shown in Figure .

Figure : A  disk centered around the point .

The idea of a  disk appears in the definition of the limit of a function of two variables. If  is small, then all the points  in the
 disk are close to . This is completely analogous to x being close to a in the definition of a limit of a function of one variable.

In one dimension, we express this restriction as

In more than one dimension, we use a  disk.

 Learning Objectives

f(x) x ≠ a a L

f(x) = Llim
x→a

ε > 0, δ > 0 0 < |x −a| < δ x f

|f(x) −L| < ε.

 Definition:  Disksδ

(a, b) ∈ .R
2 δ (a, b) δ (a, b)

{(x, y) ∈ ∣ (x −a +(y −b < }R
2 )2 )2 δ2

14.2.1

14.2.1 δ (2, 1)

δ δ (x, y)
δ (a, b)

a −δ < x < a +δ.

δ
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Let  be a function of two variables,  and . The limit of  as  approaches  is , written

if for each  there exists a small enough  such that for all points  in a  disk around , except possibly for 
 itself, the value of  is no more than  away from  (Figure ).

Using symbols, we write the following: For any , there exists a number  such that

whenever

Figure : The limit of a function involving two variables requires that  be within  of  whenever  is within  of 
. The smaller the value of , the smaller the value of .

Proving that a limit exists using the definition of a limit of a function of two variables can be challenging. Instead, we use the
following theorem, which gives us shortcuts to finding limits. The formulas in this theorem are an extension of the formulas in the
limit laws theorem in The Limit Laws.

Let  and  be defined for all  in a neighborhood around , and assume the neighborhood is
contained completely inside the domain of . Assume that  and  are real numbers such that

and

and let  be a constant. Then each of the following statements holds:

Constant Law:

 Definition: limit of a function of two variables

f x y f(x, y) (x, y) (a, b) L

f(x, y) = Llim
(x,y)→(a,b)

ε > 0 δ > 0 (x, y) δ (a, b)
(a, b) f(x, y) ε L 14.2.2

ε > 0 δ > 0

|f(x, y) −L| < ε

0 < < δ.(x −a +(y −b)2 )2
− −−−−−−−−−−−−−−

√

14.2.2 f(x, y) ε L (x, y) δ

(a, b) ε δ

 Limit laws for functions of two variables

f(x, y) g(x, y) (x, y) ≠ (a, b) (a, b)
f L M

f(x, y) = Llim
(x,y)→(a,b)

g(x, y) = M ,lim
(x,y)→(a,b)

c
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Identity Laws:

Sum Law:

Difference Law:

Constant Multiple Law:

Product Law:

Quotient Law:

Power Law:

for any positive integer .

Root Law:

for all  if  is odd and positive, and for  if n is even and positive.

The proofs of these properties are similar to those for the limits of functions of one variable. We can apply these laws to finding
limits of various functions.

Find each of the following limits:

a. 

b. 

Solution

a. First use the sum and difference laws to separate the terms:

c = clim
(x,y)→(a,b)

x = alim
(x,y)→(a,b)

y = blim
(x,y)→(a,b)

(f(x, y) +g(x, y)) = L +Mlim
(x,y)→(a,b)

(f(x, y) −g(x, y)) = L −Mlim
(x,y)→(a,b)

(cf(x, y)) = cLlim
(x,y)→(a,b)

(f(x, y)g(x, y)) = LMlim
(x,y)→(a,b)

=  for M ≠ 0lim
(x,y)→(a,b)

f(x, y)

g(x, y)

L

M

(f(x, y) =lim
(x,y)→(a,b)

)n Ln

n

=lim
(x,y)→(a,b)

f(x, y)
− −−−−

√n L
−−

√n

L n L ≥ 0

 Example : Finding the Limit of a Function of Two Variables14.2.1

( −2xy +3 −4x +3y −6)lim
(x,y)→(2,−1)

x2 y2

lim
(x,y)→(2,−1)

2x +3y

4x −3y
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Next, use the constant multiple law on the second, third, fourth, and fifth limits:

Now, use the power law on the first and third limits, and the product law on the second limit:

Last, use the identity laws on the first six limits and the constant law on the last limit:

b. Before applying the quotient law, we need to verify that the limit of the denominator is nonzero. Using the difference law,
constant multiple law, and identity law,

Since the limit of the denominator is nonzero, the quotient law applies. We now calculate the limit of the numerator
using the difference law, constant multiple law, and identity law:

Therefore, according to the quotient law we have

Evaluate the following limit:

( −2xy +3 −4x +3y −6)lim
(x,y)→(2,−1)

x2 y2

=( )−( 2xy)+( 3 )−( 4x)lim
(x,y)→(2,−1)

x2 lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

y2 lim
(x,y)→(2,−1)

+( 3y)−( 6) .lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= ( ) −2( xy) +3( ) −4( x)lim
(x,y)→(2,−1)

x2 lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

y2 lim
(x,y)→(2,−1)

+3( y) − 6.lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

−2( x)( y)+3( x)lim
(x,y)→(2,−1)

2

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

( y)lim
(x,y)→(2,−1)

2

−4( x)+3( y)− 6.lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

( −2xy +3 −4x +3y −6) = (2 −2(2)(−1) +3(−1 −4(2) +3(−1) −6lim
(x,y)→(2,−1)

x2 y2 )2 )2

= −6.

(4x −3y) = 4x − 3ylim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 4( x) −3( y)lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 4(2) −3(−1) = 11.

(2x +3y) = 2x + 3ylim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 2( x) +3( y)lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 2(2) +3(−1) = 1.

=lim
(x,y)→(2,−1)

2x +3y

4x −3y

(2x +3y)lim
(x,y)→(2,−1)

(4x −3y)lim
(x,y)→(2,−1)

= .
1

11

 Exercise :14.2.1

.lim
(x,y)→(5,−2)

−yx2

+x −1y2

− −−−−−−−−

√3
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Hint

Use the limit laws.

Answer

Since we are taking the limit of a function of two variables, the point  is in , and it is possible to approach this point from
an infinite number of directions. Sometimes when calculating a limit, the answer varies depending on the path taken toward .
If this is the case, then the limit fails to exist. In other words, the limit must be unique, regardless of path taken.

Show that neither of the following limits exist:

a. 

b. 

Solution

a. The domain of the function  consists of all points in the -plane except for the point  (Figure 

). To show that the limit does not exist as  approaches , we note that it is impossible to satisfy the definition
of a limit of a function of two variables because of the fact that the function takes different values along different lines passing
through point . First, consider the line  in the -plane. Substituting  into  gives

for any value of . Therefore the value of  remains constant for any point on the -axis, and as  approaches zero, the
function remains fixed at zero.

Next, consider the line . Substituting  into  gives

This is true for any point on the line . If we let  approach zero while staying on this line, the value of the function
remains fixed at , regardless of how small  is.

Choose a value for ε that is less than —say, . Then, no matter how small a  disk we draw around , the values of 
 for points inside that  disk will include both  and . Therefore, the definition of limit at a point is never satisfied and

the limit fails to exist.

=lim
(x,y)→(5,−2)

−yx2

+x −1y2

− −−−−−−−−

√3
3

2

(a, b) R
2

(a, b)

 Example : Limits That Fail to Exist14.2.2

lim
(x,y)→(0,0)

2xy

3 +x2 y2

lim
(x,y)→(0,0)

4xy2

+3x2 y4

f(x, y) =
2xy

3 +x2 y2
xy (0, 0)

14.2.3 (x, y) (0, 0)

(0, 0) y = 0 xy y = 0 f(x, y)

f(x, 0) = = 0
2x(0)

3 +x2 02

x f x y

y = x y = x f(x, y)

f(x, x) = = = .
2x(x)

3 +x2 x2

2x2

4x2
1
2

y = x x
1
2

x

1/2 1/4 δ (0, 0)
f(x, y) δ 0 1

2
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Figure : Graph of the function  Along the line , the function is equal to zero; along the line 

, the function is equal to .

b. In a similar fashion to a., we can approach the origin along any straight line passing through the origin. If we try the -axis
(i.e., ), then the function remains fixed at zero. The same is true for the -axis. Suppose we approach the origin along a
straight line of slope . The equation of this line is . Then the limit becomes

regardless of the value of . It would seem that the limit is equal to zero. What if we chose a curve passing through the origin
instead? For example, we can consider the parabola given by the equation . Substituting  in place of  in 
gives

f(x, y) =
2xy

3x2 + y2

14.2.3 f(x, y) = .
2xy

3 +x2 y2
y = 0

y = x 1
2

x

y = 0 y

k y = kx

=lim
(x,y)→(0,0)

4xy2

+3x2 y4
lim

(x,y)→(0,0)

4x(kx)2

+3(kxx2 )4

= lim
(x,y)→(0,0)

4k2x3

+3x2 k4x4

= lim
(x,y)→(0,0)

4 xk2

1 +3k4x2

=

(4 x)lim
(x,y)→(0,0)

k2

(1 +3 )lim
(x,y)→(0,0)

k4x2

= 0.

k

x = y2 y2 x f(x, y)
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By the same logic in part a, it is impossible to find a δ disk around the origin that satisfies the definition of the limit for any
value of  Therefore,

does not exist.

Show that

does not exist.

Hint

Pick a line with slope  passing through point 

Answer

If  then . Since the answer depends on  the limit fails to

exist.

Interior Points and Boundary Points

To study continuity and differentiability of a function of two or more variables, we first need to learn some new terminology.

Let  be a subset of  (Figure ).

1. A point  is called an interior point of  if there is a  disk centered around  contained completely in .
2. A point  is called a boundary point of  if every  disk centered around  contains points both inside and outside .

=lim
(x,y)→(0,0)

4xy2

+3x2 y4
lim

(x,y)→(0,0)

4( )y2 y2

( +3y2)2 y4

= lim
(x,y)→(0,0)

4y4

+3y4 y4

= 1lim
(x,y)→(0,0)

= 1.

ε < 1.

lim
(x,y)→(0,0)

4xy2

+3x2 y4

 Exercise :14.2.2

lim
(x,y)→(2,1)

(x −2)(y −1)

(x −2 +(y −1)2 )2

k (2, 1).

y = k(x −2) +1, =lim(x,y)→(2,1)

(x −2)(y −1)

(x −2 +(y −1)2 )2

k

1 +k2
k,

 Definition: interior and boundary points

S R
2 14.2.4

P0 S δ P0 S

P0 S δ P0 S
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Figure : In the set  shown,  is an interior point and  is a boundary point.

Let  be a subset of  (Figure ).

1.  is called an open set if every point of  is an interior point.
2.  is called a closed set if it contains all its boundary points.

An example of an open set is a  disk. If we include the boundary of the disk, then it becomes a closed set. A set that contains
some, but not all, of its boundary points is neither open nor closed. For example if we include half the boundary of a  disk but not
the other half, then the set is neither open nor closed.

Let  be a subset of  (Figure ).

1. An open set  is a connected set if it cannot be represented as the union of two or more disjoint, nonempty open subsets.
2. A set  is a region if it is open, connected, and nonempty.

The definition of a limit of a function of two variables requires the  disk to be contained inside the domain of the function.
However, if we wish to find the limit of a function at a boundary point of the domain, the  disk is not contained inside the domain.
By definition, some of the points of the  disk are inside the domain and some are outside. Therefore, we need only consider points
that are inside both the  disk and the domain of the function. This leads to the definition of the limit of a function at a boundary
point.

Let  be a function of two variables,  and , and suppose  is on the boundary of the domain of . Then, the limit of 
 as  approaches  is , written

if for any  there exists a number  such that for any point  inside the domain of  and within a suitably small
distance positive  of  the value of  is no more than  away from  (Figure ). Using symbols, we can write:
For any , there exists a number  such that

14.2.4 S (−1, 1) (2, 3)

 Definition: Open and closed sets

S R
2 14.2.4

S S

S

δ

δ

 Definition: connected sets and Regions

S R
2 14.2.4

S

S

δ

δ

δ

δ

 Definition

f x y (a, b) f

f(x, y) (x, y) (a, b) L

f(x, y) = L,lim
(x,y)→(a,b)

ε > 0, δ > 0 (x, y) f

δ (a, b), f(x, y) ε L 14.2.2
ε > 0 δ > 0

|f(x, y) −L| < ε whenever 0 < < δ.(x −a +(y −b)2 )2
− −−−−−−−−−−−−−−

√

https://libretexts.org/
https://math.libretexts.org/@go/page/4537?pdf


14.2.9 https://math.libretexts.org/@go/page/4537

Prove

Solution

The domain of the function  is , which is a circle of radius 
centered at the origin, along with its interior as shown in Figure .

Figure : Domain of the function .

We can use the limit laws, which apply to limits at the boundary of domains as well as interior points:

See the following graph.

Figure : Graph of the function .

 Example : Limit of a Function at a Boundary Point14.2.3

= 0.lim
(x,y)→(4,3)

25 − −x2 y2
− −−−−−−−−−

√

f(x, y) = 25 − −x2 y2− −−−−−−−−−
√ {(x, y) ∈ ∣ + ≤ 25}R

2 x2 y2 5
14.2.5

14.2.5 f(x, y) = 25 − −x2 y2− −−−−−−−−−
√

=lim
(x,y)→(4,3)

25 − −x2 y2
− −−−−−−−−−

√ (25 − − )lim
(x,y)→(4,3)

x2 y2
− −−−−−−−−−−−−−−−−−

√

= 25 − −lim
(x,y)→(4,3)

lim
(x,y)→(4,3)

x2 lim
(x,y)→(4,3)

y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 25 − −42 32
− −−−−−−−−−

√

= 0

14.2.6 f(x, y) = 25 − −x2 y2− −−−−−−−−−
√

https://libretexts.org/
https://math.libretexts.org/@go/page/4537?pdf


14.2.10 https://math.libretexts.org/@go/page/4537

Evaluate the following limit:

Hint

Determine the domain of .

Answer

Continuity of Functions of Two Variables

In Continuity, we defined the continuity of a function of one variable and saw how it relied on the limit of a function of one
variable. In particular, three conditions are necessary for  to be continuous at point 

1.  exists.
2.  exists.

3. 

These three conditions are necessary for continuity of a function of two variables as well.

A function  is continuous at a point  in its domain if the following conditions are satisfied:

1.  exists.
2.  exists.

3. 

Show that the function

is continuous at point 

Solution

There are three conditions to be satisfied, per the definition of continuity. In this example,  and 

1.  exists. This is true because the domain of the function f consists of those ordered pairs for which the denominator is
nonzero (i.e., ). Point  satisfies this condition. Furthermore,

2.  exists. This is also true:

 Exercise 14.2.3

.lim
(x,y)→(5,−2)

29 − −x2 y2
− −−−−−−−−−

√

f(x, y) = 29 − −x2 y2− −−−−−−−−−
√

lim
(x,y)→(5,−2)

29 − −x2 y2
− −−−−−−−−−

√

f(x) x = a

f(a)
f(x)lim

x→a

f(x) = f(a).lim
x→a

 Definition: continuous Functions

f(x, y) (a, b)

f(a, b)
f(x, y)lim

(x,y)→(a,b)

f(x, y) = f(a, b).lim
(x,y)→(a,b)

 Example : Demonstrating Continuity for a Function of Two Variables14.2.4

f(x, y) =
3x +2y

x +y +1

(5, −3).

a = 5 b = −3.

f(a, b)
x +y +1 ≠ 0 (5, −3)

f(a, b) = f(5, −3) = = = 3.
3(5) +2(−3)

5 +(−3) +1

15 −6

2 +1

f(x, y)lim
(x,y)→(a,b)

https://libretexts.org/
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3.  This is true because we have just shown that both sides of this equation equal three.

Show that the function

is continuous at point .

Hint

Use the three-part definition of continuity.

Answer

1. The domain of  contains the ordered pair  because 
2. 

3. 

Continuity of a function of any number of variables can also be defined in terms of delta and epsilon. A function of two variables is
continuous at a point  in its domain if for every  there exists a  such that, whenever 

 it is true,  This definition can be combined with the formal definition (that
is, the epsilon–delta definition) of continuity of a function of one variable to prove the following theorems:

If  is continuous at , and  is continuous at , then  is continuous at .

If  is continuous at  and  is continuous at , then  is continuous at 

Let  be a function of two variables from a domain  to a range  Suppose  is continuous at some point 
 and define . Let f be a function that maps  to  such that  is in the domain of . Last, assume 

 is continuous at . Then  is continuous at  as shown in Figure .

f(x, y) =lim
(x,y)→(a,b)

lim
(x,y)→(5,−3)

3x +2y

x +y +1

=

(3x +2y)lim
(x,y)→(5,−3)

(x +y +1)lim
(x,y)→(5,−3)

=
15 −6

5 −3 +1
= 3.

f(x, y) = f(a, b).lim
(x,y)→(a,b)

 Exercise 14.2.4

f(x, y) = 26 −2 −x2 y2
− −−−−−−−−−−

√

(2, −3)

f (2, −3) f(a, b) = f(2, −3) = = 316 −2(2 −(−3)2 )2− −−−−−−−−−−−−−−
√

f(x, y) = 3lim
(x,y)→(a,b)

f(x, y) = f(a, b) = 3lim
(x,y)→(a,b)

( , )x0 y0 ε > 0 δ > 0
< δ(x − +(y −x0)2 y0)2− −−−−−−−−−−−−−−−−

√ |f(x, y) −f(a, b)| < ε.

 The Sum of Continuous Functions Is Continuous

f(x, y) ( , )x0 y0 g(x, y) ( , )x0 y0 f(x, y) +g(x, y) ( , )x0 y0

 The Product of Continuous Functions Is Continuous

g(x) x0 h(y) y0 f(x, y) = g(x)h(y) ( , ).x0 y0

 The Composition of Continuous Functions Is Continuous

g D ⊆ R
2 R ⊆ R. g

( , ) ∈ Dx0 y0 = g( , )z0 x0 y0 R R z0 f

f z0 f ∘ g ( , )x0 y0 14.2.7
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Figure : The composition of two continuous functions is continuous.

Let’s now use the previous theorems to show continuity of functions in the following examples.

Show that the functions  and  are continuous everywhere.

Solution

The polynomials  and  are continuous at every real number, and therefore by the product of continuous
functions theorem,  is continuous at every point  in the -plane. Since  is continuous
at every point  in the -plane and  is continuous at every real number , the continuity of the composition
of functions tells us that  is continuous at every point  in the -plane.

Show that the functions  and  are continuous everywhere.

Hint

Use the continuity of the sum, product, and composition of two functions.

Answer

The polynomials  and  are continuous at every real number; therefore, by the product of continuous
functions theorem,  is continuous at every point  in the -plane. Furthermore, any constant
function is continuous everywhere, so  is continuous at every point  in the -plane. Therefore, 

 is continuous at every point  in the -plane. Last,  is continuous at every real
number , so by the continuity of composite functions theorem  is continuous at every point 
in the -plane.

Functions of Three or More Variables
The limit of a function of three or more variables occurs readily in applications. For example, suppose we have a function 

 that gives the temperature at a physical location  in three dimensions. Or perhaps a function  can
indicate air pressure at a location  at time . How can we take a limit at a point in ? What does it mean to be continuous
at a point in four dimensions?

The answers to these questions rely on extending the concept of a  disk into more than two dimensions. Then, the ideas of the
limit of a function of three or more variables and the continuity of a function of three or more variables are very similar to the
definitions given earlier for a function of two variables.

Let  be a point in . Then, a -ball in three dimensions consists of all points in  lying at a distance of less than 
 from  —that is,

14.2.7

 Example : More Examples of Continuity of a Function of Two Variables14.2.5

f(x, y) = 4x3y2 g(x, y) = cos(4 )x3y2

g(x) = 4x3 h(y) = y2

f(x, y) = 4x3y2 (x, y) xy f(x, y) = 4x3y2

(x, y) xy g(x) = cos x x

g(x, y) = cos(4 )x3y2 (x, y) xy

 Exercise 14.2.5

f(x, y) = 2 +3x2y3 g(x, y) = (2 +3x2y3 )4

g(x) = 2x2 h(y) = y3

f(x, y) = 2x2y3 (x, y) xy

g(x, y) = 3 (x, y) xy

f(x, y) = 2 +3x2y3 (x, y) xy h(x) = x4

x g(x, y) = (2 +3x2y3 )4 (x, y)
xy

f(x, y, z) (x, y, z) g(x, y, z, t)

(x, y, z) t R
3

δ

 Definition: -ballsδ

( , , )x0 y0 z0 R
3 δ R

3

δ ( , , )x0 y0 z0

{(x, y, z) ∈ ∣ < δ}.R
3 (x − +(y − +(z −x0)2 y0)2 z0)2

− −−−−−−−−−−−−−−−−−−−−−−−−−
√
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To define a -ball in higher dimensions, add additional terms under the radical to correspond to each additional dimension. For
example, given a point  in , a  ball around  can be described by

To show that a limit of a function of three variables exists at a point , it suffices to show that for any point in a  ball
centered at , the value of the function at that point is arbitrarily close to a fixed value (the limit value). All the limit laws
for functions of two variables hold for functions of more than two variables as well.

Find

Solution

Before we can apply the quotient law, we need to verify that the limit of the denominator is nonzero. Using the difference law,
the identity law, and the constant law,

Since this is nonzero, we next find the limit of the numerator. Using the product law, power law, difference law, constant
multiple law, and identity law,

Last, applying the quotient law:

Find

Hint

Use the limit laws and the continuity of the composition of functions.

Answer

δ

P = ( , , , )w0 x0 y0 z0 R
4 δ P

{(w, x, y, z) ∈ ∣ < δ}.R
4 (w − +(x − +(y − +(z −w0)2 x0)2 y0)2 z0)2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

( , , )x0 y0 z0 δ

( , , )x0 y0 z0

 Example : Finding the Limit of a Function of Three Variables14.2.6

.lim
(x,y,z)→(4,1,−3)

y −3zx2

2x +5y −z

(2x +5y −z) = 2( x) +5( y) −( z)lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

= 2(4) +5(1) −(−3)

= 16.

( y −3z) = ( x ( y) −3 zlim
(x,y,z)→(4,1,−3)

x2 lim
(x,y,z)→(4,1,−3)

)2 lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

= ( )(1) −3(−3)42

= 16 +9
= 25

= =lim
(x,y,z)→(4,1,−3)

y −3zx2

2x +5y −z

( y −3z)lim
(x,y,z)→(4,1,−3)

x2

(2x +5y −z)lim
(x,y,z)→(4,1,−3)

25

16

 Exercise 14.2.6

lim
(x,y,z)→(4,−1,3)

13 − −2 +x2 y2 z2
− −−−−−−−−−−−−−−

√

= 2lim
(x,y,z)→(4,−1,3)

13 − −2 +x2 y2 z2
− −−−−−−−−−−−−−−

√
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Key Concepts
To study limits and continuity for functions of two variables, we use a  disk centered around a given point.
A function of several variables has a limit if for any point in a  ball centered at a point , the value of the function at that point
is arbitrarily close to a fixed value (the limit value).
The limit laws established for a function of one variable have natural extensions to functions of more than one variable.
A function of two variables is continuous at a point if the limit exists at that point, the function exists at that point, and the limit
and function are equal at that point.

Glossary

boundary point
a point  of  is a boundary point if every  disk centered around  contains points both inside and outside 

closed set
a set  that contains all its boundary points

connected set
an open set  that cannot be represented as the union of two or more disjoint, nonempty open subsets

 disk
an open disk of radius  centered at point 

 ball
all points in  lying at a distance of less than  from 

interior point
a point  of  is a boundary point if there is a  disk centered around  contained completely in 

open set
a set  that contains none of its boundary points

region
an open, connected, nonempty subset of 

14.2: Limits and Continuity is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

14.2: Limits and Continuity by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

δ

δ P

P0 R δ P0 R

S

S

δ

δ (a, b)

δ

R
3 δ ( , , )x0 y0 z0

P0 R δ P0 R

S

R
2
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14.3: Partial Derivatives

Calculate the partial derivatives of a function of two variables.
Calculate the partial derivatives of a function of more than two variables.
Determine the higher-order derivatives of a function of two variables.
Explain the meaning of a partial differential equation and give an example.

Now that we have examined limits and continuity of functions of two variables, we can proceed to study derivatives. Finding
derivatives of functions of two variables is the key concept in this chapter, with as many applications in mathematics, science, and
engineering as differentiation of single-variable functions. However, we have already seen that limits and continuity of multivariable
functions have new issues and require new terminology and ideas to deal with them. This carries over into differentiation as well.

Derivatives of a Function of Two Variables
When studying derivatives of functions of one variable, we found that one interpretation of the derivative is an instantaneous rate of
change of  as a function of  Leibniz notation for the derivative is  which implies that  is the dependent variable and  is the
independent variable. For a function  of two variables,  and  are the independent variables and  is the dependent
variable. This raises two questions right away: How do we adapt Leibniz notation for functions of two variables? Also, what is an
interpretation of the derivative? The answer lies in partial derivatives.

Let  be a function of two variables. Then the partial derivative of  with respect to , written as , or  is defined as

The partial derivative of  with respect to , written as , or  is defined as

This definition shows two differences already. First, the notation changes, in the sense that we still use a version of Leibniz notation, but
the  in the original notation is replaced with the symbol . (This rounded  is usually called “partial,” so  is spoken as the
“partial of  with respect to .”) This is the first hint that we are dealing with partial derivatives. Second, we now have two different
derivatives we can take, since there are two different independent variables. Depending on which variable we choose, we can come up
with different partial derivatives altogether, and often do.

Use the definition of the partial derivative as a limit to calculate  and  for the function

Solution

First, calculate 

Next, substitute this into Equation  and simplify:

 Learning Objectives

y x. dy/dx, y x

z = f(x, y) x y z

 Definition: Partial Derivatives

f(x, y) f x ∂f/∂x, ,fx

= (x, y) =
∂f

∂x
fx lim

h→0

f(x+h, y) −f(x, y)

h
(14.3.1)

f y ∂f/∂y ,fy

= (x, y) = .
∂f

∂y
fy lim

k→0

f(x, y+k) −f(x, y)

k
(14.3.2)

d ∂ “d” ∂f/∂x
f x

 Example : Calculating Partial Derivatives from the Definition14.3.1

∂f/∂x ∂f/∂y

f(x, y) = −3xy+2 −4x+5y−12.x2 y2

f(x+h, y).

f(x+h, y) = (x+h −3(x+h)y+2 −4(x+h) +5y−12)2 y2

= +2xh+ −3xy−3hy+2 −4x−4h+5y−12.x2 h2 y2

14.3.1
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To calculate , first calculate 

Next, substitute this into Equation  and simplify:

Use the definition of the partial derivative as a limit to calculate  and  for the function

Hint

Use Equations  and  from the definition of partial derivatives.

Answer

The idea to keep in mind when calculating partial derivatives is to treat all independent variables, other than the variable with respect to
which we are differentiating, as constants. Then proceed to differentiate as with a function of a single variable. To see why this is true,
first fix  and define  as a function of . Then

∂f

∂x
= lim

h→0

f(x+h, y) −f(x, y)

h

= lim
h→0

( +2xh+ −3xy−3hy+2 −4x−4h+5y−12) −( −3xy+2 −4x+5y−12)x2 h2 y2 x2 y2

h

= lim
h→0

+2xh+ −3xy−3hy+2 −4x−4h+5y−12 − +3xy−2 +4x−5y+12x2 h2 y2 x2 y2

h

= lim
h→0

2xh+ −3hy−4hh2

h

= lim
h→0

h(2x+h−3y−4)

h

= (2x+h−3y−4)lim
h→0

= 2x−3y−4.

∂f

∂y
f(x, y+h) :

f(x+h, y) = −3x(y+h) +2(y+h −4x+5(y+h) −12x2 )2

= −3xy−3xh+2 +4yh+2 −4x+5y+5h−12.x2 y2 h2

14.3.2

∂f

∂y
= lim

h→0

f(x, y+h) −f(x, y)

h

= lim
h→0

( −3xy−3xh+2 +4yh+2 −4x+5y+5h−12) −( −3xy+2 −4x+5y−12)x2 y2 h2 x2 y2

h

= lim
h→0

−3xy−3xh+2 +4yh+2 −4x+5y+5h−12 − +3xy−2 +4x−5y+12x2 y2 h2 x2 y2

h

= lim
h→0

−3xh+4yh+2 +5hh2

h

= lim
h→0

h(−3x+4y+2h+5)

h
= (−3x+4y+2h+5)lim

h→0

= −3x+4y+5

 Exercise 14.3.1

∂f/∂x ∂f/∂y

f(x, y) = 4 +2xy− +3x−2y+5.x2 y2

14.3.1 14.3.2

= 8x+2y+3
∂f

∂x

= 2x−2y−2
∂f

∂y

y g(x) = f(x, y) x
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https://math.libretexts.org/@go/page/4538?pdf


14.3.3 https://math.libretexts.org/@go/page/4538

The same is true for calculating the partial derivative of  with respect to . This time, fix  and define  as a function of 
. Then

All differentiation rules apply.

Calculate  and  for the following functions by holding the opposite variable constant then differentiating:

a. 
b. 

Solution:

a. To calculate , treat the variable  as a constant. Then differentiate  with respect to  using the sum, difference, and
power rules:

The derivatives of the third, fifth, and sixth terms are all zero because they do not contain the variable , so they are treated as
constant terms. The derivative of the second term is equal to the coefficient of , which is . Calculating :

These are the same answers obtained in Example .

b. To calculate  treat the variable y as a constant. Then differentiate  with respect to  using the chain rule and power
rule:

g'(x) = lim
h→0

g(x+h) −g(x)

h

= lim
h→0

f(x+h, y) −f(x, y)

h

= .
∂f

∂x

f y x h(y) = f(x, y)
y

h'(x) = lim
k→0

h(x+k) −h(x)

k

= lim
k→0

f(x, y+k) −f(x, y)

k

= .
∂f

∂y

 Example : Calculating Partial Derivatives14.3.2

∂f/∂x ∂f/∂y

f(x, y) = −3xy+2 −4x+5y−12x2 y2

g(x, y) = sin( y−2x+4)x2

∂f/∂x y f(x, y) x

∂f

∂x
= [ −3xy+2 −4x+5y−12]

∂

∂x
x2 y2

= [ ] − [3xy] + [2 ] − [4x] + [5y] − [12]
∂

∂x
x2 ∂

∂x

∂

∂x
y2 ∂

∂x

∂

∂x

∂

∂x

= 2x−3y+0 −4 +0 −0

= 2x−3y−4.

x

x −3y ∂f/∂y

∂f

∂y
= [ −3xy+2 −4x+5y−12]

∂

∂y
x2 y2

= [ ] − [3xy] + [2 ] − [4x] + [5y] − [12]
∂

∂y
x2 ∂

∂y

∂

∂y
y2 ∂

∂y

∂

∂y

∂

∂y

= −3x+4y−0 +5 −0

= −3x+4y+5.

14.3.1

∂g/∂x, g(x, y) x
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To calculate  treat the variable  as a constant. Then differentiate  with respect to  using the chain rule and power
rule:

Calculate  and  for the function

by holding the opposite variable constant, then differentiating.

Hint

Use Equations  and  from the definition of partial derivatives.

Answer

How can we interpret these partial derivatives? Recall that the graph of a function of two variables is a surface in . If we remove the
limit from the definition of the partial derivative with respect to , the difference quotient remains:

This resembles the difference quotient for the derivative of a function of one variable, except for the presence of the  variable. Figure 
 illustrates a surface described by an arbitrary function 

Figure : Secant line passing through the points  and 

∂g

∂x
= [sin( y−2x+4)]

∂

∂x
x2

= cos( y−2x+4) [ y−2x+4]x2 ∂

∂x
x2

= (2xy−2) cos( y−2x+4).x2

∂g/∂y, x g(x, y) y

∂g

∂y
= [sin( y−2x+4)]

∂

∂y
x2

= cos( y−2x+4) [ y−2x+4]x2 ∂

∂y
x2

= cos( y−2x+4).x2 x2

 Exercise 14.3.2

∂f/∂x ∂f/∂y

f(x, y) = tan( −3 +2 )x3 x2y2 y4

14.3.1 14.3.1

= (3 −6x ) ( −3 +2 )
∂f

∂x
x2 y2 sec2 x3 x2y2 y4

= (−6 y+8 ) ( −3 +2 )
∂f

∂y
x2 y3 sec2 x3 x2y2 y4

R3

x

.
f(x+h, y) −f(x, y)

h

y

14.3.1 z = f(x, y).

14.3.1 (x,y,f(x,y)) (x+h,y,f(x+h,y)).
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In Figure , the value of  is positive. If we graph  and  for an arbitrary point  then the slope of the secant
line passing through these two points is given by

This line is parallel to the -axis. Therefore, the slope of the secant line represents an average rate of change of the function  as we
travel parallel to the -axis. As  approaches zero, the slope of the secant line approaches the slope of the tangent line.

If we choose to change  instead of  by the same incremental value , then the secant line is parallel to the -axis and so is the tangent
line. Therefore,  represents the slope of the tangent line passing through the point  parallel to the -axis and 
represents the slope of the tangent line passing through the point  parallel to the -axis. If we wish to find the slope of a
tangent line passing through the same point in any other direction, then we need what are called directional derivatives.

We now return to the idea of contour maps, which we introduced in Functions of Several Variables. We can use a contour map to
estimate partial derivatives of a function .

Use a contour map to estimate  at the point  for the function

Solution

Figure  represents a contour map for the function .

Figure : Contour map for the function , using  and  corresponds to the origin).

The inner circle on the contour map corresponds to  and the next circle out corresponds to . The first circle is given by
the equation ; the second circle is given by the equation . The first equation simplifies to 

 and the second equation simplifies to  The -intercept of the first circle is  and the -intercept of
the second circle is . We can estimate the value of  evaluated at the point  using the slope formula:

To calculate the exact value of  evaluated at the point , we start by finding  using the chain rule. First, we
rewrite the function as

and then differentiate with respect to  while holding  constant:

14.3.1 h f(x, y) f(x+h, y) (x, y),

.
f(x+h, y) −f(x, y)

h

x f

x h

y x h y

∂f/∂x (x, y, f(x, y)) x ∂f/∂y
(x, y, f(x, y)) y

g(x, y)

 Example : Partial Derivatives from a Contour Map14.3.3

∂g/∂x ( , 0)5
–

√

g(x, y) = .9 − −x2 y2
− −−−−−−−−

√

14.3.2 g(x, y)

14.3.2 g(x,y) = 9 − −x2 y2− −−−−−−−−
√ c = 0, 1, 2, 3(c = 3

c = 2 c = 1

2 = 9 − −x2 y2
− −−−−−−−−

√ 1 = 9 − −x2 y2
− −−−−−−−−

√
+ = 5x2 y2 + = 8.x2 y2 x ( , 0)5

–
√ x

(2 , 0)2
–

√ ∂g/∂x ( , 0)5
–

√

∂g

∂x

∣
∣
∣
(x,y)=( ,0)5√

≈
g( , 0) −g(2 , 0)5

–
√ 2

–
√

−25
–

√ 2
–

√

=
2 −1

−25
–

√ 2
–

√

= ≈ −1.688.
1

−25
–

√ 2
–

√

∂g/∂x ( , 0)5
–

√ ∂g/∂x

g(x, y) = = (9 − −9 − −x2 y2
− −−−−−−−−

√ x2 y2)1/2

x y

https://libretexts.org/
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Next, we evaluate this expression using  and :

The estimate for the partial derivative corresponds to the slope of the secant line passing through the points  and 
. It represents an approximation to the slope of the tangent line to the surface through the point 

 which is parallel to the -axis.

Use a contour map to estimate  at point  for the function

Compare this with the exact answer.

Hint

Create a contour map for  using values of  from  to . Which of these curves passes through point 

Answer

Using the curves corresponding to  and  we obtain

The exact answer is

Functions of More Than Two Variables
Suppose we have a function of three variables, such as  We can calculate partial derivatives of  with respect to any of
the independent variables, simply as extensions of the definitions for partial derivatives of functions of two variables.

Let  be a function of three variables. Then, the partial derivative of  with respect to , written as  or  is
defined to be

The partial derivative of  with respect to , written as , or , is defined to be

∂g

∂x
= (9 − − (−2x)

1

2
x2 y2)−1/2

= − .
x

9 − −x2 y2
− −−−−−−−−

√

x = 5
–

√ y = 0

∂g

∂x

∣
∣
∣
(x,y)=( ,0)5√

= −
5
–

√

9 −( −(05
–

√ )2 )2
− −−−−−−−−−−−−

√

= −
5
–

√

4
–

√

= − ≈ −1.118.
5
–

√

2

( , 0, g( , 0))5
–

√ 5
–

√
(2 , 0, g(2 , 0))2

–
√ 2

–
√

( , 0, g( , 0)),5
–

√ 5
–

√ x

 Exercise 14.3.3

∂f/∂y (0, )2
–

√

f(x, y) = − .x2 y2

f c −3 3 (0, )?2
–

√

c = −2 c = −3,

∂f

∂y

∣

∣
∣
(x,y)=(0, )2√

≈
f(0, ) −f(0, )3

–
√ 2

–
√

−3
–

√ 2
–

√

= ⋅
−3 −(−2)

−3
–

√ 2
–

√

+3
–

√ 2
–

√

+3
–

√ 2
–

√

= − − ≈ −3.146.3
–

√ 2
–

√

= (−2y = −2 ≈ −2.828.
∂f

∂y

∣

∣
∣
(x,y)=(0, )2√

|(x,y)=(0, )2√ 2
–

√

w = f(x, y, z). w

 Definition: Partial Derivatives

f(x, y, z) f x ∂f/∂x, ,fx

= (x, y, z) = .
∂f

∂x
fx lim

h→0

f(x+h, y, z) −f(x, y, z)

h
(14.3.3)

f y ∂f/∂y fy
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The partial derivative of  with respect to , written as , or , is defined to be

We can calculate a partial derivative of a function of three variables using the same idea we used for a function of two variables. For
example, if we have a function  of , and , and we wish to calculate , then we treat the other two independent variables as if
they are constants, then differentiate with respect to .

Use the limit definition of partial derivatives to calculate  for the function

Then, find  and  by setting the other two variables constant and differentiating accordingly.

Solution:

We first calculate  using Equation , then we calculate the other two partial derivatives by holding the remaining
variables constant. To use the equation to find , we first need to calculate 

and recall that  Next, we substitute these two expressions into the
equation:

Then we find  by holding  and  constant. Therefore, any term that does not include the variable  is constant, and its
derivative is zero. We can apply the sum, difference, and power rules for functions of one variable:

To calculate  we hold  and  constant and apply the sum, difference, and power rules for functions of one variable:

= (x, y, z) =
∂f

∂y
fy lim

k→0

f(x, y+k, z) −f(x, y, z)

k.
(14.3.4)

f z ∂f/∂z fz

= (x, y, z) = .
∂f

∂z
fz lim

m→0

f(x, y, z+m) −f(x, y, z)

m
(14.3.5)

f x, y z ∂f/∂x
x

 Example : Calculating Partial Derivatives for a Function of Three Variables14.3.4

∂f/∂x

f(x, y, z) = −3xy+2 −4xz+5y −12x+4y−3z.x2 y2 z2

∂f/∂y ∂f/∂z

∂f/∂x 14.3.3
∂f/∂x f(x+h, y, z) :

f(x+h, y, z) = (x+h −3(x+h)y+2 −4(x+h)z+5y −12(x+h) +4y−3z)2 y2 z2

= +2xh+ −3xy−3xh+2 −4xz−4hz+5y −12x−12h+4y−3zx2 h2 y2 z2

f(x, y, z) = −3xy+2 −4zx+5y −12x+4y−3z.x2 y2 z2

∂f

∂x
=

lim
h→0

⎡

⎣

⎢⎢⎢

+2xh+ −3xy−3hy+2 −4xz−4hz+5y −12x−12h+4y−3zh− −3xy+2 −4xz+5yx2 h2 y2 z2 x2 y2 z2

−12x+4y−3z

h

⎤

⎦

⎥⎥⎥

= [ ]lim
h→0

2xh+ −3hy−4hz−12hh2

h

= [ ]lim
h→0

h(2x+h−3y−4z−12)

h

= (2x+h−3y−4z−12)lim
h→0

= 2x−3y−4z−12.

∂f/∂y x z y

[ −3xy+2 −4xz+5y −12x+4y−3z]
∂

∂y
x2 y2 z2

= [ ] − [3xy] + [2 ] − [4xz] + [5y ] − [12x] + [4y] − [3z]
∂

∂y
x2 ∂

∂y

∂

∂y
y2 ∂

∂y

∂

∂y
z2 ∂

∂y

∂

∂y

∂

∂z

= 0 −3x+4y−0 +5 −0 +4 −0z2

= −3x+4y+5 +4.z2

∂f/∂z, x y

https://libretexts.org/
https://math.libretexts.org/@go/page/4538?pdf


14.3.8 https://math.libretexts.org/@go/page/4538

Use the limit definition of partial derivatives to calculate  for the function

Then find  and  by setting the other two variables constant and differentiating accordingly.

Hint

Use the strategy in the preceding example.

Answer

Calculate the three partial derivatives of the following functions.

a. 
b. 

Solution

In each case, treat all variables as constants except the one whose partial derivative you are calculating.

a.

[ −3xy+2 −4xz+5y −12x+4y−3z]
∂

∂z
x2 y2 z2

= [ ] − [3xy] + [2 ] − [4xz] + [5y ] − [12x] + [4y] − [3z]
∂

∂z
x2 ∂

∂z

∂

∂z
y2 ∂

∂z

∂

∂z
z2 ∂

∂z

∂

∂z

∂

∂z

= 0 −0 +0 −4x+10yz−0 +0 −3

= −4x+10yz−3

 Exercise 14.3.4

∂f/∂x

f(x, y, z) = 2 −4 y+2 +5x −6x+3z−8.x2 x2 y2 z2

∂f/∂y ∂f/∂z

= 4x−8xy+5 −6, = −4 +4y, = 10xz+3
∂f

∂x
z2 ∂f

∂y
x2 ∂f

∂z

 Example : Calculating Partial Derivatives for a Function of Three Variables14.3.5

f(x, y, z) = y−4xz+ x−3yzx2 y2

g(x, y, z) = sin( y−z) +cos( −yz)x2 x2

∂f

∂x
= [ ]

∂

∂x

y−4xz+x2 y2

x−3yz

=
( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)

∂

∂x
x2 y2 x2 y2 ∂

∂x
(x−3yz)2

=
(2xy−4z)(x−3yz) −( y−4xz+ )(1)x2 y2

(x−3yz)2

=
2 y−6x z−4xz+12y − y+4xz−x2 y2 z2 x2 y2

(x−3yz)2

=
y−6x z−4xz+12y +4xz−x2 y2 z2 y2

(x−3yz)2
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b.

Calculate  and  for the function

∂f

∂y
= [ ]

∂

∂y

y−4xz+x2 y2

x−3yz

=

( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)
∂

∂y
x2 y2 x2 y2 ∂

∂y

(x−3yz)2

=
( +2y)(x−3yz) −( y−4xz+ )(−3z)x2 x2 y2

(x−3yz)2

=
−3 yz+2xy−6 z+3 yz−12x +3 zx3 x2 y2 x2 z2 y2

(x−3yz)2

=
+2xy−3 z−12xx3 y2 z2

(x−3yz)2

∂f

∂z
= [ ]

∂

∂z

y−4xz+x2 y2

x−3yz

=
( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)

∂

∂z
x2 y2 x2 y2 ∂

∂z
(x−3yz)2

=
(−4x)(x−3yz) −( y−4xz+ )(−3y)x2 y2

(x−3yz)2

=
−4 +12xyz+3 −12xyz+3x2 x2y2 y3

(x−3yz)2

=
−4 +3 +3x2 x2y2 y3

(x−3yz)2

∂f

∂x
= [sin( y−z) +cos( −yz)]

∂

∂x
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂x
x2 x2 ∂

∂x
x2

= 2xy cos( y−z) −2x sin( −yz)x2 x2

∂f

∂y
= [sin( y−z) +cos( −yz)]

∂

∂y
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂y
x2 x2 ∂

∂y
x2

= cos( y−z) +z sin( −yz)x2 x2 x2

∂f

∂z
= [sin( y−z) +cos( −yz)]

∂

∂z
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂z
x2 x2 ∂

∂z
x2

= −cos( y−z) +y sin( −yz)x2 x2

 Exercise 14.3.5

∂f/∂x, ∂f/∂y, ∂f/∂z

f(x, y, z) = sec( y) −tan( y ).x2 x3 z2
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Hint

Use the strategy in the preceding example.

Answer

Higher-Order Partial Derivatives

Consider the function

Its partial derivatives are

and

Each of these partial derivatives is a function of two variables, so we can calculate partial derivatives of these functions. Just as with
derivatives of single-variable functions, we can call these second-order derivatives, third-order derivatives, and so on. In general, they
are referred to as higher-order partial derivatives. There are four second-order partial derivatives for any function (provided they all
exist):

An alternative notation for each is  and , respectively. Higher-order partial derivatives calculated with respect to
different variables, such as  and , are commonly called mixed partial derivatives.

Calculate all four second partial derivatives for the function

Solution:

To calculate  and , we first calculate :

To calculate , differentiate  (Equation ) with respect to :

= 2xy sec( y) tan( y) −3 y ( y )
∂f

∂x
x2 x2 x2 z2 sec2 x3 z2

= sec( y) tan( y) − ( y )
∂f

∂y
x2 x2 x2 x3z2 sec2 x3 z2

= −2 yz ( y )
∂f

∂z
x3 sec2 x3 z2

f(x, y) = 2 −4x +5 −6xy+5x−4y+12.x3 y2 y3

= 6 −4 −6y+5
∂f

∂x
x2 y2

= −8xy+15 −6x−4.
∂f

∂y
y2

f∂2

∂x2

f∂2

∂y∂x

f∂2

∂x∂y

f∂2

∂y2

= [ ]
∂

∂x

∂f

∂x

= [ ]
∂

∂y

∂f

∂x

= [ ]
∂

∂x

∂f

∂y

= [ ] .
∂

∂y

∂f

∂y

, , ,fxx fxy fyx fyy
fxy fyx

 Example : Calculating Second Partial Derivatives14.3.6

f(x, y) = x +sin(2x−5y).e−3y (14.3.6)

f∂2

∂x2

f∂2

∂y∂x
∂f/∂x

= +2 cos(2x−5y).
∂f

∂x
e−3y (14.3.7)

f∂2

∂x2
∂f/∂x 14.3.7 x
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To calculate , differentiate  (Equation ) with respect to :

To calculate  and , first calculate :

To calculate , differentiate  (Equation ) with respect to :

To calculate , differentiate  (Equation ) with respect to :

Calculate all four second partial derivatives for the function

Hint

Follow the same steps as in the previous example.

Answer

f∂2

∂x2
= [ ]

∂

∂x

∂f

∂x

= [ +2 cos(2x−5y)]
∂

∂x
e−3y

= −4 sin(2x−5y).

f∂2

∂y∂x
∂f/∂x 14.3.7 y

f∂2

∂y ∂x
= [ ]

∂

∂y

∂f

∂x

= [ +2 cos(2x−5y)]
∂

∂y
e−3y

= −3 +10 sin(2x−5y).e−3y

f∂2

∂x∂y

f∂2

∂y2
∂f/∂y

= −3x −5 cos(2x−5y).
∂f

∂y
e−3y (14.3.8)

f∂2

∂x∂y
∂f/∂y 14.3.8 x

f∂2

∂x∂y
= [ ]

∂

∂x

∂f

∂y

= [−3x −5 cos(2x−5y)]
∂

∂x
e−3y

= −3 +10 sin(2x−5y).e−3y

f∂2

∂y2
∂f/∂y 14.3.8 y

f∂2

∂y2
= [ ]

∂

∂y

∂f

∂y

= [−3x −5 cos(2x−5y)]
∂

∂y
e−3y

= 9x −25 sin(2x−5y).e−3y

 Exercise 14.3.6

f(x, y) = sin(3x−2y) +cos(x+4y).

= −9 sin(3x−2y) −cos(x+4y)
f∂2

∂x2

= 6 sin(3x−2y) −4 cos(x+4y)
f∂2

∂y∂x
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At this point we should notice that, in both Example  and the checkpoint, it was true that . Under certain

conditions, this is always true. In fact, it is a direct consequence of the following theorem.

Suppose that  is defined on an open disk  that contains the point . If the functions  and  are continuous on ,
then .

Clairaut’s theorem guarantees that as long as mixed second-order derivatives are continuous, the order in which we choose to
differentiate the functions (i.e., which variable goes first, then second, and so on) does not matter. It can be extended to higher-order
derivatives as well. The proof of Clairaut’s theorem can be found in most advanced calculus books.

Two other second-order partial derivatives can be calculated for any function  The partial derivative  is equal to the
partial derivative of  with respect to , and  is equal to the partial derivative of  with respect to .

Partial Differential Equations
Previously, we studied differential equations in which the unknown function had one independent variable. A partial differential
equation is an equation that involves an unknown function of more than one independent variable and one or more of its partial
derivatives. Examples of partial differential equations are

In the heat and wave equations, the unknown function  has three independent variables: , , and  with  is an arbitrary constant. The
independent variables  and  are considered to be spatial variables, and the variable  represents time. In Laplace’s equation, the
unknown function  has two independent variables  and .

Verify that

is a solution to the wave equation

Solution

First, we calculate  and 

= 6 sin(3x−2y) −4 cos(x+4y)
f∂2

∂x∂y

= −4 sin(3x−2y) −16 cos(x+4y)
f∂2

∂y2

14.3.6 =
f∂2

∂y∂x

f∂2

∂x∂y

 Equality of Mixed Partial Derivatives (Clairaut’s Theorem)

f(x, y) D (a, b) fxy fyx D

=fxy fyx

f(x, y). fxx
fx x fyy fy y

= ( + )ut c2 uxx uyy
heat equation in two dimensions

= ( + )utt c2 uxx uyy
wave equation in two dimensions

+ = 0uxx uyy
Laplace’s equation in two dimensions

u t x y c

x y t

u x y

 Example : A Solution to the Wave Equation14.3.7

u(x, y, t) = 5 sin(3πx) sin(4πy) cos(10πt)

= 4( + ).utt uxx uyy (14.3.9)

, ,utt uxx :uyy
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Next, we substitute each of these into the right-hand side of Equation  and simplify:

This verifies the solution.

Verify that

is a solution to the heat equation

Hint

Calculate the partial derivatives and substitute into the right-hand side.

Answer

TBA

Since the solution to the two-dimensional heat equation is a function of three variables, it is not easy to create a visual representation of
the solution. We can graph the solution for fixed values of  which amounts to snapshots of the heat distributions at fixed times. These
snapshots show how the heat is distributed over a two-dimensional surface as time progresses. The graph of the preceding solution at
time  appears in Figure . As time progresses, the extremes level out, approaching zero as  approaches infinity.

(x, y, t)utt = [ ]
∂

∂t

∂u

∂t

= [5 sin(3πx) sin(4πy)(−10π sin(10πt))]
∂

∂t

= [−50π sin(3πx) sin(4πy) sin(10πt)]
∂

∂t

= −500 sin(3πx) sin(4πy) cos(10πt)π2

(x, y, t)uxx = [ ]
∂

∂x

∂u

∂x

= [15π cos(3πx) sin(4πy) cos(10πt)]
∂

∂x

= −45 sin(3πx) sin(4πy) cos(10πt)π2

(x, y, t)uyy = [ ]
∂

∂y

∂u

∂y

= [5 sin(3πx)(4π cos(4πy)) cos(10πt)]
∂

∂y

= [20π sin(3πx) cos(4πy) cos(10πt)]
∂

∂y

= −80 sin(3πx) sin(4πy) cos(10πt).π2

14.3.9

4( + )uxx uyy = 4(−45 sin(3πx) sin(4πy) cos(10πt) +−80 sin(3πx) sin(4πy) cos(10πt))π2 π2

= 4(−125 sin(3πx) sin(4πy) cos(10πt))π2

= −500 sin(3πx) sin(4πy) cos(10πt)π2

= .utt

 Exercise : A Solution to the Heat Equation14.3.7

u(x, y, t) = 2 sin( ) sin( )
x

3

y

4
e−25t/16

= 9( + ).ut uxx uyy

t,

t = 0 14.3.3 t
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Figure 

If we consider the heat equation in one dimension, then it is possible to graph the solution over time. The heat equation in one
dimension becomes

where  represents the thermal diffusivity of the material in question. A solution of this differential equation can be written in the form

where  is any positive integer. A graph of this solution using  appears in Figure , where the initial temperature
distribution over a wire of length  is given by  Notice that as time progresses, the wire cools off. This is seen because,
from left to right, the highest temperature (which occurs in the middle of the wire) decreases and changes color from red to blue.

Figure : Graph of a solution of the heat equation in one dimension over time.

During the late 1800s, the scientists of the new field of geology were coming to the conclusion that Earth must be “millions and
millions” of years old. At about the same time, Charles Darwin had published his treatise on evolution. Darwin’s view was that
evolution needed many millions of years to take place, and he made a bold claim that the Weald chalk fields, where important
fossils were found, were the result of  million years of erosion.

14.3.3

= ,ut c2uxx

c2

(x, t) = sin(mπx)um e− tπ2m2c2

m m = 1 14.3.4
1 u(x, 0) = sinπx.

14.3.4

 Lord Kelvin and the Age of Earth

300
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Figure : (a) William Thomson (Lord Kelvin), 1824-1907, was a British physicist and electrical engineer; (b) Kelvin used the
heat diffusion equation to estimate the age of Earth (credit: modification of work by NASA).

At that time, eminent physicist William Thomson (Lord Kelvin) used an important partial differential equation, known as the heat
diffusion equation, to estimate the age of Earth by determining how long it would take Earth to cool from molten rock to what we
had at that time. His conclusion was a range of 20 to 400 million years, but most likely about 50 million years. For many decades,
the proclamations of this irrefutable icon of science did not sit well with geologists or with Darwin.

Read Kelvin’s paper on estimating the age of the Earth.

Kelvin made reasonable assumptions based on what was known in his time, but he also made several assumptions that turned out to
be wrong. One incorrect assumption was that Earth is solid and that the cooling was therefore via conduction only, hence justifying
the use of the diffusion equation. But the most serious error was a forgivable one—omission of the fact that Earth contains
radioactive elements that continually supply heat beneath Earth’s mantle. The discovery of radioactivity came near the end of
Kelvin’s life and he acknowledged that his calculation would have to be modified.

Kelvin used the simple one-dimensional model applied only to Earth’s outer shell, and derived the age from graphs and the roughly
known temperature gradient near Earth’s surface. Let’s take a look at a more appropriate version of the diffusion equation in radial
coordinates, which has the form

.

Here,  is temperature as a function of  (measured from the center of Earth) and time  is the heat conductivity—for
molten rock, in this case. The standard method of solving such a partial differential equation is by separation of variables, where we
express the solution as the product of functions containing each variable separately. In this case, we would write the temperature as

1. Substitute this form into Equation  and, noting that  is constant with respect to distance  and  is constant
with respect to time , show that

2. This equation represents the separation of variables we want. The left-hand side is only a function of  and the right-hand side is
only a function of , and they must be equal for all values of  and . Therefore, they both must be equal to a constant. Let’s call
that constant . (The convenience of this choice is seen on substitution.) So, we have

14.3.5

= K[ + ]
∂T

∂t

T∂2

r∂2

2

r

∂T

∂r
(14.3.10)

T (r, t) r t.K

T (r, t) = R(r)f(t).

14.3.10 f(t) (r) R(r)
(t)

= [ + ] .
1

f

∂f

∂t

K

R

R∂2

∂r2

2

r

∂R

∂r

t

r r t

−λ2

= − and [ + ] = − .
1

f

∂f

∂t
λ2 K

R

R∂2

∂r2

2

r

∂R

∂r
λ2
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3. Now, we can verify through direct substitution for each equation that the solutions are  and 

, where . Note that  is also a valid solution, so we could have

chosen for our constant. Can you see why it would not be valid for this case as time increases?
4. Let’s now apply boundary conditions.

a. The temperature must be finite at the center of Earth, . Which of the two constants,  or , must therefore be zero to
keep  finite at ? (Recall that  as , but  behaves very differently.)

b. Kelvin argued that when magma reaches Earth’s surface, it cools very rapidly. A person can often touch the surface within
weeks of the flow. Therefore, the surface reached a moderate temperature very early and remained nearly constant at a
surface temperature . For simplicity, let’s set  at  and find α such that this is the temperature there for all
time . (Kelvin took the value to be . We can add this  constant to our solution later.) For this to be true,
the sine argument must be zero at . Note that α has an infinite series of values that satisfies this condition. Each value
of  represents a valid solution (each with its own value for ). The total or general solution is the sum of all these
solutions.

c. At  we assume that all of Earth was at an initial hot temperature  (Kelvin took this to be about .) The
application of this boundary condition involves the more advanced application of Fourier coefficients. As noted in part b.
each value of  represents a valid solution, and the general solution is a sum of all these solutions. This results in a series
solution:

where .

Note how the values of  come from the boundary condition applied in part b. The term  is the constant  for each term

in the series, determined from applying the Fourier method. Letting , examine the first few terms of this solution shown

here and note how  in the exponential causes the higher terms to decrease quickly as time progresses:

Near time  many terms of the solution are needed for accuracy. Inserting values for the conductivity  and  for
time approaching merely thousands of years, only the first few terms make a significant contribution. Kelvin only needed to look at
the solution near Earth’s surface (Figure ) and, after a long time, determine what time best yielded the estimated temperature
gradient known during his era (  increase per ). He simply chose a range of times with a gradient close to this value. In
Figure , the solutions are plotted and scaled, with the  surface temperature added. Note that the center of Earth
would be relatively cool. At the time, it was thought Earth must be solid.

f(t) = Ae− tλ2

R(r) = B( )+C ( )
sinαr

r

cosαr

r
α = λ/ K

−−
√ f(t) = Ae+λ tn2

+λ2

r = 0 B C

R r = 0 sin(αr)/r → α = r → 0 cos(αr)/r

Ts T = 0 r = RE

t 300K ≈ 80°F 300K
r = RE

α A

t = 0, T0 7000K

αn

T (r, t) =( )
T0RE

π
∑
n

(−1)n−1

n
e−λ tn2 sin( r)αn

r

= nπ/αn RE

αn

−1n−1

n
An

β =
π

RE

λ2

T (r, t)

= ( (sinβr) − (sin2βr) + (sin3βr) − (sin4βr) + (sin5βr). .
T0RE

πr
e−K tβ2 1

2
e−4K tβ2 1

3
e−9K tβ2 1

4
e−16K tβ2 1

5
e−25K tβ2

.) .
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14.3.6
1°F 50ft

14.3.6 300 −K

https://libretexts.org/
https://math.libretexts.org/@go/page/4538?pdf


14.3.17 https://math.libretexts.org/@go/page/4538

Figure : Temperature versus radial distance from the center of Earth. (a) Kelvin’s results, plotted to scale. (b) A close-up of
the results at a depth of  miles below Earth’s surface.

Epilog

On May 20, 1904, physicist Ernest Rutherford spoke at the Royal Institution to announce a revised calculation that included the
contribution of radioactivity as a source of Earth’s heat. In Rutherford’s own words:

“I came into the room, which was half-dark, and presently spotted Lord Kelvin in the audience, and realized that I was in for
trouble at the last part of my speech dealing with the age of the Earth, where my views conflicted with his. To my relief,
Kelvin fell fast asleep, but as I came to the important point, I saw the old bird sit up, open an eye and cock a baleful glance at
me.

Then a sudden inspiration came, and I said Lord Kelvin had limited the age of the Earth, provided no new source [of heat]
was discovered. That prophetic utterance referred to what we are now considering tonight, radium! Behold! The old boy
beamed upon me.”

Rutherford calculated an age for Earth of about 500 million years. Today’s accepted value of Earth’s age is about 4.6 billion years.

Key Concepts
A partial derivative is a derivative involving a function of more than one independent variable.
To calculate a partial derivative with respect to a given variable, treat all the other variables as constants and use the usual
differentiation rules.
Higher-order partial derivatives can be calculated in the same way as higher-order derivatives.

Key Equations
Partial derivative of  with respect to 

Partial derivative of  with respect to 

Glossary

higher-order partial derivatives
second-order or higher partial derivatives, regardless of whether they are mixed partial derivatives

mixed partial derivatives
second-order or higher partial derivatives, in which at least two of the differentiations are with respect to different variables

14.3.6
4.0

f x

=
∂f

∂x
lim
h→0

f(x+h, y) −f(x, y)

h

f y

=
∂f

∂y
lim
k→0

f(x, y+k) −f(x, y)

k
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partial derivative
a derivative of a function of more than one independent variable in which all the variables but one are held constant

partial differential equation
an equation that involves an unknown function of more than one independent variable and one or more of its partial derivatives

14.3: Partial Derivatives is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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14.4: Tangent Planes and Linear Approximations

Determine the equation of a plane tangent to a given surface at a point.
Use the tangent plane to approximate a function of two variables at a point.
Explain when a function of two variables is differentiable.
Use the total differential to approximate the change in a function of two variables.

In this section, we consider the problem of finding the tangent plane to a surface, which is analogous to finding the equation of a
tangent line to a curve when the curve is defined by the graph of a function of one variable, . The slope of the tangent line
at the point  is given by ; what is the slope of a tangent plane? We learned about the equation of a plane in
Equations of Lines and Planes in Space; in this section, we see how it can be applied to the problem at hand.

Tangent Planes
Intuitively, it seems clear that, in a plane, only one line can be tangent to a curve at a point. However, in three-dimensional space,
many lines can be tangent to a given point. If these lines lie in the same plane, they determine the tangent plane at that point. A
more intuitive way to think of a tangent plane is to assume the surface is smooth at that point (no corners). Then, a tangent line to
the surface at that point in any direction does not have any abrupt changes in slope because the direction changes smoothly.
Therefore, in a small-enough neighborhood around the point, a tangent plane touches the surface at that point only.

Let  be a point on a surface , and let  be any curve passing through  and lying entirely in . If the
tangent lines to all such curves  at  lie in the same plane, then this plane is called the tangent plane to  at  (Figure 

).

Figure : The tangent plane to a surface  at a point  contains all the tangent lines to curves in  that pass through .

For a tangent plane to a surface to exist at a point on that surface, it is sufficient for the function that defines the surface to be
differentiable at that point. We define the term tangent plane here and then explore the idea intuitively.

 Learning Objectives

y = f(x)
x = a m = f '(a)

 Definition: tangent lines

= ( , , )P0 x0 y0 z0 S C P0 S

C P0 S P0

14.4.1

14.4.1 S P0 S P0
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Let  be a surface defined by a differentiable function  and let  be a point in the domain of . Then,
the equation of the tangent plane to  at  is given by

To see why this formula is correct, let’s first find two tangent lines to the surface . The equation of the tangent line to the curve
that is represented by the intersection of  with the vertical trace given by  is .
Similarly, the equation of the tangent line to the curve that is represented by the intersection of  with the vertical trace given by 

 is . A parallel vector to the first tangent line is ; a parallel vector
to the second tangent line is . We can take the cross product of these two vectors:

This vector is perpendicular to both lines and is therefore perpendicular to the tangent plane. We can use this vector as a normal
vector to the tangent plane, along with the point  in the equation for a plane:

Solving this equation for  gives Equation .

Find the equation of the tangent plane to the surface defined by the function  at
point 

Solution

First, we must calculate  and , then use Equation with  and :

Then Equation  becomes

(See the following figure).

 Definition: tangent planes

S z = f(x, y), = ( , )P0 x0 y0 f

S P0

z = f( , ) + ( , )(x− ) + ( , )(y− ).x0 y0 fx x0 y0 x0 fy x0 y0 y0 (14.4.1)

S

S x = x0 z = f( , ) + ( , )(y− )x0 y0 fy x0 y0 y0

S

y = y0 z = f( , ) + ( , )(x− )x0 y0 fx x0 y0 x0 = + ( , )a⇀ ĵ fy x0 y0 k̂

= + ( , )b
⇀

î fx x0 y0 k̂

×a⇀ b
⇀

= ( + ( , ) ) ×( + ( , ) )ĵ fy x0 y0 k̂ î fx x0 y0 k̂

=

∣

∣

∣
∣
∣
∣

î

0

1

ĵ

1

0

k̂

( , )fy x0 y0

( , )fx x0 y0

∣

∣

∣
∣
∣
∣

= ( , ) + ( , ) − .fx x0 y0 î fy x0 y0 ĵ k̂

= ( , , f( , ))P0 x0 y0 x0 y0

⋅ ((x− ) +(y− ) +(z−f( , )) )n⇀ x0 î y0 ĵ x0 y0 k̂

( ( , ) + ( , ) − ) ⋅ ((x− ) +(y− ) +(z−f( , )) )fx x0 y0 î fy x0 y0 ĵ k̂ x0 î y0 ĵ x0 y0 k̂

( , )(x− ) + ( , )(y− ) −(z−f( , ))fx x0 y0 x0 fy x0 y0 y0 x0 y0

= 0

= 0

= 0.

z 14.4.1

 Example : Finding a Tangent Plane14.4.1

f(x, y) = 2 −3xy+8 +2x−4y+4x2 y2

(2, −1).

(x, y)fx (x, y)fy = 2x0 = −1y0

(x, y)fx

(x, y)fy

f(2, −1)

(2, −1)fx

(2, −1)fy

= 4x−3y+2

= −3x+16y−4

= 2(2 −3(2)(−1) +8(−1 +2(2) −4(−1) +4 = 34)2 )2

= 4(2) −3(−1) +2 = 13

= −3(2) +16(−1) −4 = −26.

14.4.1

z

z

z

z

= f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 34 +13(x−2) −26(y−(−1))

= 34 +13x−26 −26y−26

= 13x−26y−18.
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Figure : Calculating the equation of a tangent plane to a given surface at a given point.

Find the equation of the tangent plane to the surface defined by the function  at point 
.

Hint

First, calculate  and , then use Equation .

Answer

Find the equation of the tangent plane to the surface defined by the function  at the point 

Solution

First, calculate  and , then use Equation  with  and :

Then Equation  becomes

14.4.2

 Exercise 14.4.1

f(x, y) = − y+ −2x+3y−2x3 x2 y2

(−1, 3)

(x, y)fx (x, y)fy 14.4.1

z = 7x+8y−3

 Example : Finding Another Tangent Plane14.4.2

f(x, y) = sin(2x) cos(3y)
(π/3, π/4).

(x, y)fx (x, y)fy 14.4.1 = π/3x0 = π/4y0

(x, y)fx

(x, y)fy

f ( , )
π

3

π

4

( , )fx
π

3

π

4

( , )fy
π

3

π

4

= 2 cos(2x) cos(3y)

= −3 sin(2x) sin(3y)

= sin(2( )) cos(3( )) =( )(− ) = −
π

3

π

4

3
–

√

2

2
–

√

2

6
–

√

4

= 2 cos(2( )) cos(3( )) = 2(− )(− ) =
π

3

π

4

1

2

2
–

√

2

2
–

√

2

= −3 sin(2( )) sin(3( )) = −3( )( ) = − .
π

3

π

4

3
–

√

2

2
–

√

2

3 6
–

√

4
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A tangent plane to a surface does not always exist at every point on the surface. Consider the piecewise function

The graph of this function follows.

Figure : Graph of a function that does not have a tangent plane at the origin. Dynamic figure powered by CalcPlot3D.

If either  or , then  so the value of the function does not change on either the - or -axis. Therefore, 
, so as either  or  approach zero, these partial derivatives stay equal to zero. Substituting them into

Equation gives  as the equation of the tangent line. However, if we approach the origin from a different direction, we get a
different story. For example, suppose we approach the origin along the line . If we put  into the original function, it
becomes

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= − + (x− )− (y− )
6
–

√

4

2
–

√

2

π

3

3 6
–

√

4

π

4

= x− y− − +
2
–

√

2

3 6
–

√

4

6
–

√

4

π 2
–

√

6

3π 6
–

√

16

f(x, y) = .

⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2
− −−−−−

√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

(14.4.2)

14.4.3

x = 0 y = 0 f(x, y) = 0, x y

(x, 0) = (0, y) = 0fx fy x y

z = 0
y = x y = x

f(x, x) = = = .
x(x)

+(xx2 )2− −−−−−−−√

x2

2x2−−−
√

|x|

2
–

√
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When  the slope of this curve is equal to ; when , the slope of this curve is equal to  This presents a
problem. In the definition of tangent plane, we presumed that all tangent lines through point  (in this case, the origin) lay in the
same plane. This is clearly not the case here. When we study differentiable functions, we will see that this function is not
differentiable at the origin.

Linear Approximations
Recall from Linear Approximations and Differentials that the formula for the linear approximation of a function  at the point 

 is given by

The diagram for the linear approximation of a function of one variable appears in the following graph.

Figure : Linear approximation of a function in one variable.

The tangent line can be used as an approximation to the function  for values of  reasonably close to . When working
with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same.

Given a function  with continuous partial derivatives that exist at the point , the linear approximation of 
at the point  is given by the equation

Notice that this equation also represents the tangent plane to the surface defined by  at the point . The idea
behind using a linear approximation is that, if there is a point  at which the precise value of  is known, then for
values of  reasonably close to , the linear approximation (i.e., tangent plane) yields a value that is also reasonably
close to the exact value of  (Figure). Furthermore the plane that is used to find the linear approximation is also the tangent
plane to the surface at the point 

x > 0, /22
–

√ x < 0 −( /2).2
–

√
P

f(x)
x = a

y ≈ f(a) + (a)(x−a).f ′

14.4.4

f(x) x x = a

 Definition: Linear Approximation

z = f(x, y) ( , )x0 y0 f

( , )x0 y0

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ).x0 y0 fx x0 y0 x0 fy x0 y0 y0 (14.4.3)

z = f(x, y) ( , )x0 y0

( , )x0 y0 f(x, y)
(x, y) ( , )x0 y0

f(x, y)
( , ).x0 y0
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Figure : Using a tangent plane for linear approximation at a point.

Given the function , approximate  using point  for  What is the
approximate value of  to four decimal places?

Solution

To apply Equation , we first must calculate  and  using  and 

Now we substitute these values into Equation :

Last, we substitute  and  into 

The approximate value of  to four decimal places is

which corresponds to a  error in approximation.

14.4.5

 Example : Using a Tangent Plane Approximation14.4.3

f(x, y) = 41 −4 −x2 y2− −−−−−−−−−−
√ f(2.1, 2.9) (2, 3) ( , ).x0 y0

f(2.1, 2.9)

14.4.3 f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = 3 :y0

f( , )x0 y0

(x, y)fx

(x, y)fy

= f(2, 3) = = = = 441 −4(2 −(3)2 )2
− −−−−−−−−−−−−−

√ 41 −16 −9
− −−−−−−−−

√ 16
−−

√

= −  so ( , ) = − = −2
4x

41 −4 −x2 y2− −−−−−−−−−−
√

fx x0 y0
4(2)

41 −4(2 −(3)2 )2− −−−−−−−−−−−−−
√

= −  so ( , ) = − = − .
y

41 −4 −x2 y2− −−−−−−−−−−
√

fy x0 y0
3

41 −4(2 −(3)2 )2− −−−−−−−−−−−−−
√

3

4

14.4.3

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 4 −2(x−2) − (y−3)
3

4

= −2x− y.
41

4

3

4

x = 2.1 y = 2.9 L(x, y) :

L(2.1, 2.9) = −2(2.1) − (2.9) = 10.25 −4.2 −2.175 = 3.875.
41

4

3

4

f(2.1, 2.9)

f(2.1, 2.9) = = ≈ 3.8665,41 −4(2.1 −(2.9)2 )2
− −−−−−−−−−−−−−−−

√ 14.95
− −−−

√

0.2
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Given the function  approximate  using point  for . What is the approximate value
of  to four decimal places?

Hint

First calculate  and  using  and , then use Equation .

Answer

 so  

Differentiability
When working with a function  of one variable, the function is said to be differentiable at a point  if  exists.
Furthermore, if a function of one variable is differentiable at a point, the graph is “smooth” at that point (i.e., no corners exist) and
a tangent line is well-defined at that point.

The idea behind differentiability of a function of two variables is connected to the idea of smoothness at that point. In this case, a
surface is considered to be smooth at point  if a tangent plane to the surface exists at that point. If a function is differentiable at a
point, then a tangent plane to the surface exists at that point. Recall the formula (Equation ) for a tangent plane at a point 

 is given by

For a tangent plane to exist at the point  the partial derivatives must therefore exist at that point. However, this is not a
sufficient condition for smoothness, as was illustrated in Figure. In that case, the partial derivatives existed at the origin, but the
function also had a corner on the graph at the origin.

A function  is differentiable at a point  if, for all points  in a  disk around , we can write

where the error term  satisfies

The last term in Equation  is to as the error term and it represents how closely the tangent plane comes to the surface in a
small neighborhood (  disk) of point . For the function  to be differentiable at , the function must be smooth—that is, the
graph of  must be close to the tangent plane for points near .

Show that the function  is differentiable at point 

Solution

First, we calculate  and  using  and  then we use Equation :

Therefore  and  and Equation  becomes

 Exercise 14.4.2

f(x, y) = ,e5−2x+3y f(4.1, 0.9) (4, 1) ( , )x0 y0

f(4.1, 0.9)

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 4x0 = 1y0 14.4.3

L(x, y) = 6 −2x+3y, L(4.1, 0.9) = 6 −2(4.1) +3(0.9) = 0.5 f(4.1, 0.9) = = ≈ 0.6065.e5−2(4.1)+3(0.9) e−0.5

y = f(x) x = a f '(a)

P

14.4.1
( , )x0 y0

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

( , ),x0 y0

 Definition: differentiable Functions

f(x, y) P ( , )x0 y0 (x, y) δ P

f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0 (14.4.4)

E

= 0.lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

(14.4.5)

14.4.4
δ P f P

f P

 Example : Demonstrating Differentiability14.4.4

f(x, y) = 2 −4yx2 (2, −3).

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = −3,y0 14.4.4

f(2, −3)

(2, −3)fx

(2, −3)fy

= 2(2 −4(−3) = 8 +12 = 20)2

= 4(2) = 8

= −4.

= 8m1 = −4,m2 14.4.4
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Next, we calculate the limit in Equation :

Since  for any value of  or , the original limit must be equal to zero. Therefore,  is
differentiable at point .

Show that the function  is differentiable at point .

Hint

First, calculate  and  using  and , then use Equation  to find .
Last, calculate the limit.

Answer

This function from (Equation )

f(x, y)

2 −4yx2

2 −4yx2

2 −4yx2

E(x, y)

= f(2, −3) + (2, −3)(x−2) + (2, −3)(y+3) +E(x, y)fx fy

= 20 +8(x−2) −4(y+3) +E(x, y)

= 20 +8x−16 −4y−12 +E(x, y)

= 8x−4y−8 +E(x, y)

= 2 −8x+8.x2

14.4.5

lim
(x,y)→( , )x0 y0

E(x, y)

(x−x+0 +(y−)2 y0)2− −−−−−−−−−−−−−−−−−−
√

= lim
(x,y)→(2,−3)

2 −8x+8x2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−
√

= lim
(x,y)→(2,−3)

2( −4x+4)x2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−√

= lim
(x,y)→(2,−3)

2(x−2)2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−√

= lim
(x,y)→(2,−3)

2((x−2 +(y+3 ))2 )2

(x−2 +(y+3)2 )2
− −−−−−−−−−−−−−−

√

= 2lim
(x,y)→(2,−3)

(x−2 +(y+3)2 )2
− −−−−−−−−−−−−−−

√

= 0.

E(x, y) ≥ 0 x y f(x, y) = 2 −4yx2

(2, −3)

 Exercise 14.4.3

f(x, y) = 3x−4y2 (−1, 2)

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = −1x0 = 2y0 14.4.5 E(x, y)

f(−1, 2)

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= −19, (−1, 2) = 3, (−1, 2) = −16, E(x, y) = −4(y−2 .fx fy )2

= lim
(x,y)→(−1,2)

−4(y−2)2

(x+1 +(y−2)2 )2− −−−−−−−−−−−−−−
√

≤ lim
(x,y)→(−1,2)

−4((x+1 +(y−2 ))2 )2

(x+1 +(y−2)2 )2− −−−−−−−−−−−−−−√

= −4lim
(x,y)→(2,−3)

(x+1 +(y−2)2 )2
− −−−−−−−−−−−−−−

√

= 0.

14.4.2

f(x, y) =
⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2− −−−−−
√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)
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is not differentiable at the origin (Figure ). We can see this by calculating the partial derivatives. This function appeared
earlier in the section, where we showed that . Substituting this information into Equations  and 

 using  and , we get

Calculating

gives

Depending on the path taken toward the origin, this limit takes different values. Therefore, the limit does not exist and the function 
 is not differentiable at the origin as shown in the following figure.

Figure : This function  (Equation ) is not differentiable at the origin.

Differentiability and continuity for functions of two or more variables are connected, the same as for functions of one variable. In
fact, with some adjustments of notation, the basic theorem is the same.

Let  be a function of two variables with  in the domain of . If  is differentiable at , then 
 is continuous at 

Note shows that if a function is differentiable at a point, then it is continuous there. However, if a function is continuous at a point,
then it is not necessarily differentiable at that point. For example, the function discussed above (Equation )

14.4.3
(0, 0) = (0, 0) = 0fx fy 14.4.4

14.4.5 = 0x0 = 0y0

f(x, y)

E(x, y)

= f(0, 0) + (0, 0)(x−0) + (0, 0)(y−0) +E(x, y)fx fy

= .
xy

+x2 y2− −−−−−
√

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= lim
(x,y)→(0,0)

xy

+x2 y2− −−−−−
√

+x2 y2− −−−−−
√

= .lim
(x,y)→(0,0)

xy

+x2 y2

f

14.4.6 f(x,y) 14.4.2

 THEOREM: Differentiability Implies Continuity

z = f(x, y) ( , )x0 y0 f f(x, y) ( , )x0 y0

f(x, y) ( , ).x0 y0

14.4.2
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is continuous at the origin, but it is not differentiable at the origin. This observation is also similar to the situation in single-variable
calculus.

We can further explores the connection between continuity and differentiability at a point. This next theorem says that if the
function and its partial derivatives are continuous at a point, the function is differentiable.

Let  be a function of two variables with  in the domain of . If , , and  all exist in a
neighborhood of  and are continuous at , then  is differentiable there.

Recall that earlier we showed that the function in Equation  was not differentiable at the origin. Let’s calculate the partial
derivatives  and :

and

The contrapositive of the preceding theorem states that if a function is not differentiable, then at least one of the hypotheses must
be false. Let’s explore the condition that  must be continuous. For this to be true, it must be true that

therefor

Let . Then

If , then this expression equals ; if , then it equals . In either case, the value depends on 
, so the limit fails to exist.

Differentials
In Linear Approximations and Differentials we first studied the concept of differentials. The differential of , written , is defined
as . The differential is used to approximate , where . Extending this idea to the linear
approximation of a function of two variables at the point  yields the formula for the total differential for a function of two
variables.

f(x, y) =
⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2− −−−−−
√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

 Theorem: Continuity of First Partials Implies Differentiability

z = f(x, y) ( , )x0 y0 f f(x, y) (x, y)fx (x, y)fy
( , )x0 y0 ( , )x0 y0 f(x, y)

14.4.2
fx fy

=
∂f

∂x

y3

( +x2 y2)3/2

= .
∂f

∂y

x3

( +x2 y2)3/2

(0, 0)fx

(x, y) = (0, 0)lim
(x,y)→(0,0)

fx fx

(x, y) = .lim
(x,y)→(0,0)

fx lim
(x,y)→(0,0)

y3

( +x2 y2)3/2

x = ky

lim
(x,y)→(0,0)

y3

( +x2 y2)3/2
= lim

y→0

y3

((ky +)2 y2)3/2

= lim
y→0

y3

( +k2y2 y2)3/2

= lim
y→0

y3

|y ( +1|
3
k2 )3/2

= .
1

( +1k2 )3/2
lim
y→0

|y|

y

y > 0 1/( +1k2 )3/2 y < 0 −(1/( +1 )k2 )3/2

k

y dy

f '(x)dx Δy = f(x+Δx) −f(x) Δx = dx

( , )x0 y0
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Let  be a function of two variables with  in the domain of , and let  and  be chosen so that 
 is also in the domain of . If  is differentiable at the point , then the differentials  and  are

defined as

and

The differential , also called the total differential of  at , is defined as

Notice that the symbol  is not used to denote the total differential; rather,  appears in front of . Now, let’s define 
 We use  to approximate , so

Therefore, the differential is used to approximate the change in the function  at the point  for given values of 
 and . Since , this can be used further to approximate 

See the following figure.

Figure : The linear approximation is calculated via the formula 

One such application of this idea is to determine error propagation. For example, if we are manufacturing a gadget and are off by a
certain amount in measuring a given quantity, the differential can be used to estimate the error in the total volume of the gadget.

Find the differential  of the function  and use it to approximate  at point  Use 
 and  What is the exact value of ?

Solution

First, we must calculate  and  using  and 

 Definition: Total Differential

z = f(x, y) ( , )x0 y0 f Δx Δy

( +Δx, +Δy)x0 y0 f f ( , )x0 y0 dx dy

dx = Δx

dy = Δy.

dz z = f(x, y) ( , )x0 y0

dz = ( , )dx+ ( , )dy.fx x0 y0 fy x0 y0 (14.4.6)

∂ d z

Δz = f(x+Δx, y+Δy) −f(x, y). dz Δz

Δz ≈ dz = ( , )dx+ ( , )dy.fx x0 y0 fy x0 y0

z = f( , )x0 y0 ( , )x0 y0

Δx Δy Δz = f(x+Δx, y+Δy) −f(x, y) f(x+Δx, y+Δy) :

f(x+Δx, y+Δy) = f(x, y) +Δz ≈ f(x, y) +fx( , )Δx+ ( , )Δy.x0 y0 fy x0 y0

14.4.7
f(x+ Δx,y+ Δy) ≈ f(x,y) + ( , )Δx+ ( , )Δy.fx x0 y0 fy x0 y0

 Example : Approximation by Differentials14.4.5

dz f(x, y) = 3 −2xy+x2 y2 Δz (2, −3).
Δx = 0.1 Δy = −0.05. Δz

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = −3 :y0
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Then, we substitute these quantities into Equation :

This is the approximation to  The exact value of  is given by

Find the differential  of the function  and use it to approximate  at point . Use 
 and . What is the exact value of ?

Hint

First, calculate  and  using  and , then use Equation .

Answer

Differentiability of a Function of Three Variables
All of the preceding results for differentiability of functions of two variables can be generalized to functions of three variables.
First, the definition:

A function  is differentiable at a point  if for all points  in a  disk around  we can write

where the error term E satisfies

If a function of three variables is differentiable at a point , then it is continuous there. Furthermore, continuity of first
partial derivatives at that point guarantees differentiability.

f( , )x0 y0

(x, y)fx

(x, y)fy

( , )fx x0 y0

( , )fy x0 y0

= f(2, −3) = 3(2 −2(2)(−3) +(−3 = 12 +12 +9 = 33)2 )2

= 6x−2y

= −2x+2y

= fx(2, −3)

= 6(2) −2(−3) = 12 +6 = 18

= (2, −3)fy

= −2(2) +2(−3)

= −4 −6 = −10.

14.4.6

dz

dz

= ( , )dx+ ( , )dyfx x0 y0 fy x0 y0

= 18(0.1) −10(−0.05) = 1.8 +0.5 = 2.3.

Δz = f( +Δx, +Δy) −f( , ).x0 y0 x0 y0 Δz

Δz = f( +Δx, +Δy) −f( , )x0 y0 x0 y0

= f(2 +0.1, −3 −0.05) −f(2, −3)

= f(2.1, −3.05) −f(2, −3)

= 2.3425.

 Exercise 14.4.4

dz f(x, y) = 4 + y−2xyy2 x2 Δz (1, −1)
Δx = 0.03 Δy = −0.02 Δz

( , )fx x0 y0 ( , )fy x0 y0 = 1x0 = −1y0 14.4.6

dz = 0.18

Δz = f(1.03, −1.02) −f(1, −1) = 0.180682

 Definition: Differentiability at a point

f(x, y, z) P ( , , )x0 y0 z0 (x, y, z) δ P

f(x, y) = f( , , ) + ( , , )(x− ) + ( , , )(y− ) + ( , , )(z− ) +E(x, y, z),x0 y0 z0 fx x0 y0 z0 x0 fy x0 y0 z0 y0 fz x0 y0 z0 z0

= 0.lim
(x,y,z)→( , , )x0 y0 z0

E(x, y, z)

(x− +(y− +(z−x0)2 y0)2 z0)2− −−−−−−−−−−−−−−−−−−−−−−−−−
√

( , , )x0 y0 z0
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Key Concepts
The analog of a tangent line to a curve is a tangent plane to a surface for functions of two variables.
Tangent planes can be used to approximate values of functions near known values.
A function is differentiable at a point if it is ”smooth” at that point (i.e., no corners or discontinuities exist at that point).
The total differential can be used to approximate the change in a function  at the point  for given values of

 and .

Key Equations
Tangent plane

Linear approximation

Total differential

.

Differentiability (two variables)

where the error term  satisfies

.

Differentiability (three variables)

where the error term  satisfies

.

Glossary

differentiable

a function  is differentiable at  if  can be expressed in the form 

where the error term  satisfies 

linear approximation
given a function  and a tangent plane to the function at a point , we can approximate  for points near 

 using the tangent plane formula

tangent plane
given a function  that is differentiable at a point , the equation of the tangent plane to the surface  is
given by 

total differential
the total differential of the function  at  is given by the formula 

14.4: Tangent Planes and Linear Approximations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

14.4: Tangent Planes and Linear Approximations by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

z = f( , )x0 y0 ( , )x0 y0

Δx Δy

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

dz = ( , )dx+ ( , )dyfx x0 y0 fy x0 y0

f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

E

= 0lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

f(x, y) = f( , , ) + ( , , )(x− ) + ( , , )(y− ) + ( , , )(z− ) +E(x, y, z),x0 y0 z0 fx x0 y0 z0 x0 fy x0 y0 z0 y0 fz x0 y0 z0 z0

E

= 0lim
(x,y,z)→( , , )x0 y0 z0

E(x, y, z)

(x− +(y− +(z−x0)2 y0)2 z0)2− −−−−−−−−−−−−−−−−−−−−−−−−−
√

f(x, y) ( , )x0 y0 f(x, y)
f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

E(x, y) = 0lim(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

f(x, y) ( , )x0 y0 f(x, y)
( , )x0 y0

f(x, y) ( , )x0 y0 z = f(x, y)
z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

f(x, y) ( , )x0 y0 dz = ( , )dx+fy( , )dyfx x0 y0 x0 y0

https://libretexts.org/
https://math.libretexts.org/@go/page/4539?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/14%3A_Partial_Derivatives/14.04%3A_Tangent_Planes_and_Linear_Approximations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/14%3A_Partial_Derivatives/14.04%3A_Tangent_Planes_and_Linear_Approximations?no-cache
https://math.libretexts.org/@go/page/2603
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


14.5.1 https://math.libretexts.org/@go/page/4540

14.5: The Chain Rule

State the chain rules for one or two independent variables.
Use tree diagrams as an aid to understanding the chain rule for several independent and intermediate variables.
Perform implicit differentiation of a function of two or more variables.

In single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which allows us to find the
derivative of the composition of two functions. The same thing is true for multivariable calculus, but this time we have to deal with
more than one form of the chain rule. In this section, we study extensions of the chain rule and learn how to take derivatives of
compositions of functions of more than one variable.

Chain Rules for One or Two Independent Variables
Recall that the chain rule for the derivative of a composite of two functions can be written in the form

In this equation, both  and  are functions of one variable. Now suppose that  is a function of two variables and  is a
function of one variable. Or perhaps they are both functions of two variables, or even more. How would we calculate the derivative
in these cases? The following theorem gives us the answer for the case of one independent variable.

Suppose that  and  are differentiable functions of  and  is a differentiable function of  and .
Then  is a differentiable function of  and

where the ordinary derivatives are evaluated at  and the partial derivatives are evaluated at .

The proof of this theorem uses the definition of differentiability of a function of two variables. Suppose that  is differentiable
at the point  where  and  for a fixed value of . We wish to prove that  is
differentiable at  and that Equation  holds at that point as well.

Since  is differentiable at , we know that

where

We then subtract  from both sides of this equation:

Next, we divide both sides by :

Then we take the limit as  approaches :

 Learning Objectives

(f(g(x))) = f '(g(x))g'(x).
d

dx

f(x) g(x) f g

 Chain Rule for One Independent Variable

x = g(t) y = h(t) t z = f(x, y) x y

z = f(x(t), y(t)) t

= ⋅ + ⋅ ,
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt
(14.5.1)

t (x, y)

 Proof

f

P ( , ),x0 y0 = g( )x0 t0 = h( )y0 t0 t0 z = f(x(t), y(t))
t = t0 14.5.1

f P

z(t) = f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 0.lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= f( , )z0 x0 y0

z(t) −z( )t0 = f(x(t), y(t)) −f(x( ), y( ))t0 t0

= ( , )(x(t) −x( )) + ( , )(y(t) −y( )) +E(x(t), y(t)).fx x0 y0 t0 fy x0 y0 t0

t− t0

= ( , ) + ( , ) + .
z(t) −z( )t0

t− t0
fx x0 y0

x(t) −x( )t0

t− t0
fy x0 y0

y(t) −y( )t0

t− t0

E(x(t), y(t))

t− t0

t t0
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The left-hand side of this equation is equal to , which leads to

The last term can be rewritten as

As  approaches  approaches  so we can rewrite the last product as

Since the first limit is equal to zero, we need only show that the second limit is finite:

Since  and  are both differentiable functions of , both limits inside the last radical exist. Therefore, this value is finite.
This proves the chain rule at ; the rest of the theorem follows from the assumption that all functions are differentiable
over their entire domains.

□

Closer examination of Equation  reveals an interesting pattern. The first term in the equation is  and the second

term is . Recall that when multiplying fractions, cancelation can be used. If we treat these derivatives as fractions, then

each product “simplifies” to something resembling . The variables  and  that disappear in this simplification are often
called intermediate variables: they are independent variables for the function , but are dependent variables for the variable .
Two terms appear on the right-hand side of the formula, and  is a function of two variables. This pattern works with functions of
more than two variables as well, as we see later in this section.

Calculate  for each of the following functions:

a. 
b. 

lim
t→t0

z(t) −z( )t0

t− t0
= ( , ) ( )fx x0 y0 lim

t→t0

x(t) −x( )t0

t− t0

+ ( , ) ( )fy x0 y0 lim
t→t0

y(t) −y( )t0

t− t0

+ .lim
t→t0

E(x(t), y(t))

t− t0

dz/dt

= ( , ) + ( , ) + .
dz

dt
fx x0 y0

dx

dt
fy x0 y0

dy

dt
lim
t→t0

E(x(t), y(t))

t− t0

lim
t→t0

E(x(t), y(t))

t− t0
= )lim

t→t0

E(x, y)

(x− +(y−x0)2 y0)2
− −−−−−−−−−−−−−−−−

√

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

t− t0

= ( ) ( ) .lim
t→t0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

lim
t→t0

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

t− t0

t , (x(t), y(t))t0 (x( ), y( )),t0 t0

( ) .lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√
lim

(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2
− −−−−−−−−−−−−−−−−

√

t− t0

=lim
(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

t− t+0
lim

(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2

(t− t0)2

− −−−−−−−−−−−−−−−−

√

= lim
(x,y)→( , )x0 y0

+( )
x−x0

t− t0

2

( )
y−y0

t− t0

2
− −−−−−−−−−−−−−−−−−−−

√

= .+[ ( )]lim
(x,y)→( , )x0 y0

x−x0

t− t0

2

[ ( )]lim
(x,y)→( , )x0 y0

y−y0

t− t0

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

x(t) y(t) t

t = t0

14.5.1 ⋅
∂f

∂x

dx

dt

⋅
∂f

∂y

dy

dt

∂f/dt x y

f t

f

 Example : Using the Chain Rule14.5.1

dz/dt

z = f(x, y) = 4 +3 , x = x(t) = sin t, y = y(t) = cos tx2 y2

z = f(x, y) = , x = x(t) = , y = y(t) =−x2 y2− −−−−−
√ e2t e−t
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Solution

a. To use the chain rule, we need four quantities— , and :

Now, we substitute each of these into Equation :

This answer has three variables in it. To reduce it to one variable, use the fact that  and  We obtain

This derivative can also be calculated by first substituting  and  into  then differentiating with respect to :

Then

which is the same solution. However, it may not always be this easy to differentiate in this form.

b. To use the chain rule, we again need four quantities—  and 

We substitute each of these into Equation :

∂z/∂x, ∂z/∂y, dx/dt dy/dt

= 8x
∂z

∂x

= cos t
dx

dt

= 6y
∂z

∂y

= −sin t
dy

dt

14.5.1

dz

dt
= ⋅ + ⋅

∂z

∂x

dx

dt

∂z

∂y

dy

dt

= (8x)(cos t) +(6y)(−sin t)

= 8x cos t−6y sin t.

x(t) = sin t y(t) = cos t.

dz

dt
= 8x cos t−6y sin t

= 8(sin t) cos t−6(cos t) sin t

= 2 sin t cos t.

x(t) y(t) f(x, y), t

z = f(x, y) = f(x(t), y(t))

= 4(x(t) +3(y(t))2 )2

= 4 t+3 t.sin2 cos2

dz

dt
= 2(4 sin t)(cos t) +2(3 cos t)(−sin t)

= 8 sin t cos t−6 sin t cos t

= 2 sin t cos t,

∂z/∂x, ∂z/dy, dx/dt, dy/dt :

=
∂z

∂x

x

−x2 y2
− −−−−−

√

= 2
dx

dt
e2t

=
∂z

∂y

−y

−x2 y2− −−−−−
√

= − .
dx

dt
e−t

14.5.1
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To reduce this to one variable, we use the fact that  and . Therefore,

To eliminate negative exponents, we multiply the top by  and the bottom by :

Again, this derivative can also be calculated by first substituting  and  into  then differentiating with respect to 
:

Then

This is the same solution.

dz

dt
= ⋅ + ⋅

∂z

∂x

dx

dt

∂z

∂y

dy

dt

=( ) (2 ) +( ) (− )
x

−x2 y2
− −−−−−

√
e2t −y

−x2 y2
− −−−−−

√
e−t

= .
2x −ye2t e−t

−x2 y2
− −−−−−

√

x(t) = e2t y(t) = e−t

dz

dt
=

2x t+ye2 e−t

−x2 y2− −−−−−√

=
2( ) +( )e2t e2t e−t e−t

−e4t e−2t
− −−−−−−−

√

= .
2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√

e2t e4t
−−

√

dz

dt
= ⋅

2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√

e2t

e4t−−
√

=
2 +1e6t

−e8t e2t
− −−−−−−

√

=
2 +1e6t

( −1)e2t e6t− −−−−−−−−√

= .
2 +1e6t

et −1e6t
− −−−−−

√

x(t) y(t) f(x, y),
t

z = f(x, y)

= f(x(t), y(t))

= (x(t) −(y(t))2 )2
− −−−−−−−−−−−−

√

= −e4t e−2t
− −−−−−−−

√

= ( − .e4t e−2t)1/2

dz

dt
= ( − (4 +2 )

1

2
e4t e−2t)−1/2 e4t e−2t

= .
2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√
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Calculate  given the following functions. Express the final answer in terms of .

Hint

Calculate  and , then use Equation .

Answer

It is often useful to create a visual representation of Equation  for the chain rule. This is called a tree diagram for the chain
rule for functions of one variable and it provides a way to remember the formula (Figure ). This diagram can be expanded for
functions of more than one variable, as we shall see very shortly.

Figure : Tree diagram for the case 

In this diagram, the leftmost corner corresponds to . Since  has two independent variables, there are two lines
coming from this corner. The upper branch corresponds to the variable  and the lower branch corresponds to the variable . Since
each of these variables is then dependent on one variable , one branch then comes from  and one branch comes from . Last,
each of the branches on the far right has a label that represents the path traveled to reach that branch. The top branch is reached by
following the  branch, then the t branch; therefore, it is labeled  The bottom branch is similar: first the 
branch, then the  branch. This branch is labeled . To get the formula for  add all the terms that appear
on the rightmost side of the diagram. This gives us Equation.

In Note,  is a function of  and , and both  and  are functions of the independent variables 
and .

Suppose  and  are differentiable functions of  and , and  is a differentiable function of 
and . Then,  is a differentiable function of  and , and

 Exercise 14.5.1

dz/dt t

z = f(x, y)

x = x(t)

y = y(t)

= −3xy+2 ,x2 y2

= 3 sin2t,

= 4 cos 2t

∂z/∂x, ∂z/dy, dx/dt, dy/dt 14.5.1

dz

dt
= +

∂f

∂x

dx

dt

∂f

∂y

dy

dt

= (2x−3y)(6 cos 2t) +(−3x+4y)(−8 sin2t)

= −92 sin2t cos 2t−72( 2t− 2t)cos2 sin2

= −46 sin4t−72 cos 4t.

14.5.1
14.5.1

14.5.1 = ⋅ + ⋅ .
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt

z = f(x, y) f

x y

t x y

x (∂z/∂x) ×(dx/dt). y

t (∂z/∂y) ×(dy/dt) dz/dt,

z = f(x, y) x y x = g(u, v) y = h(u, v) u

v

 Chain Rule for Two Independent Variables

x = g(u, v) y = h(u, v) u v z = f(x, y) x

y z = f(g(u, v),h(u, v)) u v

= +
∂z

∂u

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u
(14.5.2)
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and

We can draw a tree diagram for each of these formulas as well as follows.

Figure : Tree diagram for  and .

To derive the formula for , start from the left side of the diagram, then follow only the branches that end with  and add the
terms that appear at the end of those branches. For the formula for , follow only the branches that end with  and add the
terms that appear at the end of those branches.

There is an important difference between these two chain rule theorems. In Note, the left-hand side of the formula for the derivative
is not a partial derivative, but in Note it is. The reason is that, in Note,  is ultimately a function of  alone, whereas in Note,  is a
function of both  and .

Calculate  and  using the following functions:

Solution

To implement the chain rule for two variables, we need six partial derivatives—  and 
:

To find  we use Equation :

Next, we substitute  and 

= + .
∂z

∂v

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v
(14.5.3)

14.5.2 = ⋅ + ⋅
∂z

∂u

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u
= ⋅ + ⋅

∂z

∂v

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

∂z/∂u u

∂z/∂v v

z t z

u v

 Example : Using the Chain Rule for Two Variables14.5.2

∂z/∂u ∂z/∂v

z = f(x, y) = 3 −2xy+ , x = x(u, v) = 3u+2v, y = y(u, v) = 4u−v.x2 y2

∂z/∂x, ∂z/∂y, ∂x/∂u, ∂x/∂v, ∂y/∂u,
∂y/∂v

∂z

∂x

∂x

∂u

∂y

∂u

= 6x−2y

= 3

= 4

= −2x+2y
∂z

∂y

= 2
∂x

∂v

= −1.
∂y

∂v

∂z/∂u, 14.5.2

∂z

∂u
= ⋅ + ⋅

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u

= 3(6x−2y) +4(−2x+2y)

= 10x+2y.

x(u, v) = 3u+2v y(u, v) = 4u−v :

https://libretexts.org/
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To find  we use Equation :

Then we substitute  and 

Calculate  and  given the following functions:

Hint

Calculate  and , then use Equation  and Equation .

Answer

The Generalized Chain Rule
Now that we’ve see how to extend the original chain rule to functions of two variables, it is natural to ask: Can we extend the rule
to more than two variables? The answer is yes, as the generalized chain rule states.

Let  be a differentiable function of  independent variables, and for each  let 
 be a differentiable function of  independent variables. Then

for any 

In the next example we calculate the derivative of a function of three independent variables in which each of the three variables is
dependent on two other variables.

Calculate  and  using the following functions:

∂z

∂u
= 10x+2y

= 10(3u+2v) +2(4u−v)

= 38u+18v.

∂z/∂v, 14.5.3

∂z

∂v
= +

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

= 2(6x−2y) +(−1)(−2x+2y)

= 14x−6y.

x(u, v) = 3u+2v y(u, v) = 4u−v :

∂z

∂v
= 14x−6y

= 14(3u+2v) −6(4u−v)

= 18u+34v

 Exercise 14.5.2

∂z/∂u ∂z/∂v

z = f(x, y) = , x(u, v) = cos 3v, y(u, v) = sin3v.
2x−y

x+3y
e2u e2u

∂z/∂x, ∂z/∂y, ∂x/∂u, ∂x/∂v, ∂y/∂u, ∂y/∂v 14.5.2 14.5.3

= 0, =
∂z

∂u

∂z

∂v

−21

(3 sin3v+cos 3v)2

 Generalized Chain Rule

w = f( , , … , )x1 x2 xm m i ∈ 1, … ,m,
= ( , , … , )xi xi t1 t2 tn n

= + +⋯ +
∂w

∂tj

∂w

∂x1

∂x1

∂tj

∂w

∂x2

∂x2

∂tj

∂w

∂xm

∂xm
∂tj

j∈ 1, 2, … ,n.

 Example : Using the Generalized Chain Rule14.5.3

∂w/∂u ∂w/∂v
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Solution

The formulas for  and  are

Therefore, there are nine different partial derivatives that need to be calculated and substituted. We need to calculate each of
them:

Now, we substitute each of them into the first formula to calculate :

then substitute  and  into this equation:

Next, we calculate :

then we substitute  and  into this equation:

w

x

y

z

= f(x, y, z) = 3 −2xy+4x2 z2

= x(u, v) = sinveu

= y(u, v) = cosveu

= z(u, v) = .eu

∂w/∂u ∂w/∂v

= ⋅ + ⋅ + ⋅
∂w

∂u

∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= ⋅ + ⋅ + ⋅ .
∂w

∂v

∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

∂w

∂x

∂x

∂u

∂x

∂v

= 6x−2y = −2x = 8z
∂w

∂y

∂w

∂z

= sinv = cosv =eu
∂y

∂u
eu

∂z

∂u
eu

= cosv = − sinv = 0.eu
∂y

∂v
eu

∂z

∂v

∂w/∂u

∂w

∂u
= ⋅ + ⋅ + ⋅

∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= (6x−2y) sinv−2x cosv+8z ,eu eu eu

x(u, v) = sinv, y(u, v) = cosv,eu eu z(u, v) = eu

∂w

∂u
= (6x−2y) sinv−2x cosv+8zeu eu eu

= (6 sinv−2eu cosv) sinv−2( sinv) cosv+8eu eu eu eu e2u

= 6 v−4 sinvcosv+8e2u sin2 e2u e2u

= 2 (3 v−2 sinvcosv+4).e2u sin2

∂w/∂v

∂w

∂v
= ⋅ + ⋅ + ⋅

∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

= (6x−2y) cosv−2x(− sinv) +8z(0),eu eu

x(u, v) = sinv, y(u, v) = cosv,eu eu z(u, v) = eu

∂w

∂v
= (6x−2y) cosv−2x(− sinv)eu eu

= (6 sinv−2 cosv) cosv+2( sinv)( sinv)eu eu eu eu eu

= 2 v+6 sinvcosv−2 ve2u sin2 e2u e2u cos2

= 2 ( v+sinvcosv− v).e2u sin2 cos2
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Calculate  and  given the following functions:

Hint

Calculate nine partial derivatives, then use the same formulas from Example .

Answer

Create a tree diagram for the case when

and write out the formulas for the three partial derivatives of .

Solution

Starting from the left, the function  has three independent variables: , and . Therefore, three branches must be emanating
from the first node. Each of these three branches also has three branches, for each of the variables  and .

Figure : Tree diagram for a function of three variables, each of which is a function of three independent variables.

The three formulas are

 Exercise 14.5.3

∂w/∂u ∂w/∂v

w

x

y

z

= f(x, y, z) =
x+2y−4z

2x−y+3z

= x(u, v) = cos 3ve2u

= y(u, v) = sin3ve2u

= z(u, v) = .e2u

14.5.3

= 0
∂w

∂u

=
∂w

∂v

15 −33 sin3v+6 cos 3v

(3 +2 cos 3v−sin3v)2

 Example : Drawing a Tree Diagram14.5.4

w = f(x, y, z), x = x(t, u, v), y = y(t, u, v), z = z(t, u, v)

w

f x, y z

t, u, v

14.5.3
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Create a tree diagram for the case when

and write out the formulas for the three partial derivatives of 

Hint

Determine the number of branches that emanate from each node in the tree.

Answer

Implicit Differentiation
Recall from implicit differentiation provides a method for finding  when  is defined implicitly as a function of . The
method involves differentiating both sides of the equation defining the function with respect to , then solving for  Partial
derivatives provide an alternative to this method.

Consider the ellipse defined by the equation  as follows.

∂w

∂t

∂w

∂u

∂w

∂v

= + +
∂w

∂x

∂x

∂t

∂w

∂y

∂y

∂t

∂w

∂z

∂z

∂t

= + +
∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= + + .
∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

 Exercise 14.5.4

w = f(x, y), x = x(t, u, v), y = y(t, u, v)

w.

∂w

∂t

∂w

∂u

∂w

∂v

= +
∂w

∂x

∂x

∂t

∂w

∂y

∂y

∂t

= +
∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

= +
∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

dy/dx y x

x dy/dx.

+3 +4y−4 = 0x2 y2
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Figure : Graph of the ellipse defined by .

This equation implicitly defines  as a function of . As such, we can find the derivative  using the method of implicit
differentiation:

We can also define a function  by using the left-hand side of the equation defining the ellipse. Then 
 The ellipse  can then be described by the equation . Using this

function and the following theorem gives us an alternative approach to calculating 

Suppose the function  defines  implicitly as a function  of  via the equation  Then

provided 

If the equation  defines  implicitly as a differentiable function of  and , then

as long as 

Equation  is a direct consequence of Equation . In particular, if we assume that  is defined implicitly as a function of 
 via the equation , we can apply the chain rule to find 

Solving this equation for  gives Equation . Equation  can be derived in a similar fashion.

Let’s now return to the problem that we started before the previous theorem. Using Note and the function 
 we obtain

14.5.4 + 3 + 4y− 4 = 0x2 y2

y x dy/dx

( +3 +4y−4)
d

dx
x2 y2

2x+6y +4
dy

dx

dy

dx

(6y+4)
dy

dx

dy

dx

= (0)
d

dx

= 0

= −2x

= −
x

3y+2

z = f(x, y)
f(x, y) = +3 +4y−4.x2 y2 +3 +4y−4 = 0x2 y2 f(x, y) = 0

dy/dx.

 Theorem: Implicit Differentiation of a Function of Two or More Variables

z = f(x, y) y y = g(x) x f(x, y) = 0.

= −
dy

dx

∂f/∂x

∂f/∂y
(14.5.4)

(x, y) ≠ 0.fy

f(x, y, z) = 0 z x y

= − and = −
dz

dx

∂f/∂x

∂f/∂z

dz

dy

∂f/∂y

∂f/∂z
(14.5.5)

(x, y, z) ≠ 0.fz

14.5.4 14.5.2 y

x f(x, y) = 0 dy/dx :

f(x, y)
d

dx

⋅ + ⋅
∂f

∂x

dx

dx

∂f

∂y

dy

dx

+ ⋅
∂f

∂x

∂f

∂y

dy

dx

= (0)
d

dx

= 0

= 0.

dy/dx 14.5.4 14.5.4

f(x, y) = +3 +4y−4,x2 y2
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Then Equation  gives

which is the same result obtained by the earlier use of implicit differentiation.

a. Calculate  if  is defined implicitly as a function of  via the equation . What
is the equation of the tangent line to the graph of this curve at point ?

b. Calculate  and  given 

Solution

a. Set  then calculate  and  and 

The derivative is given by

The slope of the tangent line at point  is given by

To find the equation of the tangent line, we use the point-slope form (Figure ):

Figure : Graph of the rotated ellipse defined by .

∂f

∂x

∂f

∂y

= 2x

= 6y+4.

14.5.4

= − = − = − ,
dy

dx

∂f/∂x

∂f/∂y

2x

6y+4

x

3y+2

 Example : Implicit Differentiation by Partial Derivatives14.5.5

dy/dx y x 3 −2xy+ +4x−6y−11 = 0x2 y2

(2, 1)
∂z/∂x ∂z/∂y, −yz = 0.x2ey ex

f(x, y) = 3 −2xy+ +4x−6y−11 = 0,x2 y2 fx : (x, y) = 6x−2y+4fy fx
(x, y) = −2x+2y−6.fy

= − = = .
dy

dx

∂f/∂x

∂f/∂y

6x−2y+4

−2x+2y−6

3x−y+2

x−y+3

(2, 1)

= =
dy

dx

∣

∣
∣
(x,y)=(2,1)

3(2) −1 +2

2 −1 +3

7

4

14.5.5

y−y0

y−1

y

y

= m(x− )x0

= (x−2)
7

4

= x− +1
7

4

7

2

= x− .
7

4

5

2

14.5.5 3 − 2xy+ + 4x− 6y− 11 = 0x2 y2
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b. We have  Therefore,

Using Equation ,

Find  if  is defined implicitly as a function of  by the equation . What is the
equation of the tangent line to the graph of this curve at point ?

Hint

Calculate  and , then use Equation .

Solution

Equation of the tangent line: 

Key Concepts
The chain rule for functions of more than one variable involves the partial derivatives with respect to all the independent
variables.
Tree diagrams are useful for deriving formulas for the chain rule for functions of more than one variable, where each
independent variable also depends on other variables.

Key Equations
Chain rule, one independent variable

Chain rule, two independent variables

Generalized chain rule

f(x, y, z) = −yz .x2ey ex

∂f

∂x

∂f

∂y

∂f

∂z

= 2x −yzey ex

= −zx2ey ex

= −yex

14.5.5

∂z

∂x
= −

∂f/∂x

∂f/∂y

= −
2x −yzey ex

−yex

=
2x −yzey ex

yex

and = −
∂z

∂y

∂f/∂y

∂f/∂z

= −
−zx2ey ex

−yex

=
−zx2ey ex

yex

 Exercise 14.5.5

dy/dx y x +xy− +7x−3y−26 = 0x2 y2

(3, −2)

∂f/dx ∂f/dy 14.5.4

= = = −
dy

dx

2x+y+7

2y−x+3

∣
∣
∣
(3,−2)

2(3) +(−2) +7

2(−2) −(3) +3

11

4

y = − x+
11

4

25

4

= ⋅ + ⋅
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt

= ⋅ + ⋅ = ⋅ + ⋅
dz

du

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u

dz

dv

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

= + +⋯ +
∂w

∂tj

∂w

∂x1

∂x1

∂tj

∂w

∂x2

∂x1

∂tj

∂w

∂xm

∂xm
∂tj
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Glossary

generalized chain rule
the chain rule extended to functions of more than one independent variable, in which each independent variable may depend on
one or more other variables

intermediate variable
given a composition of functions (e.g., , the intermediate variables are the variables that are independent in the
outer function but dependent on other variables as well; in the function  the variables  and  are examples of
intermediate variables

tree diagram
illustrates and derives formulas for the generalized chain rule, in which each independent variable is accounted for

14.5: The Chain Rule is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

14.5: The Chain Rule for Multivariable Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x(t), y(t)))
f(x(t), y(t)), x y
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14.6: Directional Derivatives and the Gradient Vector

Determine the directional derivative in a given direction for a function of two variables.
Determine the gradient vector of a given real-valued function.
Explain the significance of the gradient vector with regard to direction of change along a surface.
Use the gradient to find the tangent to a level curve of a given function.
Calculate directional derivatives and gradients in three dimensions.

A function  has two partial derivatives:  and . These derivatives correspond to each of the independent variables
and can be interpreted as instantaneous rates of change (that is, as slopes of a tangent line). For example,  represents the slope of a
tangent line passing through a given point on the surface defined by  assuming the tangent line is parallel to the -axis.
Similarly,  represents the slope of the tangent line parallel to the -axis. Now we consider the possibility of a tangent line parallel to
neither axis.

Directional Derivatives
We start with the graph of a surface defined by the equation . Given a point  in the domain of , we choose a direction to
travel from that point. We measure the direction using an angle , which is measured counterclockwise in the -plane, starting at zero
from the positive -axis (Figure ). The distance we travel is  and the direction we travel is given by the unit vector 

 Therefore, the -coordinate of the second point on the graph is given by 

Figure : Finding the directional derivative at a point on the graph of . The slope of the blue arrow on the graph indicates
the value of the directional derivative at that point.

We can calculate the slope of the secant line by dividing the difference in -values by the length of the line segment connecting the two
points in the domain. The length of the line segment is . Therefore, the slope of the secant line is

To find the slope of the tangent line in the same direction, we take the limit as  approaches zero.

Suppose  is a function of two variables with a domain of . Let  and define . Then
the directional derivative of  in the direction of  is given by

provided the limit exists.

 Learning Objectives

z = f(x, y) ∂z/∂x ∂z/∂y
∂z/∂x

z = f(x, y), x

∂z/∂y y

z = f(x, y) (a, b) f

θ xy

x 14.6.1 h

= (cosθ) +(sinθ) .u⇀ î ĵ z z = f(a+h cosθ, b+h sinθ).

14.6.1 z = f(x,y)

z

h

=msec

f(a+h cosθ, b+h sinθ) −f(a, b)

h

h

 Definition: Directional Derivatives

z = f(x, y) D (a, b) ∈ D = (cosθ) +(sinθ)u⇀ î ĵ

f u⇀

f(a, b) =Du⇀ lim
h→0

f(a+h cosθ, b+h sinθ) −f(a, b)

h
(14.6.1)
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Equation  provides a formal definition of the directional derivative that can be used in many cases to calculate a directional
derivative.

Note that since the point  is chosen randomly from the domain  of the function , we can use this definition to find the directional
derivative as a function of  and .

That is,

Let  Find the directional derivative  of  in the direction of 
.

Then determine .

Solution

First of all, since  and  is acute, this implies

Using  we first calculate :

We substitute this expression into Equation  with  and :

To calculate  we substitute  and  into this answer (Figure ):

14.6.1

(a, b) D f

x y

f(x, y) =Du⇀ lim
h→0

f(x+h cosθ, y+h sinθ) −f(x, y)

h
(14.6.2)

 Example : Finding a Directional Derivative from the Definition14.6.1

θ = arccos(3/5). f(x, y)Du⇀ f(x, y) = −xy+3x2 y2

= (cosθ) +(sinθ)u⇀ î ĵ

f(−1, 2)Du⇀

cosθ = 3/5 θ

sinθ = = = .1 −( )
3

5

2− −−−−−−−

√
16

25

−−−
√

4

5

f(x, y) = −xy+3 ,x2 y2 f(x+h cosθ, y+h sinθ)

f(x+h cosθ, y+h sinθ) = (x+h cosθ −(x+h cosθ)(y+h sinθ) +3(y+h sinθ)2 )2

= +2xh cosθ+ θ−xy−xh sinθ−yh cosθ− sinθcosθ+3 +6yh sinθ+3 θx2 h2 cos2 h2 y2 h2 sin2

= +2xh( ) + −xy− − − +3 +6yh( ) +3 ( )x2 3

5

9h2

25

4xh

5

3yh

5

12h2

25
y2 4

5
h2 16

25

= −xy+3 + + + .x2 y2 2xh

5

9h2

5

21yh

5

14.6.1 a = x b = y

f(x, y)Du⇀ = lim
h→0

f(x+h cosθ, y+h sinθ) −f(x, y)

h

= lim
h→0

( −xy+3 + + + ) −( −xy+3 )x2 y2 2xh
5

9h2

5

21yh

5 x2 y2

h

= lim
h→0

+ +2xh
5

9h2

5

21yh

5

h

= + +lim
h→0

2x

5

9h

5

21y

5

= .
2x+21y

5

f(−1, 2),Du⇀ x = −1 y = 2 14.6.2

f(−1, 2) = = = 8.Du⇀
2(−1) +21(2)

5

−2 +42

5
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Figure : Finding the directional derivative in a given direction  at a given point on a surface. The plane is tangent to the
surface at the given point 

An easier approach to calculating directional derivatives that involves partial derivatives is outlined in the following theorem.

Let  be a function of two variables  and , and assume that  and  exist. Then the directional derivative of  in the
direction of  is given by

Applying the definition of a directional derivative stated above in Equation , the directional derivative of  in the direction of 
 at a point  in the domain of  can be written

Let  and  and define . Since  and  both exist, we can use the chain rule for
functions of two variables to calculate :

If  then  and  so

By the definition of  it is also true that

Therefore, .

Since the point  is an arbitrary point from the domain of , this result holds for all points in the domain of  for which the
partials  and  exist.

Therefore,

□

14.6.2 u
⇀

(−1, 2, 15).

 Directional Derivative of a Function of Two Variables

z = f(x, y) x y fx fy f

= (cosθ) +(sinθ)u
⇀

î ĵ

f(x, y) = (x, y) cosθ+ (x, y) sinθ.Du⇀ fx fy (14.6.3)

 Proof

14.6.1 f

= (cosθ) +(sinθ)u⇀ î ĵ ( , )x0 y0 f

f(( , )) = .Du⇀ x0 y0 lim
t→0

f( + t cosθ, + t sinθ) −f( , )x0 y0 x0 y0

t

x = + t cosθx0 y = + t sinθ,y0 g(t) = f(x, y) fx fy
g'(t)

g'(t) = + = (x, y) cosθ+ (x, y) sinθ.
∂f

∂x

dx

dt

∂f

∂y

dy

dt
fx fy

t = 0, x = x0 y = ,y0

g'(0) = ( , ) cosθ+ ( , ) sinθfx x0 y0 fy x0 y0

g'(t),

g'(0) = = .lim
t→0

g(t) −g(0)

t
lim
t→0

f( + t cosθ, + t sinθ) −f( , )x0 y0 x0 y0

t

f( , ) = ( , ) cosθ+ ( , ) sinθDu⇀ x0 y0 fx x0 y0 fy x0 y0

( , )x0 y0 f f

fx fy

f(x, y) = (x, y) cosθ+ (x, y) sinθ.Du⇀ fx fy
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Let  Find the directional derivative  of  in the direction of 
.

Then determine .

Solution

First, we must calculate the partial derivatives of :

Then we use Equation  with :

To calculate  let  and :

This is the same answer obtained in Example .

Find the directional derivative  of  in the direction of 

using Equation .

What is ?

Hint

Calculate the partial derivatives and determine the value of .

Answer

If the vector that is given for the direction of the derivative is not a unit vector, then it is only necessary to divide by the norm of the
vector. For example, if we wished to find the directional derivative of the function in Example  in the direction of the vector 

, we would first divide by its magnitude to get . This gives us .

Then

Gradient
The right-hand side of Equation  is equal to , which can be written as the dot product of two vectors.
Define the first vector as  and the second vector as . Then the right-hand

 Example : Finding a Directional Derivative: Alternative Method14.6.2

θ = arccos(3/5). f(x, y)D
u⇀ f(x, y) = −xy+3x2 y2

= (cosθ) +(sinθ)u⇀ î ĵ

f(−1, 2)Du⇀

f

(x, y)fx

(x, y)fy

= 2x−y

= −x+6y,

14.6.3 θ = arccos(3/5)

f(x, y)Du⇀ = (x, y) cosθ+ (x, y) sinθfx fy

= (2x−y) +(−x+6y)
3

5

4

5

= − − +
6x

5

3y

5

4x

5

24y

5

= .
2x+21y

5

f(−1, 2),Du⇀ x = −1 y = 2

f(−1, 2) = = = 8.Du⇀
2(−1) +21(2)

5

−2 +42

5

14.6.1

 Exercise :14.6.1

f(x, y)Du⇀ f(x, y) = 3 y−4x +3 −4xx2 y3 y2 = (cos ) +(sin )u
⇀ π

3
î

π

3
ĵ

14.6.3

f(3, 4)Du⇀

θ

f(x, y) = +D
u⇀

(6xy−4 −4)(1)y3

2

(3 −12x +6y)x2 y2 3–√

2

f(3, 4) = + = −94 −Du⇀
72 −256 −4

2

(27 −576 +24) 3
–√

2

525 3
–√

2

14.6.2

⟨−5, 12⟩ u
⇀ = ⟨− , ⟩u

⇀ 5
13

12
13

f(x, y)Du⇀ = (x, y) cosθ+ (x, y) sinθfx fy

= − (2x−y) + (−x+6y)
5

13

12

13

= − x+ y
22

13

17

13

14.6.3 (x, y) cosθ+ (x, y) sinθfx fy

f(x, y) = (x, y) + (x, y)∇
⇀

fx î fy ĵ = (cosθ) +(sinθ)u
⇀

î ĵ
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side of the equation can be written as the dot product of these two vectors:

The first vector in Equation  has a special name: the gradient of the function . The symbol  is called nabla and the vector  is
read “del .”

Let  be a function of  and  such that  and  exist. The vector  is called the gradient of  and is defined as

The vector  is also written as “grad .”

Find the gradient  of each of the following functions:

a. 
b. 

Solution

For both parts a. and b., we first calculate the partial derivatives  and , then use Equation .

a.  and , so

b.  and , so

Find the gradient  of .

Hint

Calculate the partial derivatives, then use Equation .

Answer

The gradient has some important properties. We have already seen one formula that uses the gradient: the formula for the directional
derivative. Recall from The Dot Product that if the angle between two vectors  and  is , then  Therefore, if
the angle between  and  is , we have

The  disappears because  is a unit vector. Therefore, the directional derivative is equal to the magnitude of the gradient evaluated at 
 multiplied by . Recall that  ranges from  to .

If  then  and  and  both point in the same direction.

If , then  and  and  point in opposite directions.

In the first case, the value of  is maximized; in the second case, the value of  is minimized.

f(x, y) = f(x, y) ⋅ .Du⇀ ∇
⇀

u⇀ (14.6.4)

14.6.4 f ∇ f∇
⇀

f

 Definition: The Gradient

z = f(x, y) x y fx fy f(x, y)∇
⇀

f

f(x, y) = (x, y) + (x, y) .∇
⇀

fx î fy ĵ (14.6.5)

f(x, y)∇
⇀

f

 Example : Finding Gradients14.6.3

f(x, y)∇
⇀

f(x, y) = −xy+3x2 y2

f(x, y) = sin3x cos 3y

fx fy 14.6.5

(x, y) = 2x−yfx (x, y) = −x+6yfy

f(x, y)∇
⇀

= (x, y) + (x, y)fx î fy ĵ

= (2x−y) +(−x+6y) .î ĵ

(x, y) = 3 cos 3x cos 3yfx (x, y) = −3 sin3x sin3yfy

f(x, y)∇
⇀

= (x, y) + (x, y)fx î fy ĵ

= (3 cos 3x cos 3y) −(3 sin3x sin3y) .î ĵ

 Exercise 14.6.2

f(x, y)∇
⇀

f(x, y) =
−3x2 y2

2x+y

14.6.5

f(x, y) = −∇
⇀ 2 +2xy+6x2 y2

(2x+y)2
î

+12xy+3x2 y2

(2x+y)2
ĵ

a⇀ b
⇀

φ ⋅ = ∥ ∥∥ ∥ cosφ.a⇀ b
⇀

a⇀ b
⇀

f( , )∇
⇀

x0 y0 = (cosθ) +(sinθ)u
⇀

î ĵ φ

f( , ) = f( , ) ⋅ = ∥ f( , )∥∥ ∥ cosφ = ∥ f( , )∥ cosφ.Du⇀ x0 y0 ∇
⇀

x0 y0 u
⇀

∇
⇀

x0 y0 u
⇀

∇
⇀

x0 y0

∥ ∥u
⇀

u
⇀

( , )x0 y0 cosφ cosφ −1 1

φ = 0, cosφ = 1 f( , )∇
⇀

x0 y0 u
⇀

φ = π cosφ = −1 f( , )∇
⇀

x0 y0 u⇀

f( , )Du⇀ x0 y0 f( , )Du⇀ x0 y0
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We can also see that if , then

for any vector . These three cases are outlined in the following theorem.

Suppose the function  is differentiable at  (Figure ).

i. If , then  for any unit vector .
ii. If , then  is maximized when  points in the same direction as . The maximum value

of  is .
iii. If , then  is minimized when  points in the opposite direction from . The minimum

value of  is .

Figure : The gradient indicates the maximum and minimum values of the directional derivative at a point.

Find the direction for which the directional derivative of  at  is a maximum. What is the maximum
value?

Solution

The maximum value of the directional derivative occurs when  and the unit vector point in the same direction. Therefore, we start
by calculating ):

so

Next, we evaluate the gradient at :

f( , ) =∇
⇀

x0 y0 0
⇀

f( , ) = f( , ) ⋅ = 0Du⇀ x0 y0 ∇
⇀

x0 y0 u
⇀

u
⇀

 Properties of the Gradient

z = f(x, y) ( , )x0 y0 14.6.3

f( , ) =∇
⇀

x0 y0 0
⇀

f( , ) = 0Du⇀ x0 y0 u
⇀

f( , ) ≠∇
⇀

x0 y0 0
⇀

f( , )Du⇀ x0 y0 u⇀ f( , )∇
⇀

x0 y0

f( , )Du⇀ x0 y0 ∥ f( , )∥∇
⇀

x0 y0

f( , ) ≠∇
⇀

x0 y0 0
⇀

f( , )Du⇀ x0 y0 u
⇀ f( , )∇

⇀
x0 y0

f( , )Du⇀ x0 y0 −∥ f( , )∥∇
⇀

x0 y0

14.6.3

 Example : Finding a Maximum Directional Derivative14.6.4

f(x, y) = 3 −4xy+2x2 y2 (−2, 3)

f∇
⇀

f(x, y∇
⇀

(x, y) = 6x−4y and (x, y) = −4x+4yfx fy

f(x, y) = (x, y) + (x, y) = (6x−4y) +(−4x+4y) .∇
⇀

fx î fy ĵ î ĵ

(−2, 3)

f(−2, 3) = (6(−2) −4(3)) +(−4(−2) +4(3)) = −24 +20 .∇
⇀

î ĵ î ĵ
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We need to find a unit vector that points in the same direction as  so the next step is to divide  by its
magnitude, which is . Therefore,

This is the unit vector that points in the same direction as  To find the angle corresponding to this unit vector, we solve the
equations

for . Since cosine is negative and sine is positive, the angle must be in the second quadrant. Therefore, 
 rad.

The maximum value of the directional derivative at  is  (Figure ).

Figure : The maximum value of the directional derivative at  is in the direction of the gradient.

Find the direction for which the directional derivative of  at  is a maximum. What is the maximum
value?

Hint

Evaluate the gradient of  at point .

Answer

The gradient of  at  is . The unit vector that points in the same direction as  is

which gives an angle of  rad.

The maximum value of the directional derivative is .

Figure  shows a portion of the graph of the function . Given a point  in the domain of , the
maximum value of the directional derivative at that point is given by . This would equal the rate of greatest ascent if the
surface represented a topographical map. If we went in the opposite direction, it would be the rate of greatest descent.

f(−2, 3),∇
⇀

f(−2, 3)∇
⇀

= = 4(−24 +(20)2 )2− −−−−−−−−−−−√ 976
−−−√ 61

−−√

= i+ j= − + .
f(−2, 3)∇

⇀

∥ f(−2, 3)∥∇
⇀

−24

4 61
−−√

20

4 61
−−√

6 61
−−√

61
î

5 61
−−√

61
ĵ

f(−2, 3).∇
⇀

cosθ = and sinθ =
−6 61−−√

61

5 61−−√

61

θ

θ = π−arcsin((5 )/61) ≈ 2.4561−−√

(−2, 3) ∥ f(−2, 3)∥ = 4∇
⇀

61−−√ 14.6.4

14.6.4 (−2, 3)

 Exercise 14.6.3

g(x, y) = 4x−xy+2y2 (−2, 3)

g (−2, 3)

g (−2, 3) g(−2, 3) = +14∇
⇀

î ĵ g(−2, 3)∇
⇀

= + = + ,
g(−2, 3)∇

⇀

∥ g(−2, 3)∥∇
⇀

1

197
−−−√

î
14

197
−−−√

ĵ
197−−−√

197
î

14 197−−−√

197
ĵ

θ = arcsin((14 )/197) ≈ 1.499197
−−−√

∥ g(−2, 3)∥ =∇
⇀

197−−−√

14.6.5 f(x, y) = 3 +sinx siny (a, b) f

∥ f(a, b)∥∇
⇀
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Figure : A typical surface in . Given a point on the surface, the directional derivative can be calculated using the gradient.

When using a topographical map, the steepest slope is always in the direction where the contour lines are closest together (Figure ).
This is analogous to the contour map of a function, assuming the level curves are obtained for equally spaced values throughout the range
of that function.

Figure : Contour map for the function  using level values between  and .

Gradients and Level Curves

Recall that if a curve is defined parametrically by the function pair  then the vector  is tangent to the curve for
every value of  in the domain. Now let’s assume  is a differentiable function of  and , and  is in its domain. Let’s
suppose further that  and  for some value of , and consider the level curve . Define 

 and calculate  on the level curve. By the chain Rule,

But  because  for all . Therefore, on the one hand,

on the other hand,

Therefore,

14.6.5 R
3

14.6.6

14.6.6 f(x,y) = −x2 y2 −5 5

(x(t), y(t)), x'(t) +y'(t)î ĵ

t z = f(x, y) x y ( , )x0 y0

= x( )x0 t0 = y( )y0 t0 t f(x, y) = k

g(t) = f(x(t), y(t)) g'(t)

g'(t) = (x(t), y(t))x'(t) + (x(t), y(t))y'(t).fx fy

g'(t) = 0 g(t) = k t

(x(t), y(t))x'(t) + (x(t), y(t))y'(t) = 0;fx fy

(x(t), y(t))x'(t) + (x(t), y(t))y'(t) = f(x, y) ⋅ ⟨x'(t), y'(t)⟩.fx fy ∇
⇀

f(x, y) ⋅ ⟨x'(t), y'(t)⟩ = 0.∇
⇀
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Thus, the dot product of these vectors is equal to zero, which implies they are orthogonal. However, the second vector is tangent to the
level curve, which implies the gradient must be normal to the level curve, which gives rise to the following theorem.

Suppose the function  has continuous first-order partial derivatives in an open disk centered at a point . If 
, then  is normal to the level curve of  at 

We can use this theorem to find tangent and normal vectors to level curves of a function.

For the function  find a tangent vector to the level curve at point . Graph the level
curve corresponding to  and draw in  and a tangent vector.

Solution

First, we must calculate 

Next, we evaluate  at 

This vector is orthogonal to the curve at point . We can obtain a tangent vector by reversing the components and multiplying
either one by . Thus, for example,  is a tangent vector (Figure ).

Figure : Tangent and normal vectors to  at point .

For the function , find the tangent to the level curve at point . Draw the graph of the
level curve corresponding to  and draw  and a tangent vector.

Hint

Calculate the gradient at point .

Answer

Tangent vector:  or 

 Gradient Is Normal to the Level Curve

z = f(x, y) ( , )x0 y0

f( , ) ≠ 0∇
⇀

x0 y0 f( , )∇
⇀

x0 y0 f ( , ).x0 y0

 Example : Finding Tangents to Level Curves14.6.5

f(x, y) = 2 −3xy+8 +2x−4y+4,x2 y2 (−2, 1)

f(x, y) = 18 f(−2, 1)∇
⇀

f(x, y) :∇
⇀

(x, y) = 4x−3y+2 and = −3x+16y−4 so f(x, y) = (4x−3y+2) +(−3x+16y−4) .fx fy ∇
⇀

î ĵ

f(x, y)∇
⇀

(−2, 1) :

f(−2, 1) = (4(−2) −3(1) +2) +(−3(−2) +16(1) −4) = −9 +18 .∇
⇀

î ĵ î ĵ

(−2, 1)

−1 −18 −9î ĵ 14.6.7

14.6.7 2 − 3xy+ 8 + 2x− 4y+ 4 = 18x2 y2 (−2, 1)

 Exercise 14.6.4

f(x, y) = −2xy+5 +3x−2y+3x2 y2 (1, 1)

f(x, y) = 8 f(1, 1)∇
⇀

(1, 1)

f(x, y) = (2x−2y+3) +(−2x+10y−2)∇
⇀

î ĵ

f(1, 1) = 3 +6∇
⇀

î ĵ

6 −3î ĵ −6 +3î ĵ
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Three-Dimensional Gradients and Directional Derivatives
The definition of a gradient can be extended to functions of more than two variables.

Let  be a function of three variables such that , and  exist. The vector  is called the gradient of 
and is defined as

 can also be written as grad 

Calculating the gradient of a function in three variables is very similar to calculating the gradient of a function in two variables. First, we
calculate the partial derivatives  and , and then we use Equation .

Find the gradient  of each of the following functions:

a. 
b. 

Solution

For both parts a. and b., we first calculate the partial derivatives  and , then use Equation .

a. , , and , so

b. , , and , so

Find the gradient  of 

Answer

 Definition: Gradients in 3D

w = f(x, y, z) ,fx fy fz f(x, y, z)∇
⇀

f

f(x, y, z) = (x, y, z) + (x, y, z) + (x, y, z) .∇
⇀

fx î fy ĵ fz k̂ (14.6.6)

f(x, y, z)∇
⇀

f(x, y, z).

, ,fx fy fz 14.6.6

 Example : Finding Gradients in Three Dimensions14.6.6

f(x, y, z)∇
⇀

f(x, y, z) = 5 −2xy+ −4yz+ +3xzx2 y2 z2

f(x, y, z) = sin2x cos 2ye−2z

, ,fx fy fz 14.6.6

(x, y, z) = 10x−2y+3zfx (x, y, z) = −2x+2y−4zfy (x, y, z) = 3x−4y+2zfz

f(x, y, z)∇
⇀

= (x, y, z) + (x, y, z) + (x, y, z)fx î fy ĵ fz k̂

= (10x−2y+3z) +(−2x+2y−4z) +(3x−4y+2z) .î ĵ k̂

(x, y, z) = 2 cos 2x cos 2yfx e−2z (x, y, z) = −2 sin2x sin2yfy e−2z (x, y, z) = −2 sin2x cos 2yfz e−2z

f(x, y, z)∇
⇀

= (x, y, z) + (x, y, z) + (x, y, z)fx î fy ĵ fz k̂

= (2 cos 2x cos 2y) +(−2 sin2x sin2y) +(−2 sin2x cos 2y)e−2z
î e−2z

ĵ e−2z
k̂

= 2 (cos 2x cos 2y −sin2x sin2y −sin2x cos 2y ).e−2z î ĵ k̂

 Exercise :14.6.5

f(x, y, z)∇
⇀

f(x, y, z) =
−3 +x2 y2 z2

2x+y−4z.

f(x, y, z) = − +∇
⇀ 2 +2xy+6 −8xz−2x2 y2 z2

(2x+y−4z)2
î

+12xy+3 −24yz+x2 y2 z2

(2x+y−4z)2
ĵ

4 −12 −4 +4xz+2yzx2 y2 z2

(2x+y−4z)2
k̂
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The directional derivative can also be generalized to functions of three variables. To determine a direction in three dimensions, a vector
with three components is needed. This vector is a unit vector, and the components of the unit vector are called directional cosines. Given a
three-dimensional unit vector  in standard form (i.e., the initial point is at the origin), this vector forms three different angles with the
positive -, -, and -axes. Let’s call these angles  and . Then the directional cosines are given by  and . These are
the components of the unit vector ; since  is a unit vector, it is true that 

Suppose  is a function of three variables with a domain of . Let  and let 
 be a unit vector. Then, the directional derivative of  in the direction of  is given by

provided the limit exists.

We can calculate the directional derivative of a function of three variables by using the gradient, leading to a formula that is analogous to
Equation .

Let  be a differentiable function of three variables and let  be a unit vector. Then, the
directional derivative of  in the direction of  is given by

The three angles  and  determine the unit vector . In practice, we can use an arbitrary (nonunit) vector, then divide by its
magnitude to obtain a unit vector in the desired direction.

Calculate  in the direction of  for the function

Solution:

First, we find the magnitude of :

Therefore,  is a unit vector in the direction of , so  and 

. Next, we calculate the partial derivatives of :

then substitute them into Equation :

Last, to find  we substitute , and 

u
⇀

x y z α, β, γ cosα, cosβ, cosγ
u
⇀

u
⇀ α+ β+ γ = 1.cos2 cos2 cos2

 Definition: Directional Derivative of a Function of Three variables

w = f(x, y, z) D ( , , ) ∈ Dx0 y0 z0

= cosα +cosβ +cosγu
⇀

î ĵ k̂ f u

f( , , ) =Du⇀ x0 y0 z0 lim
t→0

f( + t cosα, + t cosβ, + t cosγ) −f( , , )x0 y0 z0 x0 y0 z0

t

14.6.3

 Directional Derivative of a Function of Three Variables

f(x, y, z) = cosα +cosβ +cosγu
⇀

î ĵ k̂

f u
⇀

f(x, y, z) = f(x, y, z) ⋅ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγ.Du⇀ ∇
⇀

u
⇀ fx fy fz (14.6.7)

α, β, γ u
⇀

 Example : Finding a Directional Derivative in Three Dimensions14.6.7

f(1, −2, 3)D v⇀ = − +2 +2v
⇀

î ĵ k̂

f(x, y, z) = 5 −2xy+ −4yz+ +3xz.x2 y2 z2

v

∥ ∥ = = = 3.v
⇀ (−1 +(2 +(2)2 )2 )2

− −−−−−−−−−−−−−−
√ 9–√

= = − + +
v
⇀

∥ ∥v
⇀

− +2 +2î ĵ k̂

3

1

3
î

2

3
ĵ

2

3
k̂ v

⇀ cosα = − , cosβ = ,
1

3

2

3

cosγ =
2

3
f

(x, y, z)fx

(x, y, z)fy

(x, y, z)fz

= 10x−2y+3z

= −2x+2y−4z

= −4y+2z+3x,

14.6.7

f(x, y, z)D v⇀ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγfx fy fz

= (10x−2y+3z)(− ) +(−2x+2y−4z)( ) +(−4y+2z+3x)( )
1

3

2

3

2

3

= − + − − + − − + +
10x

3

2y

3

3z

3

4x

3

4y

3

8z

3

8y

3

4z

3

6x

3

= − − − .
8x

3

2y

3

7z

3

f(1, −2, 3),D v⇀ x = 1, y = −2 z = 3 :
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Calculate  and  in the direction of  for the function

Hint

First, divide  by its magnitude, calculate the partial derivatives of , then use Equation .

Answer

Summary
A directional derivative represents a rate of change of a function in any given direction.
The gradient can be used in a formula to calculate the directional derivative.
The gradient indicates the direction of greatest change of a function of more than one variable.

Key Equations
directional derivative (two dimensions)

or

gradient (two dimensions)

gradient (three dimensions)

directional derivative (three dimensions)

Glossary

directional derivative

the derivative of a function in the direction of a given unit vector

gradient

the gradient of the function  is defined to be  which can be generalized to a function of
any number of independent variables

14.6: Directional Derivatives and the Gradient Vector is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

f(1, −2, 3)D v⇀ = − − −
8(1)

3

2(−2)

3

7(3)

3

= − + −
8

3

4

3

21

3

= − .
25

3

 Exercise :14.6.6

f(x, y, z)D v⇀ f(0, −2, 5)D v⇀ = −3 +12 −4v
⇀

î ĵ k̂

f(x, y, z) = 3 +xy−2 +4yz− +2xz.x2 y2 z2

v
⇀ f 14.6.7

f(x, y, z) = − (6x+y+2z) + (x−4y+4z) − (2x+4y−2z)D
v
⇀

3

13

12

13

4

13

f(0, −2, 5) =D v⇀
384

13

f(a, b) =Du⇀ lim
h→0

f(a+h cosθ, b+h sinθ) −f(a, b)

h

f(x, y) = (x, y) cosθ+ (x, y) sinθDu⇀ fx fy

f(x, y) = (x, y) + (x, y)∇
⇀

fx î fy ĵ

f(x, y, z) = (x, y, z) + (x, y, z) + (x, y, z)∇
⇀

fx î fy ĵ fz k̂

f(x, y, z) = f(x, y, z) ⋅ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγDu⇀ ∇
⇀

u
⇀ fx fy fx

f(x, y) f(x, y) = (∂f/∂x) +(∂f/∂y) ,∇
⇀

î ĵ
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14.7: Maximum and Minimum Values

Use partial derivatives to locate critical points for a function of two variables.
Apply a second derivative test to identify a critical point as a local maximum, local minimum, or saddle point for a function
of two variables.
Examine critical points and boundary points to find absolute maximum and minimum values for a function of two
variables.

One of the most useful applications for derivatives of a function of one variable is the determination of maximum and/or minimum
values. This application is also important for functions of two or more variables, but as we have seen in earlier sections of this
chapter, the introduction of more independent variables leads to more possible outcomes for the calculations. The main ideas of
finding critical points and using derivative tests are still valid, but new wrinkles appear when assessing the results.

Critical Points
For functions of a single variable, we defined critical points as the values of the variable at which the function's derivative equals
zero or does not exist. For functions of two or more variables, the concept is essentially the same, except for the fact that we are
now working with partial derivatives.

Let  be a function of two variables that is differentiable on an open set containing the point . The point 
 is called a critical point of a function of two variables  if one of the two following conditions holds:

1. 
2. Either  does not exist.

Find the critical points of each of the following functions:

a. 
b. 

Solution

a. First, we calculate 

Next, we set each of these expressions equal to zero:

 Learning Objectives

 Definition: Critical Points

z = f(x, y) ( , )x0 y0

( , )x0 y0 f

( , ) = ( , ) = 0fx x0 y0 fy x0 y0

( , ) or ( , )fx x0 y0 fy x0 y0

 Example : Finding Critical Points14.7.1

f(x, y) = 4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√
g(x, y) = +2xy −4 +4x −6y +4x2 y2

(x, y) and (x, y) :fx fy

(x, y)fx = (−18x +36)(4 −9 +24y +36x +36
1

2
y2 x2 )−1/2

=
−9x +18

4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√

.

(x, y)fy = (8y +24)(4 −9 +24y +36x +36
1

2
y2 x2 )−1/2

=
4y +12

4 −9 +24y +36x +36y2 x2− −−−−−−−−−−−−−−−−−−−−−
√

−9x +18

4 −9 +24y +36x +36y2 x2− −−−−−−−−−−−−−−−−−−−−−
√

4y +12

4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√

= 0

= 0.
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Then, multiply each equation by its common denominator:

Therefore,  and  so  is a critical point of .

We must also check for the possibility that the denominator of each partial derivative can equal zero, thus causing the partial
derivative not to exist. Since the denominator is the same in each partial derivative, we need only do this once:

Equation  represents a hyperbola. We should also note that the domain of  consists of points satisfying the inequality

Therefore, any points on the hyperbola are not only critical points, they are also on the boundary of the domain. To put the
hyperbola in standard form, we use the method of completing the square:

Dividing both sides by  puts the equation in standard form:

Notice that point  is the center of the hyperbola.

Thus, the critical points of the function  are  and all points on the hyperbola, .

b. First, we calculate  and :

Next, we set each of these expressions equal to zero, which gives a system of equations in  and :

Subtracting the second equation from the first gives , so . Substituting this into the first equation gives 
, so .

Therefore  is a critical point of . There are no points in  that make either partial derivative not exist.

Figure  shows the behavior of the surface at the critical point.

−9x +18

4y +12

= 0

= 0.

x = 2 y = −3, (2, −3) f

4 −9 +24y +36x +36 = 0.y2 x2 (14.7.1)

14.7.1 f

4 −9 +24y +36x +36 ≥ 0.y2 x2

4 −9 +24y +36x +36y2 x2

4 −9 +24y +36xy2 x2

4 +24y −9 +36xy2 x2

4( +6y) −9( −4x)y2 x2

4( +6y +9) −9( −4x +4)y2 x2

4(y +3 −9(x −2)2 )2

= 0

= −36

= −36

= −36

= −36 −36 +36

= −36.

−36

−
4(y +3)2

−36

9(x −2)2

−36

−
(x −2)2

4

(y +3)2

9

= 1

= 1.

(2, −3)

f (2, −3) − = 1
(x −2)2

4

(y +3)2

9

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= 2x +2y +4

= 2x −8y −6.

x y

2x +2y +4

2x −8y −6

= 0

= 0.

10y +10 = 0 y = −1
2x +2(−1) +4 = 0 x = −1

(−1, −1) g R
2

14.7.1
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Figure : The function  has a critical point at .

Find the critical point of the function 

Hint

Calculate  and , then set them equal to zero.

Answer

The only critical point of  is .

The main purpose for determining critical points is to locate relative maxima and minima, as in single-variable calculus. When
working with a function of one variable, the definition of a local extremum involves finding an interval around the critical point
such that the function value is either greater than or less than all the other function values in that interval. When working with a
function of two or more variables, we work with an open disk around the point.

Let  be a function of two variables that is defined and continuous on an open set containing the point 
Then  has a local maximum at  if

for all points  within some disk centered at . The number  is called a local maximum value. If the
preceding inequality holds for every point  in the domain of , then  has a global maximum (also called an absolute
maximum) at 

The function  has a local minimum at  if

for all points  within some disk centered at . The number  is called a local minimum value. If the
preceding inequality holds for every point  in the domain of , then  has a global minimum (also called an absolute
minimum) at .

If  is either a local maximum or local minimum value, then it is called a local extremum (see the following figure).

14.7.1 g(x, y) (−1, −1, 5)

 Exercise 14.7.1

f(x, y) = +2xy −2x −4y.x3

(x, y)fx (x, y)fy

f (2, −5)

 Definition: Global and Local Extrema

z = f(x, y) ( , ).x0 y0

f ( , )x0 y0

f( , ) ≥ f(x, y)x0 y0

(x, y) ( , )x0 y0 f( , )x0 y0

(x, y) f f

( , ).x0 y0

f ( , )x0 y0

f( , ) ≤ f(x, y)x0 y0

(x, y) ( , )x0 y0 f( , )x0 y0

(x, y) f f

( , )x0 y0

f( , )x0 y0
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Figure : The graph of  has a maximum value when . It attains its minimum value at the
boundary of its domain, which is the circle 

In Calculus 1, we showed that extrema of functions of one variable occur at critical points. The same is true for functions of more
than one variable, as stated in the following theorem.

Let  be a function of two variables that is defined and continuous on an open set containing the point .
Suppose  and  each exist at . If f has a local extremum at , then  is a critical point of .

Second Derivative Test
Consider the function  This function has a critical point at , since . However,  does not have
an extreme value at . Therefore, the existence of a critical value at  does not guarantee a local extremum at .
The same is true for a function of two or more variables. One way this can happen is at a saddle point. An example of a saddle
point appears in the following figure.

Figure : Graph of the function . This graph has a saddle point at the origin.

In this graph, the origin is a saddle point. This is because the first partial derivatives of f  are both equal to zero at
this point, but it is neither a maximum nor a minimum for the function. Furthermore the vertical trace corresponding to  is 

 (a parabola opening upward), but the vertical trace corresponding to  is  (a parabola opening downward).
Therefore, it is both a global maximum for one trace and a global minimum for another.

Given the function  the point  is a saddle point if both  and , but 
 does not have a local extremum at 

The second derivative test for a function of one variable provides a method for determining whether an extremum occurs at a
critical point of a function. When extending this result to a function of two variables, an issue arises related to the fact that there
are, in fact, four different second-order partial derivatives, although equality of mixed partials reduces this to three. The second
derivative test for a function of two variables, stated in the following theorem, uses a discriminant  that replaces  in the
second derivative test for a function of one variable.

Let  be a function of two variables for which the first- and second-order partial derivatives are continuous on some
disk containing the point . Suppose  and  Define the quantity

14.7.2 z = 16 − −x2 y2− −−−−−−−−−
√ (x, y) = (0, 0)

+ = 16.x2 y2

 Fermat’s Theorem for Functions of Two Variables

z = f(x, y) ( , )x0 y0

fx fy ( , )x0 y0 ( , )x0 y0 ( , )x0 y0 f

f(x) = .x3 x = 0 (0) = 3(0 = 0f ′ )2 f

x = 0 x = x0 x = x0

14.7.3 z = −x2 y2

(x, y) = −x2 y2

y = 0
z = x2 x = 0 z = −y2

 Definition: Saddle Point

z = f(x, y), ( , , f( , ))x0 y0 x0 y0 ( , ) = 0fx x0 y0 ( , ) = 0fy x0 y0

f ( , ).x0 y0

D ( )f ′′ x0

 Second Derivative Test

z = f(x, y)
( , )x0 y0 ( , ) = 0fx x0 y0 ( , ) = 0.fy x0 y0
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Then:

i. If  and , then f has a local minimum at .
ii. If  and , then f has a local maximum at .

iii. If , then  has a saddle point at .
iv. If , then the test is inconclusive.

See Figure .

Figure : The second derivative test can often determine whether a function of two variables has local minima (a), local
maxima (b), or a saddle point (c).

To apply the second derivative test, it is necessary that we first find the critical points of the function. There are several steps
involved in the entire procedure, which are outlined in a problem-solving strategy.

Let  be a function of two variables for which the first- and second-order partial derivatives are continuous on some
disk containing the point  To apply the second derivative test to find local extrema, use the following steps:

1. Determine the critical points  of the function  where  Discard any points where at
least one of the partial derivatives does not exist.

2. Calculate the discriminant  for each critical point of .
3. Apply the four cases of the test to determine whether each critical point is a local maximum, local minimum, or saddle

point, or whether the theorem is inconclusive.

Find the critical points for each of the following functions, and use the second derivative test to find the local extrema:

a. 

b. 

Solution

a. Step 1 of the problem-solving strategy involves finding the critical points of . To do this, we first calculate  and 
, then set each of them equal to zero:

Setting them equal to zero yields the system of equations

D = ( , ) ( , ) −( ( , ) .fxx x0 y0 fyy x0 y0 fxy x0 y0 )
2

D > 0 ( , ) > 0fxx x0 y0 ( , )x0 y0

D > 0 ( , ) < 0fxx x0 y0 ( , )x0 y0

D < 0 f ( , )x0 y0

D = 0

14.7.4

14.7.4

 Problem-Solving Strategy: Using the Second Derivative Test for Functions of Two Variables

z = f(x, y)
( , ).x0 y0

( , )x0 y0 f ( , ) = ( , ) = 0.fx x0 y0 fy x0 y0

D = ( , ) ( , ) −( ( , )fxx x0 y0 fyy x0 y0 fxy x0 y0 )2
f

 Example : Using the Second Derivative Test14.7.2

f(x, y) = 4 +9 +8x −36y +24x2 y2

g(x, y) = + +2xy −6x −3y +4
1

3
x3 y2

f (x, y)fx

(x, y)fy

(x, y)fx

(x, y)fy

= 8x +8

= 18y −36.
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The solution to this system is  and . Therefore  is a critical point of .

Step 2 of the problem-solving strategy involves calculating  To do this, we first calculate the second partial derivatives of 

Therefore, 

Step 3 states to apply the four cases of the test to classify the function's behavior at this critical point.

Since  and  this corresponds to case 1. Therefore,  has a local minimum at  as shown in the
following figure.

Figure : The function  has a local minimum at  Note the scale on the -axis in this plot is in
thousands.

b. For step 1, we first calculate  and , then set each of them equal to zero:

Setting them equal to zero yields the system of equations

To solve this system, first solve the second equation for . This gives . Substituting this into the first equation

gives

Therefore,  or . Substituting these values into the equation  yields the critical points  and 

.

Step 2 involves calculating the second partial derivatives of :

Then, we find a general formula for :

Next, we substitute each critical point into this formula:

8x +8

18y −36

= 0

= 0.

x = −1 y = 2 (−1, 2) f

D.
f :

(x, y)fxx

(x, y)fxy

(x, y)fyy

= 8

= 0

= 18.

D = (−1, 2) (−1, 2) −( (−1, 2) = (8)(18) −(0 = 144.fxx fyy fxy )
2

)2

D > 0 (−1, 2) > 0,fxx f (−1, 2)

14.7.5 f(x, y) (−1, 2, −16). y

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= +2y −6x2

= 2y +2x −3.

+2y −6x2

2y +2x −3

= 0

= 0.

y y =
3 −2x

2

+3 −2x −6x2

−2x −3x2

(x −3)(x +1)

= 0

= 0

= 0.

x = −1 x = 3 y =
3 −2x

2
(−1, )5

2

(3, − )3
2

g

(x, y)gxx

(x, y)gxy

(x, y)gyy

= 2x

= 2

= 2.

D

D( , )x0 y0 = ( , ) ( , ) −( ( , )gxx x0 y0 gyy x0 y0 gxy x0 y0 )
2

= (2 )(2) −x0 22

= 4 −4.x0
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In step 3, we note that, applying Note to point  leads to case , which means that  is a saddle point. Applying
the theorem to point  leads to case , which means that  corresponds to a local minimum as shown in the
following figure.

Figure : The function  has a local minimum and a saddle point.

Use the second derivative test to find the local extrema of the function

Hint

Follow the problem-solving strategy for applying the second derivative test.

Answer

 is a saddle point,  is a local maximum.

Absolute Maxima and Minima
When finding global extrema of functions of one variable on a closed interval, we start by checking the critical values over that
interval and then evaluate the function at the endpoints of the interval. When working with a function of two variables, the closed
interval is replaced by a closed, bounded set. A set is bounded if all the points in that set can be contained within a ball (or disk) of
finite radius. First, we need to find the critical points inside the set and calculate the corresponding critical values. Then, it is
necessary to find the maximum and minimum value of the function on the boundary of the set. When we have all these values, the
largest function value corresponds to the global maximum and the smallest function value corresponds to the absolute minimum.
First, however, we need to be assured that such values exist. The following theorem does this.

A continuous function  on a closed and bounded set  in the plane attains an absolute maximum value at some point of 
 and an absolute minimum value at some point of .

D (−1, )5
2

D (3, − )3
2

= (2(−1))(2) −(2 = −4 −4 = −8)2

= (2(3))(2) −(2 = 12 −4 = 8.)2

(−1, )5
2

3 (−1, )5
2

(3, − )3
2

1 (3, − )3
2

14.7.6 g(x, y)

 Exercise 14.7.2

f(x, y) = +2xy −6x −4 .x3 y2

( , )4
3

1
3

(− , − )3
2

3
8

 Extreme Value Theorem

f(x, y) D

D D
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Now that we know any continuous function  defined on a closed, bounded set attains its extreme values, we need to know how to
find them.

Assume  is a differentiable function of two variables defined on a closed, bounded set . Then  will attain the
absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found
among the following:

1. The values of  at the critical points of  in .
2. The values of  on the boundary of .

The proof of this theorem is a direct consequence of the extreme value theorem and Fermat’s theorem. In particular, if either
extremum is not located on the boundary of , then it is located at an interior point of . But an interior point  of  that’s
an absolute extremum is also a local extremum; hence,  is a critical point of  by Fermat’s theorem. Therefore the only
possible values for the global extrema of  on  are the extreme values of  on the interior or boundary of .

Let  be a continuous function of two variables defined on a closed, bounded set , and assume  is differentiable
on . To find the absolute maximum and minimum values of  on , do the following:

1. Determine the critical points of  in .
2. Calculate  at each of these critical points.
3. Determine the maximum and minimum values of  on the boundary of its domain.
4. The maximum and minimum values of  will occur at one of the values obtained in steps  and .

Finding the maximum and minimum values of  on the boundary of  can be challenging. If the boundary is a rectangle or set of
straight lines, then it is possible to parameterize the line segments and determine the maxima on each of these segments, as seen in
Example . The same approach can be used for other shapes such as circles and ellipses.

If the boundary of the set  is a more complicated curve defined by a function  for some constant , and the first-order
partial derivatives of  exist, then the method of Lagrange multipliers can prove useful for determining the extrema of  on the
boundary which is introduced in Lagrange Multipliers.

Use the problem-solving strategy for finding absolute extrema of a function to determine the absolute extrema of each of the
following functions:

a.  on the domain defined by  and 
b.  on the domain defined by 

Solution

a. Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first
calculate  and , then set them each equal to zero:

Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore  is a critical point of . Calculating  gives 

The next step involves finding the extrema of  on the boundary of its domain. The boundary of its domain consists of four
line segments as shown in the following graph:

f

 Finding Extreme Values of a Function of Two Variables

z = f(x, y) D f

f f D

f D

D D ( , )x0 y0 D

( , )x0 y0 f

f D f D

 Problem-Solving Strategy: Finding Absolute Maximum and Minimum Values

z = f(x, y) D f

D f D

f D

f

f

f 2 3

f D

14.7.3

D g(x, y) = c c

g f

 Example : Finding Absolute Extrema14.7.3

f(x, y) = −2xy +4 −4x −2y +24x2 y2 0 ≤ x ≤ 4 0 ≤ y ≤ 2
g(x, y) = + +4x −6yx2 y2 + ≤ 16x2 y2

1 f

(x, y)fx (x, y)fy

(x, y)fx

(x, y)fy

= 2x −2y −4

= −2x +8y −2.

2x −2y −4

−2x +8y −2

= 0

= 0.

x = 3 y = 1 (3, 1) f f(3, 1) f(3, 1) = 17.

f
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Figure : Graph of the domain of the function 

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. Define . This gives . Differentiating  leads to  Therefore,

 has a critical value at , which corresponds to the point . Calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 Again, define  This gives  Then, . g has a critical

value at , which corresponds to the point  Calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 Again, define  This gives  The critical value corresponds to the point 

 So, calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 This time,  and the critical value  correspond to the point . Calculating 

gives the -value 

We also need to find the values of  at the corners of its domain. These corners are located at  and 
:

The absolute maximum value is , which occurs at , and the global minimum value is , which occurs at both 
and  as shown in the following figure.

14.7.7 f(x, y) = − 2xy + 4 − 4x − 2y + 24.x2 y2

L1 (0, 0) (4, 0) x(t) = t, y(t) = 0
0 ≤ t ≤ 4 g(t) = f(x(t), y(t)) g(t) = −4t +24t2 g g'(t) = 2t −4.

g t = 2 (2, 0) f(2, 0) z 20

L2 (4, 0) (4, 2) x(t) = 4, y(t) = t

0 ≤ t ≤ 2. g(t) = f(x(t), y(t)). g(t) = 4 −10t +24.t2 g'(t) = 8t −10

t = 5
4

(0, ) .5
4

f (0, )5
4

z 27.75

L3 (0, 2) (4, 2) x(t) = t, y(t) = 2
0 ≤ t ≤ 4. g(t) = f(x(t), y(t)). g(t) = −8t +36.t2

(4, 2). f(4, 2) z 20

L4 (0, 0) (0, 2) x(t) = 0, y(t) = t

0 ≤ t ≤ 2. g(t) = 4 −2t +24t2 t = 1
4

(0, )1
4

f (0, )1
4

z 23.75.

f(x, y) (0, 0), (4, 0), (4, 2)
(0, 2)

f(0, 0)

f(4, 0)

f(4, 2)

f(0, 2)

= (0 −2(0)(0) +4(0 −4(0) −2(0) +24 = 24)2 )2

= (4 −2(4)(0) +4(0 −4(4) −2(0) +24 = 24)2 )2

= (4 −2(4)(2) +4(2 −4(4) −2(2) +24 = 20)2 )2

= (0 −2(0)(2) +4(2 −4(0) −2(2) +24 = 36.)2 )2

36 (0, 2) 20 (4, 2)
(2, 0)
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Figure : The function  has two global minima and one global maximum over its domain.

b. Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first
calculate  and , then set them each equal to zero:

Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore,  is a critical point of . Calculating  we get

The next step involves finding the extrema of g on the boundary of its domain. The boundary of its domain consists of a circle
of radius  centered at the origin as shown in the following graph.

14.7.8 f(x, y)

1 g

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= 2x +4

= 2y −6.

2x +4

2y −6

= 0

= 0.

x = −2 y = 3 (−2, 3) g g(−2, 3),

g(−2, 3) = (−2 + +4(−2) −6(3) = 4 +9 −8 −18 = −13.)2 32

4
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Figure : Graph of the restricted domain of the function .

The boundary of the domain of  can be parameterized using the functions  for .
Define 

Setting  leads to

This equation has two solutions over the interval . One is  and the other is 
. For the first angle,

Therefore,  and , so  is a critical point on the boundary and

For the second angle,

14.7.9 g(x, y) = + + 4x − 6yx2 y2

g x(t) = 4 cos t, y(t) = 4 sin t 0 ≤ t ≤ 2π

h(t) = g(x(t), y(t)) :

h(t) = g(x(t), y(t))

= (4 cos t +(4 sin t +4(4 cos t) −6(4 sin t))2 )2

= 16 t +16 t +16 cos t −24 sin tcos2 sin2

= 16 +16 cos t −24 sin t.

h'(t) = 0

−16 sin t −24 cos t

−16 sin t

−16 sin t

−16 cos t

tan t

= 0

= 24 cos t

=
24 cos t

−16 cos t

= − .
3

2

0 ≤ t ≤ 2π t = π −arctan( )3
2

t = 2π −arctan( )3
2

sin t

cos t

= sin(π −arctan( )) = sin(arctan( )) =3
2

3
2

3 13
−−

√

13

= cos(π −arctan( )) = −cos(arctan( )) = − .3
2

3
2

2 13
−−

√

13

x(t) = 4 cos t = −
8 13√

13
y(t) = 4 sin t =

12 13√

13
(− , )

8 13√

13

12 13√

13

g(− , )
8 13√

13

12 13√

13
= + +4(− )−6( )(− )

8 13√

13

2
( )

12 13√

13

2 8 13√

13

12 13√

13

= + − −
144

13

64

13

32 13
−−

√

13

72 13
−−

√

13

= ≈ −12.844.
208 −104 13

−−
√

13
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Therefore,  and , so  is a critical point on the boundary and

The absolute minimum of  is  which is attained at the point , which is an interior point of . The absolute

maximum of  is approximately equal to 44.844, which is attained at the boundary point . These are the

absolute extrema of  on  as shown in the following figure.

Figure : The function  has a local minimum and a local maximum.

Use the problem-solving strategy for finding absolute extrema of a function to find the absolute extrema of the function

on the domain defined by  and 

Hint

Calculate  and , and set them equal to zero. Then, calculate  for each critical point and find the extrema of
 on the boundary of .

Answer

The absolute minimum occurs at 

The absolute maximum occurs at 

Pro-  company has developed a profit model that depends on the number  of golf balls sold per month (measured in
thousands), and the number of hours per month of advertising , according to the function

where  is measured in thousands of dollars. The maximum number of golf balls that can be produced and sold is , and
the maximum number of hours of advertising that can be purchased is . Find the values of  and  that maximize profit, and
find the maximum profit.

sin t

cos t

= sin(2π −arctan( )) = −sin(arctan( )) = −3
2

3
2

3 13
−−

√

13

= cos(2π −arctan( )) = cos(arctan( )) = .3
2

3
2

2 13
−−

√

13

x(t) = 4 cos t =
8 13√

13
y(t) = 4 sin t = −

12 13√
13

( , − )8 13√
13

12 13√
13

g( , − )8 13√
13

12 13√
13

= + +4( )−6(− )( )8 13√
13

2
(− )12 13√

13

2
8 13√

13
12 13√

13

= + + +
144

13

64

13

32 13
−−

√

13

72 13
−−

√

13

= ≈ 44.844.
208 +104 13

−−
√

13

g −13, (−2, 3) D

g ( , − )8 13√
13

12 13√
13

g D

14.7.10 f(x, y)

 Exercise :14.7.3

f(x, y) = 4 −2xy +6 −8x +2y +3x2 y2

0 ≤ x ≤ 2 −1 ≤ y ≤ 3.

(x, y)fx (x, y)fy f

f D

(1, 0) : f(1, 0) = −1.

(0, 3) : f(0, 3) = 63.

 Example : Profitable Golf Balls14.7.4

T x

y

z = f(x, y) = 48x +96y − −2xy −9 ,x2 y2

z 50, 000
25 x y
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Figure : (credit: modification of work by oatsy40, Flickr)

Solution

Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first calculate 
 and  then set them each equal to zero:

Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore  is a critical point of . Calculating  gives 

The domain of this function is  and  as shown in the following graph.

Figure : Graph of the domain of the function 

 is the line segment connecting  and  and it can be parameterized by the equations  for 
 We then define 

Setting  yields the critical point  which corresponds to the point  in the domain of . Calculating 
 gives 

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. Once again, we define 

14.7.11

1 f

(x, y)fx (x, y),fy

(x, y)fx

(x, y)fy

= 48 −2x −2y

= 96 −2x −18y.

48 −2x −2y

96 −2x −18y

= 0

= 0.

x = 21 y = 3 (21, 3) f f(21, 3)

f(21, 3) = 48(21) +96(3) − −2(21)(3) −9(3 = 648.212 )2

0 ≤ x ≤ 50 0 ≤ y ≤ 25

14.7.12 f(x, y) = 48x + 96y − − 2xy − 9 .x2 y2

L1 (0, 0) (50, 0), x(t) = t, y(t) = 0
0 ≤ t ≤ 50. g(t) = f(x(t), y(t)) :

g(t) = f(x(t), y(t))

= f(t, 0)

= 48t +96(0) − −2(t)(0) −9(0y2 )2

= 48t − .t2

g'(t) = 0 t = 24, (24, 0) f

f(24, 0) 576.

L2 (50, 0) (50, 25) x(t) = 50, y(t) = t

0 ≤ t ≤ 25 g(t) = f(x(t), y(t)) :
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This function has a critical point at , which corresponds to the point . This point is not in the domain of .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. We define :

This function has a critical point at , which corresponds to the point  which is not in the domain.

 is the line segment connecting  to , and it can be parameterized by the equations  for 
. We define :

This function has a critical point at , which corresponds to the point , which is on the boundary of the domain.
Calculating  gives .

We also need to find the values of  at the corners of its domain. These corners are located at  and 
:

The maximum value is , which occurs at . Therefore, a maximum profit of  is realized when  golf
balls are sold and  hours of advertising are purchased per month as shown in the following figure.

g(t) = f(x(t), y(t))

= f(50, t)

= 48(50) +96t − −2(50)t −9502 t2

= −9 −4t −100.t2

t = − 2
9

(50, −29) f

L3 (0, 25) (50, 25) x(t) = t, y(t) = 25
0 ≤ t ≤ 50 g(t) = f(x(t), y(t))

g(t) = f(x(t), y(t))

= f(t, 25)

= 48t +96(25) − −2t(25) −9( )t2 252

= − −2t −3225.t2

t = −1 (−1, 25),

L4 (0, 0) (0, 25) x(t) = 0, y(t) = t

0 ≤ t ≤ 25 g(t) = f(x(t), y(t))

g(t) = f(x(t), y(t))

= f(0, t)

= 48(0) +96t −(0 −2(0)t −9)2 t2

= 96t −9 .t2

t = 16
3

(0, )16
3

f (0, )16
3

256

f(x, y) (0, 0), (50, 0), (50, 25)
(0, 25)

f(0, 0)

f(50, 0)

f(50, 25)

f(0, 25)

= 48(0) +96(0) −(0 −2(0)(0) −9(0 = 0)2 )2

= 48(50) +96(0) −(50 −2(50)(0) −9(0 = −100)2 )2

= 48(50) +96(25) −(50 −2(50)(25) −9(25 = −5825)2 )2

= 48(0) +96(25) −(0 −2(0)(25) −9(25 = −3225.)2 )2

648 (21, 3) $648, 000 21, 000
3
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Figure : The profit function  has a maximum at .

Key Concepts
A critical point of the function  is any point  where either , or at least one of 

 and  do not exist.
A saddle point is a point  where , but  is neither a maximum nor a minimum at
that point.
To find extrema of functions of two variables, first find the critical points, then calculate the discriminant and apply the second
derivative test.

Key Equations
Discriminant

Glossary

critical point of a function of two variables

the point  is called a critical point of  if one of the two following conditions holds:

1. 

2. At least one of  and  do not exist

discriminant
the discriminant of the function  is given by the formula 

saddle point
given the function  the point  is a saddle point if both  and , but 
does not have a local extremum at 

14.7: Maximum and Minimum Values is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

14.7: Maxima/Minima Problems by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

14.7.13 f(x, y) (21, 3, 648)

f(x, y) ( , )x0 y0 ( , ) = ( , ) = 0fx x0 y0 fy x0 y0

( , )fx x0 y0 ( , )fy x0 y0

( , )x0 y0 ( , ) = ( , ) = 0fx x0 y0 fy x0 y0 f( , )x0 y0

D = ( , ) ( , ) −( ( , )fxx x0 y0 fyy x0 y0 fxy x0 y0 )2

( , )x0 y0 f(x, y)

( , ) = ( , ) = 0fx x0 y0 fy x0 y0

( , )fx x0 y0 ( , )fy x0 y0

f(x, y) D = ( , ) ( , ) −( ( , )fxx x0 y0 fyy x0 y0 fxy x0 y0 )2

z = f(x, y), ( , , f( , ))x0 y0 x0 y0 ( , ) = 0fx x0 y0 ( , ) = 0fy x0 y0 f

( , )x0 y0
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14.8: Lagrange Multipliers

Use the method of Lagrange multipliers to solve optimization problems with one constraint.
Use the method of Lagrange multipliers to solve optimization problems with two constraints.

Solving optimization problems for functions of two or more variables can be similar to solving such problems in single-variable
calculus. However, techniques for dealing with multiple variables allow us to solve more varied optimization problems for which
we need to deal with additional conditions or constraints. In this section, we examine one of the more common and useful methods
for solving optimization problems with constraints.

Lagrange Multipliers
In the previous section, an applied situation was explored involving maximizing a profit function, subject to certain constraints. In
that example, the constraints involved a maximum number of golf balls that could be produced and sold in  month  and a
maximum number of advertising hours that could be purchased per month . Suppose these were combined into a single
budgetary constraint, such as , that took into account both the cost of producing the golf balls and the number of
advertising hours purchased per month. The goal is still to maximize profit, but now there is a different type of constraint on the
values of  and . This constraint and the corresponding profit function

is an example of an optimization problem, and the function  is called the objective function. A graph of various level
curves of the function  follows.

Figure : Graph showing level curves of the function  corresponding to 
 and 

In Figure , the value  represents different profit levels (i.e., values of the function ). As the value of  increases, the curve
shifts to the right. Since our goal is to maximize profit, we want to choose a curve as far to the right as possible. If there were no
restrictions on the number of golf balls the company could produce or the number of units of advertising available, then we could
produce as many golf balls as we want, and advertise as much as we want, and there would be not be a maximum profit for the
company. Unfortunately, we have a budgetary constraint that is modeled by the inequality  To see how this
constraint interacts with the profit function, Figure  shows the graph of the line  superimposed on the
previous graph.

 Learning Objectives

1 (x),
(y)

20x+4y ≤ 216

x y

f(x, y) = 48x+96y− −2xy−9x2 y2

f(x, y)
f(x, y)

14.8.1 f(x,y) = 48x+ 96y− − 2xy− 9x2 y2

c = 150, 250, 350, 400.

14.8.1 c f c

20x+4y ≤ 216.
14.8.2 20x+4y = 216
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Figure : Graph of level curves of the function  corresponding to 
and . The red graph is the constraint function.

As mentioned previously, the maximum profit occurs when the level curve is as far to the right as possible. However, the level of
production corresponding to this maximum profit must also satisfy the budgetary constraint, so the point at which this profit occurs
must also lie on (or to the left of) the red line in Figure . Inspection of this graph reveals that this point exists where the line
is tangent to the level curve of . Trial and error reveals that this profit level seems to be around , when  and  are both just
less than . We return to the solution of this problem later in this section. From a theoretical standpoint, at the point where the profit
curve is tangent to the constraint line, the gradient of both of the functions evaluated at that point must point in the same (or
opposite) direction. Recall that the gradient of a function of more than one variable is a vector. If two vectors point in the same (or
opposite) directions, then one must be a constant multiple of the other. This idea is the basis of the method of Lagrange
multipliers.

Theorem : Let  and  be functions of two variables with continuous partial derivatives at every point of some open set
containing the smooth curve  Suppose that , when restricted to points on the curve , has a local
extremum at the point  and that . Then there is a number  called a Lagrange multiplier, for which

Assume that a constrained extremum occurs at the point  Furthermore, we assume that the equation  can
be smoothly parameterized as

where  is an arc length parameter with reference point  at . Therefore, the quantity  has a

relative maximum or relative minimum at , and this implies that  at that point. From the chain rule,

where the derivatives are all evaluated at . However, the first factor in the dot product is the gradient of , and the second
factor is the unit tangent vector  to the constraint curve. Since the point  corresponds to , it follows from
this equation that

14.8.2 f(x,y) = 48x+ 96y− − 2xy− 9x2 y2 c = 150, 250, 350,
395

14.8.2
f 395 x y

5

 Method of Lagrange Multipliers: One Constraint

14.8.1 f g

g(x, y) = 0. f g(x, y) = 0

( , )x0 y0 g( , ) ≠ 0∇
⇀

x0 y0 λ

f( , ) = λ g( , ).∇
⇀

x0 y0 ∇
⇀

x0 y0

 Proof

( , ).x0 y0 g(x, y) = 0

x = x(s) and y = y(s)

s ( , )x0 y0 s = 0 z = f(x(s), y(s))

s = 0 = 0
dz

ds

dz

ds
= ⋅ + ⋅

∂f

∂x

∂x

∂s

∂f

∂y

∂y

∂s

=( + ) ⋅( + )
∂f

∂x
î

∂f

∂y
ĵ

∂x

∂s
î

∂y

∂s
ĵ

= 0,

s = 0 f

(0)T⃗  ( , )x0 y0 s = 0

f( , ) ⋅ (0) = 0,∇
⇀

x0 y0 T
⇀
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which implies that the gradient is either the zero vector  or it is normal to the constraint curve at a constrained relative
extremum. However, the constraint curve  is a level curve for the function  so that if  then 

 is normal to this curve at  It follows, then, that there is some scalar  such that

To apply Theorem  to an optimization problem similar to that for the golf ball manufacturer, we need a problem-solving
strategy.

1. Determine the objective function  and the constraint function  Does the optimization problem involve
maximizing or minimizing the objective function?

2. Set up a system of equations using the following template:

3. Solve for  and .
4. The largest of the values of  at the solutions found in step  maximizes ; the smallest of those values minimizes .

Use the method of Lagrange multipliers to find the minimum value of  subject to the constraint 

Solution

Let’s follow the problem-solving strategy:

1. The objective function is  To determine the constraint function, we must first subtract 
from both sides of the constraint. This gives  The constraint function is equal to the left-hand side, so 

. The problem asks us to solve for the minimum value of , subject to the constraint (Figure ).

Figure : Graph of level curves of the function  corresponding to  and . The red
graph is the constraint function.

2. We then must calculate the gradients of both  and :

The equation  becomes

0
⇀

g(x, y) = 0 g(x, y) g( , ) ≠ 0∇
⇀

x0 y0

g( , )∇
⇀

x0 y0 ( , )x0 y0 λ

f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

□

14.8.1

 Problem-Solving Strategy: Steps for Using Lagrange Multipliers

f(x, y) g(x, y).

.
f( , )∇

⇀
x0 y0

g( , )x0 y0

= λ g( , )∇
⇀

x0 y0

= 0

(14.8.1)

(14.8.2)

x0 y0

f 3 f f

 Example : Using Lagrange Multipliers14.8.1

f(x, y) = +4 −2x+8yx2 y2

x+2y = 7.

f(x, y) = +4 −2x+8y.x2 y2 7
x+2y−7 = 0.

g(x, y) = x+2y−7 f 14.8.3

14.8.3 f(x,y) = + 4 − 2x+ 8yx2 y2 c = 10 26

f g

f (x, y)∇
⇀

g (x, y)∇
⇀

= (2x−2) +(8y+8)î ĵ

= +2 .î ĵ

f ( , ) = λ g ( , )∇
⇀

x0 y0 ∇
⇀

x0 y0
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which can be rewritten as

Next, we set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. This is a linear system of three equations in three variables. We start by solving the second equation for  and substituting it
into the first equation. This gives , so substituting this into the first equation gives

Solving this equation for  gives . We then substitute this into the third equation:

Since  this gives 

4. Next, we evaluate  at the point ,

To ensure this corresponds to a minimum value on the constraint function, let’s try some other points on the constraint from
either side of the point , such as the intercepts of , Which are  and .

We get  and .

So it appears that  has a relative minimum of  at , subject to the given constraint.

Use the method of Lagrange multipliers to find the maximum value of

subject to the constraint 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers.

Answer

Subject to the given constraint,  has a maximum value of  at the point .

Let’s now return to the problem posed at the beginning of the section.

(2 −2) +(8 +8) = λ( +2 ) ,x0 î y0 ĵ î ĵ

(2 −2) +(8 +8) = λ +2λ .x0 î y0 ĵ î ĵ

î ĵ

2 −2x0

8 +8y0

= λ

= 2λ.

g ( , ) = 0x0 y0 +2 −7 = 0x0 y0

2 −2x0

8 +8y0

+2 −7x0 y0

= λ

= 2λ
= 0.

λ

λ = 4 +4y0

2 −2 = 4 +4.x0 y0

x0 = 2 +3x0 y0

(2 +3) +2 −7 = 0y0 y0

4 −4 = 0y0

= 1.y0

= 2 +3,x0 y0 = 5.x0

f(x, y) = +4 −2x+8yx2 y2 (5, 1)

f(5, 1) = +4(1 −2(5) +8(1) = 27.52 )2

(5, 1) g(x, y) = 0 (7, 0) (0, 3.5)

f(7, 0) = 35 > 27 f(0, 3.5) = 77 > 27

f 27 (5, 1)

 Exercise 14.8.1

f(x, y) = 9 +36xy−4 −18x−8yx2 y2

3x+4y = 32.

f 976 (8, 2)
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The golf ball manufacturer, Pro-T, has developed a profit model that depends on the number  of golf balls sold per month
(measured in thousands), and the number of hours per month of advertising y, according to the function

where  is measured in thousands of dollars. The budgetary constraint function relating the cost of the production of thousands
golf balls and advertising units is given by  Find the values of  and  that maximize profit, and find the
maximum profit.

Solution:

Again, we follow the problem-solving strategy:

1. The objective function is  To determine the constraint function, we first subtract 
 from both sides of the constraint, then divide both sides by , which gives  The constraint function is

equal to the left-hand side, so  The problem asks us to solve for the maximum value of , subject to
this constraint.

2. So, we calculate the gradients of both  and :

The equation  becomes

which can be rewritten as

We then set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. We use the left-hand side of the second equation to replace  in the first equation:

Then we substitute this into the third equation:

Since  this gives 

 Example : Golf Balls and Lagrange Multipliers14.8.2

x

z = f(x, y) = 48x+96y− −2xy−9 ,x2 y2

z

20x+4y = 216. x y

f(x, y) = 48x+96y− −2xy−9 .x2 y2

216 4 5x+y−54 = 0.
g(x, y) = 5x+y−54. f

f g

f(x, y)∇
⇀

g(x, y)∇
⇀

= (48 −2x−2y) +(96 −2x−18y)î ĵ

= 5 + .î ĵ

f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

(48 −2 −2 ) +(96 −2 −18 ) = λ(5 + ),x0 y0 î x0 y0 ĵ î ĵ

(48 −2 −2 ) +(96 −2 −18 ) = λ5 +λ .x0 y0 î x0 y0 ĵ î ĵ

î ĵ

48 −2 −2 = 5λx0 y0

96 −2 −18 = λ.x0 y0

g( , ) = 0x0 y0 5 + −54 = 0x0 y0

48 −2 −2 = 5λx0 y0

96 −2 −18 = λx0 y0

5 + −54 = 0.x0 y0

λ

48 −2 −2x0 y0

48 −2 −2x0 y0

8x0

x0

= 5(96 −2 −18 )x0 y0

= 480 −10 −90x0 y0

= 432 −88y0

= 54 −11 .y0

5(54 −11 ) + −54y0 y0

270 −55 + −54y0 y0

216 −54y0

y0

= 0

= 0

= 0

= 4.

= 54 −11 ,x0 y0 = 10.x0
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4. We then substitute  into  which gives

Therefore the maximum profit that can be attained, subject to budgetary constraints, is  with a production level of
 golf balls and  hours of advertising bought per month. Let’s check to make sure this truly is a maximum. The

endpoints of the line that defines the constraint are  and  Let’s evaluate  at both of these points:

The second value represents a loss, since no golf balls are produced. Neither of these values exceed , so it seems that
our extremum is a maximum value of , subject to the given constraint.

A company has determined that its production level is given by the Cobb-Douglas function  where 
represents the total number of labor hours in  year and  represents the total capital input for the company. Suppose  unit of
labor costs  and  unit of capital costs . Use the method of Lagrange multipliers to find the maximum value of 

 subject to a budgetary constraint of  per year.

Hint

Use the problem-solving strategy for the method of Lagrange multipliers.

Answer

Subject to the given constraint, a maximum production level of  occurs with  labor hours and  of total
capital input.

In the case of an objective function with three variables and a single constraint function, it is possible to use the method of
Lagrange multipliers to solve an optimization problem as well. An example of an objective function with three variables could be
the Cobb-Douglas function in Exercise :  where  represents the cost of labor,  represents capital
input, and  represents the cost of advertising. The method is the same as for the method with a function of two variables; the
equations to be solved are

Maximize the function  subject to the constraint 

Solution

1. The objective function is  To determine the constraint function, we subtract  from each side of
the constraint:  which gives the constraint function as 

2. Next, we calculate  and 

(10, 4) f(x, y) = 48x+96y− −2xy−9 ,x2 y2

f(10, 4) = 48(10) +96(4) −(10 −2(10)(4) −9(4)2 )2

= 480 +384 −100 −80 −144

= 540.

$540, 000
10, 000 4

(10.8, 0) (0, 54) f

f(10.8, 0)

f(0, 54)

= 48(10.8) +96(0) − −2(10.8)(0) −9( )10.82 02

= 401.76

= 48(0) +96(54) − −2(0)(54) −9( )02 542

= −21, 060.

540
f

 Exercise : Optimizing the Cobb-Douglas function14.8.2

f(x, y) = 2.5x0.45y0.55 x

1 y 1
$40 1 $50

f(x, y) = 2.5x0.45y0.55 $500, 000

13890 5625 $5500

14.8.2 f(x, y, z) = ,x0.2y0.4z0.4 x y

z

f(x, y, z)∇
⇀

g(x, y, z)

= λ g(x, y, z)∇
⇀

= 0.

 Example : Lagrange Multipliers with a Three-Variable objective function14.8.3

f(x, y, z) = + +x2 y2 z2 x+y+z = 1.

f(x, y, z) = + + .x2 y2 z2 1
x+y+z−1 = 0 g(x, y, z) = x+y+z−1.

f(x, y, z)∇
⇀

g(x, y, z) :∇
⇀

f(x, y, z)∇
⇀

g(x, y, z)∇
⇀

= ⟨2x, 2y, 2z⟩

= ⟨1, 1, 1⟩.
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This leads to the equations

which can be rewritten in the following form:

3. Since each of the first three equations has  on the right-hand side, we know that  and all three variables
are equal to each other. Substituting  and  into the last equation yields  so  and 
and  which corresponds to a critical point on the constraint curve.

4. Then, we evaluate  at the point :

Therefore, a possible extremum of the function is . To verify it is a minimum, choose other points that satisfy the constraint
from either side of the point we obtained above and calculate  at those points. For example,

Both of these values are greater than , leading us to believe the extremum is a minimum, subject to the given constraint.

Use the method of Lagrange multipliers to find the minimum value of the function

subject to the constraint 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers with an objective function of three variables.

Answer

Evaluating  at both points we obtained, gives us,

Since the constraint is continuous, we compare these values and conclude that  has a relative minimum of  at the

point , subject to the given constraint.

Problems with Two Constraints
The method of Lagrange multipliers can be applied to problems with more than one constraint. In this case the objective function, 

 is a function of three variables:

⟨2 , 2 , 2 ⟩x0 y0 z0

+ + −1x0 y0 z0

= λ⟨1, 1, 1⟩

= 0

2x0

2y0

2z0

+ + −1x0 y0 z0

= λ

= λ

= λ

= 0.

λ 2 = 2 = 2x0 y0 z0

=y0 x0 =z0 x0 3 −1 = 0,x0 =x0
1
3

=y0
1
3

=z0
1
3

f ( , , )1
3

1
3

1
3

f ( , , ) = + + = =
1

3

1

3

1

3
( )

1

3

2

( )
1

3

2

( )
1

3

2 3

9

1

3

1
3

f

f(1, 0, 0)

f(0, −2, 3)

= + + = 112 02 02

= ++(−2 + = 13.02 )2 32

1
3

 Exercise 14.8.3

f(x, y, z) = x+y+z

+ + = 1.x2 y2 z2
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and it is subject to two constraints:

There are two Lagrange multipliers,  and , and the system of equations becomes

Find the maximum and minimum values of the function

subject to the constraints  and 

Solution

Let’s follow the problem-solving strategy:

1. The objective function is  To determine the constraint functions, we first subtract  from both
sides of the first constraint, which gives , so . The second constraint function
is 

2. We then calculate the gradients of  and :

The equation  becomes

which can be rewritten as

Next, we set the coefficients of  and  equal to each other:

The two equations that arise from the constraints are  and . Combining these equations
with the previous three equations gives

3. The first three equations contain the variable . Solving the third equation for  and replacing into the first and second
equations reduces the number of equations to four:

w = f(x, y, z)

g(x, y, z) = 0 and h(x, y, z) = 0.

λ1 λ2

f( , , )∇
⇀

x0 y0 z0

g( , , )x0 y0 z0

h( , , )x0 y0 z0

= g( , , ) + h( , , )λ1∇
⇀

x0 y0 z0 λ2∇
⇀

x0 y0 z0

= 0

= 0

 Example : Lagrange Multipliers with Two Constraints14.8.4

f(x, y, z) = + +x2 y2 z2

= +z2 x2 y2 x+y−z+1 = 0.

f(x, y, z) = + + .x2 y2 z2 z2

+ − = 0x2 y2 z2 g(x, y, z) = + −x2 y2 z2

h(x, y, z) = x+y−z+1.
f , g, h

f(x, y, z)∇
⇀

g(x, y, z)∇
⇀

h(x, y, z)∇
⇀

= 2x +2y +2zî ĵ k̂

= 2x +2y −2zî ĵ k̂

= + − .î ĵ k̂

f( , , ) = g( , , ) + h( , , )∇
⇀

x0 y0 z0 λ1∇
⇀

x0 y0 z0 λ2∇
⇀

x0 y0 z0

2 +2 +2 = (2 +2 −2 ) + ( + − ),x0 î y0 ĵ z0k̂ λ1 x0 î y0 ĵ z0k̂ λ2 î ĵ k̂

2 +2 +2 = (2 + ) +(2 + ) −(2 + ) .x0 î y0 ĵ z0k̂ λ1x0 λ2 î λ1y0 λ2 ĵ λ1z0 λ2 k̂

î ĵ

2x0

2y0

2z0

= 2 +λ1x0 λ2

= 2 +λ1y0 λ2

= −2 − .λ1z0 λ2

= +z2
0 x2

0 y2
0 + − +1 = 0x0 y0 z0

2x0

2y0

2z0

z2
0

+ − +1x0 y0 z0

= 2 +λ1x0 λ2

= 2 +λ1y0 λ2

= −2 −λ1z0 λ2

= +x2
0 y2

0

= 0.

λ2 λ2
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Next, we solve the first and second equation for . The first equation gives , the second equation gives 

. We set the right-hand side of each equation equal to each other and cross-multiply:

Therefore, either  or . If , then the first constraint becomes . The only real solution to
this equation is  and , which gives the ordered triple . This point does not satisfy the second
constraint, so it is not a solution. Next, we consider , which reduces the number of equations to three:

We substitute the first equation into the second and third equations:

Then, we solve the second equation for , which gives . We then substitute this into the first equation,

and use the quadratic formula to solve for :

Recall , so this solves for  as well. Then, , so

Therefore, there are two ordered triplet solutions:

4. We substitute  into , which gives

2x0

2y0

z2
0

+ − +1x0 y0 z0

= 2 −2 −2λ1x0 λ1z0 z0

= 2 −2 −2λ1y0 λ1z0 z0

= +x2
0 y2

0

= 0.

λ1 =λ1
+x0 z0

−x0 z0

=λ1
+y0 z0

−y0 z0

+x0 z0

−x0 z0

( + )( − )x0 z0 y0 z0

− + −x0y0 x0z0 y0z0 z2
0

2 −2y0z0 x0z0

2 ( − )z0 y0 x0

=
+y0 z0

−y0 z0

= ( − )( + )x0 z0 y0 z0

= + − −x0y0 x0z0 y0z0 z2
0

= 0

= 0.

= 0z0 =y0 x0 = 0z0 0 = +x2
0 y2

0

= 0x0 = 0y0 (0, 0, 0)
=y0 x0

y0

z2
0

+ − +1x0 y0 z0

= x0

= +x2
0 y2

0

= 0.

z2
0

= +x2
0

x2
0

= + − +1x0 x0 z0 = 0.

z0 = 2 +1z0 x0

z2
0

(2 +1x2
0 )2

4 +4 +1x2
0

x0

2 +4 +1x2
0 x0

= 2x2
0

= 2x2
0

= 2x2
0

= 0,

x0

= = = = −1 ± .x0

−4 ± −4(2)(1)42
− −−−−−−−−−

√

2(2)

−4 ± 8
–

√

4

−4 ±2 2
–√

4

2
–√

2

=y0 x0 y0 = 2 +1z0 x0

= 2 +1 = 2(−1 ± )+1 = −2 +1 ± = −1 ± .z0 x0
2
–

√

2
2
–

√ 2
–

√

(−1 + , −1 + , −1 + ) and (−1 − , −1 − , −1 − ) .
2
–√

2

2
–√

2
2
–

√
2
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2
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2
2
–

√
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2
–

√

2

2
–

√

2
2
–

√ f(x, y, z) = + +x2 y2 z2
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Then, we substitute  into , which gives

 is the maximum value and  is the minimum value of , subject to the given constraints.

Use the method of Lagrange multipliers to find the minimum value of the function

subject to the constraints  and 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers with two constraints.

Answer

 is a minimum value of , subject to the given constraints.

Key Concepts
An objective function combined with one or more constraints is an example of an optimization problem.
To solve optimization problems, we apply the method of Lagrange multipliers using a four-step problem-solving strategy.

Key Equations
Method of Lagrange multipliers, one constraint

Method of Lagrange multipliers, two constraints

Glossary

constraint
an inequality or equation involving one or more variables that is used in an optimization problem; the constraint enforces a limit
on the possible solutions for the problem

Lagrange multiplier

f (−1 + , −1 + , −1 + )
2
–

√

2

2
–

√

2
2
–

√ = + +(−1 +(−1 + )
2
–

√

2

2

(−1 + )
2
–

√

2

2

2
–

√ )2

=(1 − + )+(1 − + )+(1 −2 +2)2
–

√
1

2
2
–

√
1

2
2
–

√

= 6 −4 .2
–

√

(−1 − , −1 + , −1 + )
2
–

√

2

2
–

√

2
2
–

√ f(x, y, z) = + +x2 y2 z2

f (−1 − , −1 + , −1 + )
2
–

√

2

2
–

√

2
2
–

√ = + +(−1 −(−1 − )
2
–

√

2

2

(−1 − )
2
–

√

2

2

2
–

√ )2

=(1 + + )+(1 + + )+(1 +2 +2)2
–

√
1

2
2
–

√
1

2
2
–

√

= 6 +4 .2
–

√

6 +4 2
–

√ 6 −4 2
–

√ f(x, y, z)

 Exercise 14.8.4

f(x, y, z) = + +x2 y2 z2

2x+y+2z = 9 5x+5y+7z = 29.

f(2, 1, 2) = 9 f

f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

g( , ) = 0x0 y0

f( , , ) = g( , , ) + h( , , )∇
⇀

x0 y0 z0 λ1∇
⇀

x0 y0 z0 λ2∇
⇀

x0 y0 z0

g( , , ) = 0x0 y0 z0

h( , , ) = 0x0 y0 z0
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the constant (or constants) used in the method of Lagrange multipliers; in the case of one constant, it is represented by the
variable 

method of Lagrange multipliers
a method of solving an optimization problem subject to one or more constraints

objective function
the function that is to be maximized or minimized in an optimization problem

optimization problem
calculation of a maximum or minimum value of a function of several variables, often using Lagrange multipliers
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15.1: Double Integrals over Rectangles

Recognize when a function of two variables is integrable over a rectangular region.
Recognize and use some of the properties of double integrals.
Evaluate a double integral over a rectangular region by writing it as an iterated integral.
Use a double integral to calculate the area of a region, volume under a surface, or average value of a function over a plane region.

In this section we investigate double integrals and show how we can use them to find the volume of a solid over a rectangular region in the xy-plane. Many of
the properties of double integrals are similar to those we have already discussed for single integrals.

Volumes and Double Integrals
We begin by considering the space above a rectangular region . Consider a continuous function  of two variables defined on the closed rectangle 

:

Here  denotes the Cartesian product of the two closed intervals  and . It consists of rectangular pairs  such that  and 
. The graph of  represents a surface above the -plane with equation  where  is the height of the surface at the point . Let  be

the solid that lies above  and under the graph of  (Figure ). The base of the solid is the rectangle  in the -plane. We want to find the volume  of
the solid .

Figure : The graph of  over the rectangle R in the -plane is a curved surface.

We divide the region  into small rectangles , each with area  and with sides  and  (Figure ). We do this by dividing the interval  into 
 subintervals and dividing the interval  into  subintervals. Hence , , and .

Figure : Rectangle  is divided into small rectangles  each with area .

The volume of a thin rectangular box above  is , where ( ) is an arbitrary sample point in each  as shown in the following figure, 
 is the height of the corresponding thin rectangular box, and  is the area of each rectangle .

 Learning Objectives

R f(x, y) ≥ 0
R

R = [a, b] × [c, d] = {(x, y) ∈ | a ≤ x ≤ b, c ≤ y ≤ d}R
2

[a, b] × [c, d] [a, b] [c, d] (x, y) a ≤ x ≤ b

c ≤ y ≤ d f xy z = f(x, y) z (x, y) S

R f 15.1.1 R xy V

S

15.1.1 f(x,y) xy

R Rij ΔA Δx Δy 15.1.2 [a, b]

m [c, d] n Δx = b−a

m
Δy = d−c

n
ΔA = ΔxΔy

15.1.2 R Rij ΔA

Rij f( , ) ΔAx∗
ij y∗

ij ,x∗
ij y∗

ij Rij

f( , )x∗
ij y∗

ij ΔA Rij
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Figure : A thin rectangular box above  with height .

Using the same idea for all the subrectangles, we obtain an approximate volume of the solid S as

This sum is known as a double Riemann sum and can be used to approximate the value of the volume of the solid. Here the double sum means that for each
subrectangle we evaluate the function at the chosen point, multiply by the area of each rectangle, and then add all the results.

As we have seen in the single-variable case, we obtain a better approximation to the actual volume if  and  become larger.

or

Note that the sum approaches a limit in either case and the limit is the volume of the solid with the base . Now we are ready to define the double integral.

The double integral of the function  over the rectangular region  in the -plane is defined as

If , then the volume  of the solid , which lies above  in the -plane and under the graph of , is the double integral of the function 
over the rectangle . If the function is ever negative, then the double integral can be considered a “signed” volume in a manner similar to the way we defined
net signed area in The Definite Integral.

Consider the function  over the rectangular region  (Figure ).

a. Set up a double integral for finding the value of the signed volume of the solid  that lies above  and “under” the graph of .
b. Divide  into four squares with , and choose the sample point as the upper right corner point of each square (1,1),(2,1),(1,2), and (2,2)

(Figure ) to approximate the signed volume of the solid  that lies above  and “under” the graph of .
c. Divide  into four squares with , and choose the sample point as the midpoint of each square: (1/2, 1/2), (3/2, 1/2), (1/2,3/2), and (3/2, 3/2)

to approximate the signed volume.

Figure : The function  graphed over the rectangular region .

Solution

a. As we can see, the function  is above the plane. To find the signed volume of , we need to divide the region  into small
rectangles , each with area  and with sides  and , and choose  as sample points in each . Hence, a double integral is set up as

15.1.3 Rij f( , )x∗
ij

y∗
ij

V ≈ f( , )ΔA.∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

m n

V = f( , )ΔAlim
m,n→∞

∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

V = f( , )ΔA.lim
Δx, Δy→0

∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

R

 Definition: Double Integral over a Rectangular Region R

f(x, y) R xy

f(x, y)dA = f( , )ΔA.∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

f(x, y) ≥ 0 V S R xy f f(x, y)
R

 Example : Setting up a Double Integral and Approximating It by Double Sums15.1.1

z = f(x, y) = 3 −yx2 R = [0, 2] ×[0, 2] 15.1.4

S R f

R m = n = 2
15.1.4 S R f

R m = n = 2

15.1.4 z = f(x,y) R = [0, 2] × [0, 2]

z = f(x, y) = 3 −yx2 S R

Rij ΔA Δx Δy ( , )x∗
ij y∗

ij Rij
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b. Approximating the signed volume using a Riemann sum with  we have . Also, the sample points are (1, 1), (2,
1), (1, 2), and (2, 2) as shown in the following figure.

Figure : Subrectangles for the rectangular region .

Hence,

c. Approximating the signed volume using a Riemann sum with  we have . In this case the sample points are (1/2,
1/2), (3/2, 1/2), (1/2, 3/2), and (3/2, 3/2). 
Hence, 

Analysis

Notice that the approximate answers differ due to the choices of the sample points. In either case, we are introducing some error because we are using only
a few sample points. Thus, we need to investigate how we can achieve an accurate answer.

Use the same function  over the rectangular region .

Divide  into the same four squares with , and choose the sample points as the upper left corner point of each square (0,1), (1,1), (0,2), and
(1,2) (Figure ) to approximate the signed volume of the solid  that lies above  and “under” the graph of .

Hint

Follow the steps of the previous example.

V = (3 −y)dA = [3( − ]ΔA.∬
R

x2 lim
m,n→∞

∑
i=1

m

∑
j=1

n

x∗
ij)

2 y∗
ij

m = n = 2 ΔA = ΔxΔy = 1 ×1 = 1
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2

4

25

4

3

4

21

4

45

4

 Exercise 15.1.1

z = f(x, y) = 3 −yx2 R = [0, 2] ×[0, 2]

R m = n = 2
15.1.5 S R f
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Answer

Note that we developed the concept of double integral using a rectangular region . This concept can be extended to any general region. However, when a
region is not rectangular, the subrectangles may not all fit perfectly into , particularly if the base area is curved. We examine this situation in more detail in the
next section, where we study regions that are not always rectangular and subrectangles may not fit perfectly in the region . Also, the heights may not be exact
if the surface  is curved. However, the errors on the sides and the height where the pieces may not fit perfectly within the solid  approach 0 as 
and  approach infinity. Also, the double integral of the function  exists provided that the function  is not too discontinuous. If the function is
bounded and continuous over  except on a finite number of smooth curves, then the double integral exists and we say that ff is integrable over .

Since , we can express  as  or . This means that, when we are using rectangular coordinates, the double integral over a
region  denoted by

can be written as

or

Now let’s list some of the properties that can be helpful to compute double integrals.

Properties of Double Integrals
The properties of double integrals are very helpful when computing them or otherwise working with them. We list here six properties of double integrals.
Properties 1 and 2 are referred to as the linearity of the integral, property 3 is the additivity of the integral, property 4 is the monotonicity of the integral, and
property 5 is used to find the bounds of the integral. Property 6 is used if  is a product of two functions  and .

Assume that the functions  and  are integrable over the rectangular region ;  and  are subregions of ; and assume that  and  are
real numbers.

i. The sum  is integrable and

ii. If c is a constant, then  is integrable and

iii. If  and  except an overlap on the boundaries, then

iv. If  for  in , then

v. If  and , then

vi. In the case where  can be factored as a product of a function  of  only and a function  of  only, then over the region 
, the double integral can be written as

These properties are used in the evaluation of double integrals, as we will see later. We will become skilled in using these properties once we become familiar
with the computational tools of double integrals. So let’s get to that now.

V ≈ f( , ) ΔA = 0∑
i=1

2

∑
j=1

2

x∗
ij y∗

ij

R

R

R

z = f(x, y) S m

n z = f(x, y) f

R R

ΔA = ΔxΔy = ΔyΔx dA dx dy dy dx

R

f(x, y)dA∬
R

f(x, y)dx dy∬
R

f(x, y)dy dx.∬
R

f(x, y) g(x) h(y)

 Theorem: Properties of Double Integrals

f(x, y) g(x, y) R S T R m M

f(x, y) +g(x, y)

[f(x, y) +g(x, y)] dA = f(x, y)dA+ g(x, y)dA.∬
R

∬
R

∬
R

cf(x, y)

cf(x, y)dA = c f(x, y)dA.∬
R

∬
R

R = S∪T S∩T = ∅

f(x, y)dA = f(x, y)dA+ f(x, y)dA.∬
R

∬
S

∬
T

f(x, y) ≥ g(x, y) (x, y) R

f(x, y)dA ≥ g(x, y)dA.∬
R

∬
R

m ≤ f(x, y) ≤ M A(R) = the area ofR

m ⋅A(R) ≤ f(x, y)dA ≤ M ⋅A(R).∬
R

f(x, y) g(x) x h(y) y

R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}

f(x, y)dA =( g(x)dx)( h(y)dy) .∬
R

∫
b

a

∫
d

c
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Iterated Integrals
So far, we have seen how to set up a double integral and how to obtain an approximate value for it. We can also imagine that evaluating double integrals by
using the definition can be a very lengthy process if we choose larger values for  and .Therefore, we need a practical and convenient technique for
computing double integrals. In other words, we need to learn how to compute double integrals without employing the definition that uses limits and double
sums.

The basic idea is that the evaluation becomes easier if we can break a double integral into single integrals by integrating first with respect to one variable and
then with respect to the other. The key tool we need is called an iterated integral.

Assume , , , and  are real numbers. We define an iterated integral for a function  over the rectangular region  as

or

The notation  means that we integrate  with respect to  while holding  constant. Similarly, the notation 

means that we integrate  with respect to  while holding  constant. The fact that double integrals can be split into iterated integrals is expressed in
Fubini’s theorem. Think of this theorem as an essential tool for evaluating double integrals.

Suppose that  is a function of two variables that is continuous over a rectangular region . Then we see
from Figure  that the double integral of  over the region equals an iterated integral,

More generally, Fubini’s theorem is true if  is bounded on  and  is discontinuous only on a finite number of continuous curves. In other words,  has to
be integrable over .

Figure : (a) Integrating first with respect to  and then with respect to  to find the area  and then the volume ; (b) integrating first with respect to 
 and then with respect to  to find the area  and then the volume .

Use Fubini’s theorem to compute the double integral  where  and .

Solution

Fubini’s theorem offers an easier way to evaluate the double integral by the use of an iterated integral. Note how the boundary values of the region 
become the upper and lower limits of integration.

m n

 Definitions: Iterated Integrals

a b c d f(x, y) R = [a, b] × [c, d]

f(x, y)dy dx = [ f(x, y)dy]dx∫
b

a

∫
d

c

∫
b

a

∫
d

c

f(x, y)dx dy = [ f(x, y)dx]dy.∫
d

c

∫
b

a

∫
d

c

∫
b

a

[ f(x, y)dy]dx∫ b

a ∫ d

c f(x, y) y x [ f(x, y)dx]dy∫ d

c ∫ b

a

f(x, y) x y

 Theorem: Fubini's Theorem

f(x, y) R = {(x, y) ∈ | a ≤ x ≤ b, c ≤ y ≤ d}R
2

15.1.6 f

f(x, y)dA = f(x, y)dx dy = f(x, y)dy dx = f(x, y)dx dy.∬
R

∬
R

∫
b

a

∫
d

c

∫
d

c

∫
b

a

f R f f

R

15.1.6 y x A(x) V

x y A(y) V

 Example : Using Fubini’s Theorem15.1.2

f(x, y)dA∬
R

f(x, y) = x R = [0, 2] ×[0, 1]

R
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The double integration in this example is simple enough to use Fubini’s theorem directly, allowing us to convert a double integral into an iterated integral.
Consequently, we are now ready to convert all double integrals to iterated integrals and demonstrate how the properties listed earlier can help us evaluate
double integrals when the function  is more complex. Note that the order of integration can be changed (see Example 7).

Evaluate the double integral

Solution

This function has two pieces: one piece is  and the other is . Also, the second piece has a constant 3. Notice how we use properties i and ii to help
evaluate the double integral.

Over the region , we have . Find a lower and an upper bound for the integral 

Solution

For a lower bound, integrate the constant function 2 over the region . For an upper bound, integrate the constant function 13 over the region .

Hence, we obtain 

Evaluate the integral  over the region .

Solution

f(x, y)dA∬
R

= f(x, y)dx dy∬
R

= x dx dy∫
y=1

y=0
∫

x=2

x=0

= [ ] dy∫
y=1

y=0

x2

2
∣
∣
∣
x=2

x=0

= 2 dy = 2y = 2∫
y=1

y=0

∣
∣
∣
y=1

y=0

f(x, y)

 Example : Illustrating Properties i and ii15.1.3

(xy−3x )dA, whereR = {(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2}.∬
R

y2

xy 3xy2

(xy−3x )dA∬
R

y2 = xy dA+ (−3x )dA∬
R

∬
R

y2

= xy dx dy− 3x dx dy∫
y=2

y=1
∫

x=2

x=0
∫

y=2

y=1
∫

x=2

x=0
y2

= ( y) dy−3 ( ) dy∫
y=2

y=1

x2

2
∣
∣
∣
x=2

x=0
∫

y=2

y=1

x2

2
y2 ∣

∣
∣
x=2

x=0

= 2y dy− 6 dy∫
y=2

y=1
∫

y=2

y=1
y2

= 2 y dy−6 dy∫
2

1
∫

2

1
y2

= 2 −6
y2

2
∣
∣∣
2

1

y3

3
∣
∣∣
2

1

= −2y2∣
∣
∣
2

1
y3∣

∣
∣
2

1

= (4 −1) −2(8 −1) = 3 −2(7) = 3 −14 = −11.

Property i: Integral of a sum is the sum of the integrals.

Convert double integrals to iterated integrals.

Integrate with respect to x, holding y constant.

Property ii: Placing the constant before the integral.

Integrate with respect to y.

 Example : Illustrating Property v.15.1.4

R = {(x, y) | 1 ≤ x ≤ 3, 1 ≤ y ≤ 2} 2 ≤ + ≤ 13x2 y2 ( + )dA.∬
R

x2 y2

R R

2 dx dy∫
2

1
∫

3

1

13dx dy∫
2

1
∫

3

1

= [2x ] dy = 2(2)dy = 4y = 4(2 −1) = 4∫
2

1

∣
∣
∣
3

1
∫

2

1

∣
∣
∣
2

1

= [13x ] dy = 13(2)dy = 26y = 26(2 −1) = 26.∫
2

1

∣
∣
∣
3

1
∫

2

1

∣
∣
∣
2

1

4 ≤ ( + )dA ≤ 26.∬
R

x2 y2

 Example : Illustrating Property vi15.1.5

cosx dA∬
R

ey R = {(x, y) | 0 ≤ x ≤ , 0 ≤ y ≤ 1}π

2
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This is a great example for property vi because the function  is clearly the product of two single-variable functions  and . Thus we can split
the integral into two parts and then integrate each one as a single-variable integration problem.

a. Use the properties of the double integral and Fubini’s theorem to evaluate the integral

b. Show that  where .

Hint

Use properties i. and ii. and evaluate the iterated integral, and then use property v.

Answer

a. 

b. Answers may vary.

As we mentioned before, when we are using rectangular coordinates, the double integral over a region  denoted by  can be written as 
 or  The next example shows that the results are the same regardless of which order of integration we choose.

Let’s return to the function  from Example 1, this time over the rectangular region . Use Fubini’s theorem to evaluate 
 in two different ways:

a. First integrate with respect to  and then with respect to ;
b. First integrate with respect to  and then with respect to .

Solution

Figure  shows how the calculation works in two different ways.

a. First integrate with respect to  and then integrate with respect to :

b. First integrate with respect to  and then integrate with respect to : 

Analysis

f(x, y) ey cosx

cosx dA∬
R

ey = cosx dx dy∫
1

0
∫

π/2

0
ey

=( dy)( cosx dx)∫
1

0
ey ∫

π/2

0

= ( )(sinx )ey
∣
∣
∣
1

0

∣
∣
∣
π/2

0

= e−1.

 Exercise 15.1.2

(3 −x+4y)dy dx.∫
1

0
∫

3

−1

0 ≤ sinπx cosπy dA ≤∬
R

1

32
R = (0, ) ( , )1

4
1
4

1
2

26

R f(x, y)dA∬R

f(x, y)dx dy∬R f(x, y)dy dx.∬R

 Example : Evaluating an Iterated Integral in Two Ways15.1.6

f(x, y) = 3 −yx2 R = [0, 2] ×[0, 3]
f(x, y)dA∬

R

y x

x y

15.1.6

y x

f(x, y)dA∬
R

= (3 −y)dy dx∫
x=2

x=0
∫

y=3

y=0
x2

= ( (3 −y)dy) dx = [3 y− ] dx∫
x=2

x=0
∫

y=3

y=0
x2 ∫

x=2

x=0
x2 y2

2
∣
∣
∣
y=3

y=0

= (9 − ) dx = 3 − x = 15.∫
x=2

x=0
x2 9

2
x3 9

2
∣
∣
∣
x=2

x=0

x y

f(x, y)dA∬
R

= (3 −y)dx dy∫
y=3

y=0
∫

x=2

x=0
x2

= ( (3 −y)dx) dy∫
y=3

y=0
∫

x=2

x=0
x2

= [ −xy ]dy∫
y=3

y=0
x3 ∣

∣
∣
x=2

x=0

= (8 −2y)dy = 8y− = 15.∫
y=3

y=0
y2∣

∣
∣
y=3

y=0
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With either order of integration, the double integral gives us an answer of . We might wish to interpret this answer as a volume in cubic units of the solid 
 below the function  over the region . However, remember that the interpretation of a double integral as a (non-

signed) volume works only when the integrand  is a nonnegative function over the base region .

Evaluate

Hint

Use Fubini’s theorem.

Answer

In the next example we see that it can actually be beneficial to switch the order of integration to make the computation easier. We will come back to this idea
several times in this chapter.

Consider the double integral  over the region  (Figure ).

a. Express the double integral in two different ways.
b. Analyze whether evaluating the double integral in one way is easier than the other and why.
c. Evaluate the integral.

Figure : The function  over the rectangular region 

a. We can express  in the following two ways: first by integrating with respect to  and then with respect to ; second by integrating
with respect to  and then with respect to . 

 
Integrate first with respect to . 

 
Integrate first with respect to .

b. If we want to integrate with respect to y first and then integrate with respect to , we see that we can use the substitution , which gives 
. Hence the inner integral is simply  and we can change the limits to be functions of ,

However, integrating with respect to  first and then integrating with respect to  requires integration by parts for the inner integral, with  and 

15
S f(x, y) = 3 −yx2 R = [0, 2] ×[0, 3]

f R

 Exercise 15.1.3

(2 −3 + )dx dy.∫
y=2

y=−3
∫

x=5

x=3
x2 y2

− 1340
3

 Example : Switching the Order of Integration15.1.7

x sin(xy)dA∬
R

R = {(x, y) | 0 ≤ x ≤ π, 1 ≤ y ≤ 2} 15.1.7

15.1.7 z = f(x,y) = x sin(xy) R = [0,π] × [1, 2].

x sin(xy)dA∬R y x

x y

x sin(xy)dA = x sin(xy)dy dx∬
R

∫
x=π

x=0
∫

y=2

y=1

y

= x sin(xy)dx dy∫
y=2

y=1
∫

x=π

x=0

x

x u = xy

du = x dy ∫ sinu du x

x sin(xy)dA = x sin(xy)dy dx = [ sin(u)du] dx.∬
R

∫
x=π

x=0
∫

y=2

y=1
∫

x=π

x=0
∫

u=2x

u=x

x y u = x

dv= sin(xy)dx
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Then  and , so

Since the evaluation is getting complicated, we will only do the computation that is easier to do, which is clearly the first method.

c. Evaluate the double integral using the easier way.

Evaluate the integral  where .

Hint

Integrate with respect to  first.

Answer

Applications of Double Integrals
Double integrals are very useful for finding the area of a region bounded by curves of functions. We describe this situation in more detail in the next section.
However, if the region is a rectangular shape, we can find its area by integrating the constant function  over the region .

The area of the region  is given by

This definition makes sense because using  and evaluating the integral make it a product of length and width. Let’s check this formula with an
example and see how this works.

Find the area of the region  by using a double integral, that is, by integrating  over the region .

Solution

The region is rectangular with length  and width , so we know that the area is . We get the same answer when we use a double integral:

We have already seen how double integrals can be used to find the volume of a solid bounded above by a function  over a region  provided 
 for all  in . Here is another example to illustrate this concept.

Find the volume  of the solid  that is bounded by the elliptic paraboloid , the planes  and , and the three coordinate
planes.

Solution

First notice the graph of the surface  in Figure (a) and above the square region . However, we need the
volume of the solid bounded by the elliptic paraboloid , the planes  and , and the three coordinate planes.

du = dx v= −
cos(xy)

y

x sin(xy)dA = x sin(xy)dx dy = [− + cos(xy)dx] dy.∬
R

∫
y=2

y=1
∫

x=π

x=0
∫

y=2

y=1

x cos(xy)

y

∣
∣
∣
x=π

x=0

1

y
∫

x=π

x=0

x sin(xy)dA∬
R

= x sin(xy)dy dx∫
x=π

x=0
∫

y=2

y=1

= [ sin(u)du] dx = [−cosu ] dx∫
x=π

x=0
∫

u=2x

u=x

∫
x=π

x=0

∣
∣
∣
u=2x

u=x

= (−cos 2x+cosx)dx∫
x=π

x=0

=(− sin2x+sinx) = 0.
1

2
∣
∣
∣
x=π

x=0

 Exercise 15.1.4

x dA∬
R

exy R = [0, 1] ×[0, ln5]

y

4−ln 5

ln 5

f(x, y) = 1 R

 Definition: Area of a Region R

R

A(R) = 1 dA.∬
R

f(x, y) = 1

 Example : Finding Area Using a Double Integral15.1.8

R = { (x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2} 1 R

3 2 6

A(R) = 1 dx dy = [x ] dy = 3dy = 3 dy = 3y = 3(2) = 6 .∫
2

0
∫

3

0
∫

2

0

∣∣
3

0
∫

2

0
∫

2

0

∣
∣
∣
2

0
units2

f(x, y) ≥ 0 R

f(x, y) ≥ 0 (x, y) R

 Example : Volume of an Elliptic Paraboloid15.1.9

V S 2 + +z = 27x2 y2 x = 3 y = 3

z = 27 −2 −x2 y2 15.1.8 = [−3, 3] ×[−3, 3]R1

2 + +z = 27x2 y2 x = 3 y = 3
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Figure : (a) The surface  above the square region . (b) The solid  lies under the surface 
 above the square region .

Now let’s look at the graph of the surface in Figure (b). We determine the volume  by evaluating the double integral over :

Find the volume of the solid bounded above by the graph of  and below by the -plane on the rectangular region 
.

Hint

Graph the function, set up the integral, and use an iterated integral.

Answer

Recall that we defined the average value of a function of one variable on an interval  as

Similarly, we can define the average value of a function of two variables over a region . The main difference is that we divide by an area instead of the width
of an interval.

The average value of a function of two variables over a region  is

In the next example we find the average value of a function over a rectangular region. This is a good example of obtaining useful information for an integration
by making individual measurements over a grid, instead of trying to find an algebraic expression for a function.

The weather map in Figure  shows an unusually moist storm system associated with the remnants of Hurricane Karl, which dumped 4–8 inches
(100–200 mm) of rain in some parts of the Midwest on September 22–23, 2010. The area of rainfall measured 300 miles east to west and 250 miles north to
south. Estimate the average rainfall over the entire area in those two days.

15.1.8 z = 27 − 2 −x2 y2 R1 = [−3, 3] × [−3, 3] S

z = 27 − 2 −x2 y2 R1 = [0, 3] × [0, 3]

15.1.8 V R2

V = z dA = (27 −2 − )dA∬
R

∬
R

x2 y2

= (27 −2 − )dx dy∫
y=3

y=0
∫

x=3

x=0
x2 y2

= [27x− − x] dy∫
y=3

y=0

2

3
x3 y2 ∣

∣
∣
x=3

x=0

= (63 −3 )dy = 63y− = 162.∫
y=3

y=0
y2 y3∣

∣
∣
y=3

y=0

 Convert to literal integral.

Integrate with respect to x.

 Exercise 15.1.5

f(x, y) = xy sin( y)x2 xy

R = [0, 1] ×[0, π]

π

2

[a, b]

= f(x)dx.fave
1

b−a
∫

b

a

R

 Definition: Average Value of a Function

R

= f(x, y)dx dy.Fave

1

Area ofR
∬

R

 Example : Calculating Average Storm Rainfall15.1.10

15.1.9
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Figure : Effects of Hurricane Karl, which dumped 4–8 inches (100–200 mm) of rain in some parts of southwest Wisconsin, southern Minnesota, and
southeast South Dakota over a span of 300 miles east to west and 250 miles north to south.

Solution

Place the origin at the southwest corner of the map so that all the values can be considered as being in the first quadrant and hence all are positive. Now
divide the entire map into six rectangles  and , as shown in Figure . Assume  denotes the storm rainfall in inches at a point
approximately  miles to the east of the origin and  miles to the north of the origin. Let  represent the entire area of  square miles.
Then the area of each subrectangle is

Assume  are approximately the midpoints of each subrectangle . Note the color-coded region at each of these points, and estimate the
rainfall. The rainfall at each of these points can be estimated as:

At ( ), the rainfall is 0.08.
At ( ), the rainfall is 0.08.
At ( ), the rainfall is 0.01.
At ( ), the rainfall is 1.70.
At ( ), the rainfall is 1.74.
At ( ), the rainfall is 3.00.

Figure : Storm rainfall with rectangular axes and showing the midpoints of each subrectangle.

According to our definition, the average storm rainfall in the entire area during those two days was

15.1.9

(m = 2 n = 3) 15.1.9 f(x, y)
x y R 250 ×300 = 75000

ΔA = (75000) = 12500.
1

6

( ∗, ∗)xij yij Rij

,x11 y11

,x12 y12

,x13 y13

,x21 y21

,x22 y22

,x23 y23

15.1.10
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During September 22–23, 2010 this area had an average storm rainfall of approximately 1.10 inches.

A contour map is shown for a function  on the rectangle .

a. Use the midpoint rule with  and  to estimate the value of 

b. Estimate the average value of the function .

Hint

Divide the region into six rectangles, and use the contour lines to estimate the values for .

Answer

Answers to both parts a. and b. may vary.

Key Concepts
We can use a double Riemann sum to approximate the volume of a solid bounded above by a function of two variables over a rectangular region. By taking
the limit, this becomes a double integral representing the volume of the solid.
Properties of double integral are useful to simplify computation and find bounds on their values.
We can use Fubini’s theorem to write and evaluate a double integral as an iterated integral.
Double integrals are used to calculate the area of a region, the volume under a surface, and the average value of a function of two variables over a
rectangular region.

Key Equations

or

= f(x, y)dx dyfave
1

AreaR
∬

R

= f(x, y)dx dy
1

75000
∬

R

≈ f( , )ΔA
1

75000
∑
i=1

3

∑
j=1

2

x∗
ij y∗

ij

= [f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA]
1

75000
x∗

11 y∗
11 x∗

12 y∗
12 x∗

13 y∗
13 x∗

21 y∗
21 x∗

22 y∗
22 x∗

23 y∗
23

≈ [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]ΔA
1

75000

= [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]12500
1

75000

= [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]
1

6

≈ 1.10 in.

 Exercise 15.1.6

f(x, y) R = [−3, 6] ×[−1, 4]

m = 3 n = 2 f(x, y)dA.∬
R

f(x, y)

f(x, y)

f(x, y)dA = f( j∗, j∗) ΔA∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

xi yi

f(x, y)dx dy = [ f(x, y)dy]dx∫
b

a

∫
d

c

∫
b

a

∫
d

c

f(x, y)dx dy = [ f(x, y)dx]dy∫
d

c

∫
b

a

∫
d

c

∫
b

a

= f(x, y)dx dyfave
1

Area ofR
∬

R
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Glossary

double integral
of the function  over the region  in the -plane is defined as the limit of a double Riemann sum,

double Riemann sum
of the function  over a rectangular region  is

where  is divided into smaller subrectangles  and  is an arbitrary point in 

Fubini’s theorem
if  is a function of two variables that is continuous over a rectangular region , then the double integral
of  over the region equals an iterated integral,

iterated integral
for a function  over the region  is

a. 

b. 

where , and  are any real numbers and 

15.1: Double Integrals over Rectangles is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.1: Double Integrals over Rectangular Regions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x, y) R xy

f(x, y)dA = f( , ) ΔA.∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

f(x, y) R

f( , ) ΔA,∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

R Rij ( , )x∗
ij y∗

ij Rij

f(x, y) R = {(x, y) ∈ | a ≤ x ≤ b, c ≤ y ≤ d}R
2

f

f(x, y)dA = f(x, y)dx dy = f(x, y)dx dy∬
R

∫
b

a

∫
d

c

∫
d

c

∫
b

a

f(x, y) R

f(x, y)dx dy = [ f(x, y)dy] dx,∫
b

a

∫
d

c

∫
b

a

∫
d

c

f(x, y)dx dy = [ f(x, y)dx] dy,∫
d

c

∫
b

a

∫
d

c

∫
b

a

a, b, c d R = [a, b] × [c, d]
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15.2: Double Integrals over General Regions

Recognize when a function of two variables is integrable over a general region.
Evaluate a double integral by computing an iterated integral over a region bounded by two vertical lines and two functions of , or
two horizontal lines and two functions of .
Simplify the calculation of an iterated integral by changing the order of integration.
Use double integrals to calculate the volume of a region between two surfaces or the area of a plane region.
Solve problems involving double improper integrals.

Previously, we studied the concept of double integrals and examined the tools needed to compute them. We learned techniques and
properties to integrate functions of two variables over rectangular regions. We also discussed several applications, such as finding the
volume bounded above by a function over a rectangular region, finding area by integration, and calculating the average value of a function
of two variables.

In this section we consider double integrals of functions defined over a general bounded region  on the plane. Most of the previous results
hold in this situation as well, but some techniques need to be extended to cover this more general case.

General Regions of Integration

An example of a general bounded region  on a plane is shown in Figure . Since  is bounded on the plane, there must exist a
rectangular region  on the same plane that encloses the region  that is, a rectangular region  exists such that  is a subset of 

.

Figure : For a region  that is a subset of , we can define a function  to equal  at every point in  and  at every
point of  not in .

Suppose  is defined on a general planar bounded region  as in Figure . In order to develop double integrals of  over 
we extend the definition of the function to include all points on the rectangular region  and then use the concepts and tools from the
preceding section. But how do we extend the definition of  to include all the points on ? We do this by defining a new function  on

 as follows:

Note that we might have some technical difficulties if the boundary of  is complicated. So we assume the boundary to be a piecewise
smooth and continuous simple closed curve. Also, since all the results developed in the section on Double Integrals over Rectangular
Regions used an integrable function  we must be careful about  and verify that  is an integrable function over the
rectangular region . This happens as long as the region  is bounded by simple closed curves. For now we will concentrate on the
descriptions of the regions rather than the function and extend our theory appropriately for integration.

We consider two types of planar bounded regions.

A region  in the -plane is of Type I if it lies between two vertical lines and the graphs of two continuous functions  and 
. That is (Figure ),

 Learning Objectives

x

y

D

D 15.2.1 D

R D R D

R(D ⊆ R)

15.2.1 D R g(x,y) f(x,y) D 0
R D

z = f(x, y) D 15.2.1 f D

R

f R g(x, y)
R

g(x, y) ={
f(x, y),

0,

if (x, y) is in D

if (x, y) is in R but not in D

D

f(x, y) g(x, y) g(x, y)
R D

 Definition: Type I and Type II regions

D (x, y) (x)g1

(x)g2 15.2.2

D = {(x, y) | a ≤ x ≤ b,   (x) ≤ y ≤ (x)}.g1 g2

https://libretexts.org/
https://math.libretexts.org/@go/page/4546?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals/15.02%3A_Double_Integrals_over_General_Regions


15.2.2 https://math.libretexts.org/@go/page/4546

A region  in the -plane is of Type II if it lies between two horizontal lines and the graphs of two continuous functions  and 
. That is (Figure ),

Figure . A Type I region lies between two vertical lines and the graphs of two functions of .

Figure : A Type II region lies between two horizontal lines and the graphs of two functions of .

Consider the region in the first quadrant between the functions  and  (Figure ). Describe the region first as Type I
and then as Type II.

Figure : Region  can be described as Type I or as Type II.

When describing a region as Type I, we need to identify the function that lies above the region and the function that lies below the
region. Here, region  is bounded above by  and below by  in the interval for  in . Hence, as Type I,  is
described as the set .

However, when describing a region as Type II, we need to identify the function that lies on the left of the region and the function that
lies on the right of the region. Here, the region  is bounded on the left by  and on the right by  in the interval for  in 

. Hence, as Type II,  is described as the set .

Consider the region in the first quadrant between the functions  and . Describe the region first as Type I and then as Type
II.

Hint

Graph the functions, and draw vertical and horizontal lines.

D xy (y)h1

(y)h2 15.2.3

D = {(x, y) | c ≤ y ≤ d,   (y) ≤ x ≤ (y)}.h1 h2

15.2.2 x

15.2.3 y

 Example : Describing a Region as Type I and Also as Type II15.2.1

y = x−−√ y = x3 15.2.4

15.2.4 D

D y = x−−√ y = x3 x [0, 1] D

{(x, y) | 0 ≤ x ≤ 1,   ≤ y ≤ }x3 x−−√3

D x = y2 x = y√3 y

[0, 1] D {(x, y) | 0 ≤ y ≤ 1,   ≤ x ≤ }y2 y√3

 Exercise 15.2.1

y = 2x y = x2
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Answer

Type I and Type II are expressed as  and , respectively.

Double Integrals over Non-rectangular Regions

To develop the concept and tools for evaluation of a double integral over a general, nonrectangular region, we need to first understand the
region and be able to express it as Type I or Type II or a combination of both. Without understanding the regions, we will not be able to
decide the limits of integrations in double integrals. As a first step, let us look at the following theorem.

Suppose  is the extension to the rectangle  of the function  defined on the regions  and  as shown in Figure 
inside . Then  is integrable and we define the double integral of  over  by

The right-hand side of this equation is what we have seen before, so this theorem is reasonable because  is a rectangle and 

has been discussed in the preceding section. Also, the equality works because the values of  are  for any point  that lies outside
 and hence these points do not add anything to the integral. However, it is important that the rectangle  contains the region .

As a matter of fact, if the region  is bounded by smooth curves on a plane and we are able to describe it as Type I or Type II or a mix of
both, then we can use the following theorem and not have to find a rectangle  containing the region.

For a function  that is continuous on a region  of Type I, we have

Similarly, for a function  that is continuous on a region  of Type II, we have

The integral in each of these expressions is an iterated integral, similar to those we have seen before. Notice that, in the inner integral in the
first expression, we integrate  with  being held constant and the limits of integration being  and . In the inner integral in
the second expression, we integrate  with  being held constant and the limits of integration are  and .

Evaluate the integral  where  is shown in Figure .

Solution

First construct the region as a Type I region (Figure ). Here . Then we have

Figure : We can express region  as a Type I region and integrate from  to  between the lines  and .

{(x, y) | 0 ≤ x ≤ 2,   ≤ y ≤ 2x}x2 {(x, y)| 0 ≤ y ≤ 4,   y ≤ x ≤ }1
2

y√

 Theorem: Double Integrals over Nonrectangular Regions

g(x, y) R f(x, y) D R 15.2.1
R g(x, y) f(x, y) D

f(x, y)dA = g(x, y)dA.∬

D

∬

R

R g(x, y)dA∬
R

g(x, y) 0 (x, y)
D R D

D

R

 Theorem: Fubini’s Theorem (Strong Form)

f(x, y) D

f(x, y)dA = f(x, y)dy dx = [ f(x, y)dy] dx.∬

D

∬

D

∫
b

a

∫
(x)g2

(x)g1

f(x, y) D

f(x, y)dA = f(x, y)dx dy = [ f(x, y)dx] dy.∬

D

∬

D

∫
d

c

∫
(y)h2

(y)h1

f(x, y) x (x)g1 (x)g2

f(x, y) y (x)h1 (x)h2

 Example : Evaluating an Iterated Integral over a Type I Region15.2.2

dA∬

D

x2exy D 15.2.5

15.2.5 D = {(x, y) | 0 ≤ x ≤ 2,   x ≤ y ≤ 1}1
2

dA = dy dx.∬

D

x2exy ∫
x=2

x=0
∫

y=1

y=1/2x
x2exy

15.2.5 D y = x1
2

y = 1 x = 0 x = 2
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Therefore, we have

In Example , we could have looked at the region in another way, such as  (Figure ).

Figure .

This is a Type II region and the integral would then look like

However, if we integrate first with respect to  this integral is lengthy to compute because we have to use integration by parts twice.

Evaluate the integral

where .

Solution

Notice that  can be seen as either a Type I or a Type II region, as shown in Figure . However, in this case describing  as Type I
is more complicated than describing it as Type II. Therefore, we use  as a Type II region for the integration.

Figure : The region  in this example can be either (a) Type I or (b) Type II.

Choosing this order of integration, we have

dy dx∫
x=2

x=0
∫

y=1

y= x
1

2

x2exy = [ dy] dx∫
x=2

x=0
∫

y=1

y= x
1

2

x2exy

= dx∫
x=2

x=0
[ ]x2 e

xy

x

∣

∣
∣
y=1

y=1/2x

= [x −x ]dx∫
x=2

x=0
ex e /2x2

= [x − − ] = 2.ex ex e
1

2
x2 ∣

∣
x=2

x=0

Iterated integral for a Type I region.

Integrate with respect to y

Integrate with respect to x

15.2.2 D = {(x, y) | 0 ≤ y ≤ 1,  0 ≤ x ≤ 2y} 15.2.6

15.2.6

dA = dx dy.∬

D

x2exy ∫
y=1

y=0
∫

x=2y

x=0
x2exy

x

 Example : Evaluating an Iterated Integral over a Type II Region15.2.3

(3 + )dA∬

D

x2 y2

D = {(x, y) | −2 ≤ y ≤ 3,   −3 ≤ x ≤ y+3}y2

D 15.2.7 D

D

15.2.7 D
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Sketch the region  and evaluate the iterated integral

where  is the region bounded by the curves  and  in the interval .

Hint

Express  as a Type I region, and integrate with respect to  first.

Answer

Recall from Double Integrals over Rectangular Regions the properties of double integrals. As we have seen from the examples here, all these
properties are also valid for a function defined on a non-rectangular bounded region on a plane. In particular, property 3 states:

If  and  except at their boundaries, then

Similarly, we have the following property of double integrals over a non-rectangular bounded region on a plane.

Suppose the region  can be expressed as  where  and  do not overlap except at their boundaries. Then

This theorem is particularly useful for non-rectangular regions because it allows us to split a region into a union of regions of Type I and
Type II. Then we can compute the double integral on each piece in a convenient way, as in the next example.

Express the region  shown in Figure  as a union of regions of Type I or Type II, and evaluate the integral

(3 + )dA∬

D

x2 y2 = (3 + )dx dy∫
y=3

y=−2
∫

x=y+3

x= −3y2

x2 y2

= dy∫
y=3

y=−2
( +x )x3 y2 ∣∣

y+3

−3y2

= ((y+3 +(y+3) −( −3) ) dy∫
y=3

y=−2
)3 y2 y2 y2

= (54 +27y−12 +2 +8 − )dy∫
3

−2
y2 y3 y4 y6

= [54y+ −4 + + − ]
27y2

2
y3 y4

2

8y5

5

y7

7

3

−2

= .
2375

7

Iterated integral, Type II region

Integrate with respect to x.

 Exercise 15.2.2

D

xy dy dx∬

D

D y = cos  x y = sin  x [−3π/4,  π/4]

D y

π

4

R = S∪T S∩T = 0

f(x, y)dA = f(x, y)dA+ f(x, y)dA.∬

R

∬

S

∬

T

 Theorem: Decomposing Regions into Smaller Regions

D D = ∪D1 D2 D1 D2

f(x, y)dA = f(x, y)dA+ f(x, y)dA.∬

D

∬

D1

∬

D2

 Example : Decomposing Regions15.2.4

D 15.2.8

(2x+5y)dA.∬

D
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Figure : This region can be decomposed into a union of three regions of Type I or Type II.

Solution

The region  is not easy to decompose into any one type; it is actually a combination of different types. So we can write it as a union of
three regions , , and  where, , 

, and . These regions are
illustrated more clearly in Figure .

Figure : Breaking the region into three subregions makes it easier to set up the integration.

Here  is Type I and  and  are both of Type II. Hence,

Now we could redo this example using a union of two Type II regions (see the Checkpoint).

Consider the region bounded by the curves  and  in the interval . Decompose the region into smaller regions of
Type II.

Hint

Sketch the region, and split it into three regions to set it up.

Answer

15.2.8

D

D1 D2 D3 = {(x, y) | −2 ≤ x ≤ 0,  0 ≤ y ≤ (x+2 }D1 )2

= {(x, y) | 0 ≤ y ≤ 4,  0 ≤ x ≤ (y− )}D2
1

16
y3 = {(x, y) | −4 ≤ y ≤ 0,   −2 ≤ x ≤ (y− )}D3

1
16
y3

15.2.9

15.2.9

D1 D2 D3

(2x+5y)dA∬

D

= (2x+5y)dA+ (2x+5y)dA+ (2x+5y)dA∬

D1

∬

D2

∬

D3

= (2x+5y)dy dx+ (2 +5y)dx dy+ (2x+5y)dx dy∫
x=0

x=−2
∫

y=(x+2)2

y=0
∫

y=4

y=0
∫

x=y−(1/16)y3

x=0
∫

y=0

y=−4
∫

x=y−(1/16)y3

x=−2

= [ (2 +x (20 +24x+5 )] dx+ [ − +6 ] dy+∫
x=0

x=−2

1

2
)2 x2 ∫

y=4

y=0

1

256
y6 7

16
y4 y2

∫ [ − +6 +10y−4] dy
y=0

y=−4

1

256
y6 7

16
y4 y2

= + − = .
40

3

1664

35

1696

35

1304

105

 Exercise 15.2.3

y = lnx y = ex [1, 2]

{(x, y) | 0 ≤ y ≤ 1,  1 ≤ x ≤ }∪{(x, y) | 1 ≤ y ≤ e,  1 ≤ x ≤ 2}∪{(x, y) | e ≤ y ≤ ,   lny ≤ x ≤ 2}ey e2
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Redo Example  using a union of two Type II regions.

Hint

Answer

Same as in the example shown.

Changing the Order of Integration

As we have already seen when we evaluate an iterated integral, sometimes one order of integration leads to a computation that is
significantly simpler than the other order of integration. Sometimes the order of integration does not matter, but it is important to learn to
recognize when a change in order will simplify our work.

Reverse the order of integration in the iterated integral

Then evaluate the new iterated integral.

Solution

The region as presented is of Type I. To reverse the order of integration, we must first express the region as Type II. Refer to Figure 
.

Figure : Converting a region from Type I to Type II.

We can see from the limits of integration that the region is bounded above by  and below by  where  is in the interval 
. By reversing the order, we have the region bounded on the left by  and on the right by  where  is in the

interval . We solved  in terms of  to obtain .

Hence

Consider the iterated integral

 Exercise 15.2.4

15.2.4

{(x, y) | 0 ≤ y ≤ 4,  2 + ≤ x ≤ (y− )}∪{(x, y) | −4 ≤ y ≤ 0,   −2 ≤ x ≤ (y− )}y√
1

16
y3 1

16
y13

 Example : Changing the Order of Integration15.2.5

x dy dx.∫
x= 2√

x=0
∫

y=2−x2

y=0
ex

2

15.2.10

15.2.10

y = 2 −x2 y = 0 x

[0, ]2
–

√ x = 0 x = 2 −y
− −−−

√ y

[0, 2] y = 2 −x2 x x = 2 −y
− −−−√

x dy dx∫
2√

0
∫

2−x2

0
ex

2

= x dx dy∫
2

0
∫

2−y√

0
ex

2

= [ ] dy = ( −1)dy∫
2

0

1

2
ex

2 ∣
∣
∣

2−y√

0
∫

2

0

1

2
e2−y

= − = ( −3).( +y)
1

2
e2−y ∣

∣
∣

2

0

1

2
e2

Reverse the order of integration then use substitution.

 Example : Evaluating an Iterated Integral by Reversing the Order of Integration15.2.6

f(x, y)dx dy∬

R
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where  over a triangular region  that has sides on , and the line . Sketch the region, and
then evaluate the iterated integral by

a. integrating first with respect to  and then
b. integrating first with respect to .

Solution

A sketch of the region appears in Figure .

Figure : A triangular region  for integrating in two ways.

We can complete this integration in two different ways.

a. One way to look at it is by first integrating  from  to  vertically and then integrating  from  to :

b. The other way to do this problem is by first integrating  from  to  horizontally and then integrating  from  to 
:

Evaluate the iterated integral  over the region  in the first quadrant between the functions  and .

Evaluate the iterated integral by integrating first with respect to  and then integrating first with resect to .

Hint

Sketch the region and follow Example .

Answer

z = f(x, y) = x−2y R x = 0,  y = 0 x+y = 1

y

x

15.2.11

15.2.11 R

y y = 0 y = 1 −x x x = 0 x = 1

f(x, y)dx dy∬

R

= (x−2y)dy dx = (xy−2 ) dx∫
x=1

x=0
∫

y=1−x

y=0
∫

x=1

x=0
y2 ∣

∣
y=1−x

y=0

= [x(1 −x) −(1 −x ] dx = [−1 +3x−2 ]dx = [−x+ − ] = − .∫
x=1

x=0
)2 ∫

x=1

x=0
x2 3

2
x2 2

3
x3 ∣

∣
x=1

x=0

1

6

x x = 0 x = 1 −y y y = 0
y = 1

(3 + )dA∬

D

x2 y2 = (3 + )dx dy∫
y=3

y=−2
∫

x=y+3

x= −3y2

x2 y2

= ( +x ) dy∫
y=3

y=−2
x3 y2 ∣

∣
y+3

−3y2

= ((y+3 +(y+3) −( −3) ) dy∫
y=3

y=−2
)3 y2 y2 y2

= (54 +27y−12 +2 +8 − )dy∫
3

−2
y2 y3 y4 y6

=(54y+ −4 + + − )
27y2

2
y3 y4

2

8y5

5

y7

7
∣
∣
3

−2

= .
2375

7

Iterated integral, Type II region

Integrate with respect to x.

 Exercise 15.2.5

( + )dA∬

D

x2 y2 D y = 2x y = x2

y x

15.2.6

216
35
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Calculating Volumes, Areas, and Average Values
We can use double integrals over general regions to compute volumes, areas, and average values. The methods are the same as those in
Double Integrals over Rectangular Regions, but without the restriction to a rectangular region, we can now solve a wider variety of
problems.

Find the volume of the solid bounded by the planes , and .

Solution

The solid is a tetrahedron with the base on the -plane and a height . The base is the region  bounded by the lines, 
,  and  where  (Figure ). Note that we can consider the region  as Type I or as Type II, and we

can integrate in both ways.

Figure : A tetrahedron consisting of the three coordinate planes and the plane , with the base bound by 
, and .

First, consider  as a Type I region, and hence .

Therefore, the volume is

Now consider  as a Type II region, so . In this calculation, the volume is

Therefore, the volume is 6 cubic units.

Find the volume of the solid bounded above by  over the region enclosed by the curves  and  where 
 is in the interval .

Hint

Sketch the region, and describe it as Type I.

Answer

 cubic units

 Example : Finding the Volume of a Tetrahedron15.2.7

x = 0,  y = 0,  z = 0 2x+3y+z = 6

xy z = 6 −2x−3y D

x = 0 y = 0 2x+3y = 6 z = 0 15.2.12 D

15.2.12 z = 6 − 2x− 3y
x = 0,  y = 0 2x+ 3y = 6

D D = {(x, y) | 0 ≤ x ≤ 3,  0 ≤ y ≤ 2 − x}2
3

V = (6 −2x−3y)dy dx = [ ] dx∫
x=3

x=0
∫

y=2−(2x/3)

y=0
∫

x=3

x=0
(6y−2xy− )

3

2
y2 ∣

∣
∣
y=2−(2x/3)

y=0

= [ (x−3 ] dx = 6.∫
x=3

x=0

2

3
)2

D D = {(x, y) | 0 ≤ y ≤ 2,  0 ≤ x ≤ 3 − y}3
2

V = (6 −2x−3y)dx dy = [(6x− −3xy) ] dy∫
y=2

y=0
∫

x=3−(3y/2)

x=0
∫

y=2

y=0
x2 ∣

∣
x=3−(3y/2)

x=0

= [ (y−2 ] dy = 6.∫
y=2

y=0

9

4
)2

 Exercise 15.2.6

f(x, y) = 10 −2x+y y = 0 y = ex

x [0, 1]

+10e−e2

4
49
4
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Finding the area of a rectangular region is easy, but finding the area of a non-rectangular region is not so easy. As we have seen, we can use
double integrals to find a rectangular area. As a matter of fact, this comes in very handy for finding the area of a general non-rectangular
region, as stated in the next definition.

The area of a plane-bounded region  is defined as the double integral

We have already seen how to find areas in terms of single integration. Here we are seeing another way of finding areas by using double
integrals, which can be very useful, as we will see in the later sections of this chapter.

Find the area of the region bounded below by the curve  and above by the line  in the first quadrant (Figure ).

Figure : The region bounded by  and .

Solution

We just have to integrate the constant function  over the region. Thus, the area  of the bounded region is 

Find the area of a region bounded above by the curve  and below by  over the interval .

Hint

Sketch the region.

Answer

 square units

 Definition: Double Integrals

D

1 dA.∬

D

 Example : Finding the Area of a Region15.2.8

y = x2 y = 2x 15.2.13

15.2.13 y = x2 y = 2x

f(x, y) = 1 A

dy dx or  dx dy :∫
x=2

x=0
∫

y=2x

y=x2

∫
y=4

y=0
∫

x= y√

x=y/2

A = 1 dx dy∬

D

= 1 dy dx∫
x=2

x=0
∫

y=2x

y=x2

= (y ) dx∫
x=2

x=0

∣
∣
y=2x

y=x2

= (2x− )dx∫
x=2

x=0
x2

=( − ) = .x2 x3

3
∣
∣
2

0

4

3

 Exercise 15.2.7

y = x3 y = 0 [0, 3]

81
4
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We can also use a double integral to find the average value of a function over a general region. The definition is a direct extension of the
earlier formula.

If  is integrable over a plane-bounded region  with positive area , then the average value of the function is

Note that the area is .

Find the average value of the function  on the region bounded by the line  and the curve  (Figure ).

Figure : The region bounded by  and .

Solution

First find the area  where the region  is given by the figure. We have

Then the average value of the given function over this region is

Find the average value of the function  over the triangle with vertices  and .

Hint

Express the line joining  and  as a function .

Answer

Improper Double Integrals

 Definition: The Average Value of a Function

f(x, y) D A(D)

= f(x, y)dA.fave
1

A(D)
∬

D

A(D) = 1 dA∬

D

 Example : Finding an Average Value15.2.9

f(x, y) = 7xy2 x = y x = y√ 15.2.14

15.2.14 x = y x = y√

A(D) D

A(D) = 1 dA = 1 dx dy = [x ] dy = ( −y)dy = =∬

D

∫
y=1

y=0
∫

x= y√

x=y

∫
y=1

y=0

∣
∣
x= y√

x=y
∫

y=1

y=0
y√

2

3
−y2/3 y2

2

∣

∣
∣

1

0

1

6

= f(x, y)dA = 7x dx dy = [ ] dyfave
1

A(D)
∬

D

1

A(D)
∫

y=1

y=0
∫

x= y√

x=y

y2 1

1/6
∫

y=1

y=0

7

2
x2y2∣

∣
∣
x= y√

x=y

= 6 [ (y− )] dy = 6 [ ( − )] dy = = = .∫
y=1

y=0

7

2
y2 y2 ∫

y=1

y=0

7

2
y3 y4 42

2
( − )
y4

4

y5

5

∣

∣
∣
1

0

42

40

21

20

 Exercise 15.2.8

f(x, y) = xy (0, 0),  (1, 0) (1, 3)

(0, 0) (1, 3) y = g(x)

3
4
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An improper double integral is an integral  where either  is an unbounded region or  is an unbounded function. For example, 

 is an unbounded region, and the function  over the ellipse  is an
unbounded function. Hence, both of the following integrals are improper integrals:

i. 

ii. 

In this section we would like to deal with improper integrals of functions over rectangles or simple regions such that f has only finitely many
discontinuities. Not all such improper integrals can be evaluated; however, a form of Fubini’s theorem does apply for some types of
improper integrals.

If  is a bounded rectangle or simple region in the plane defined by

 and also by

 and  is a nonnegative function on  with finitely many discontinuities in the interior of 
then

It is very important to note that we required that the function be nonnegative on  for the theorem to work. We consider only the case where
the function has finitely many discontinuities inside .

Consider the function  over the region 

Notice that the function is nonnegative and continuous at all points on  except . Use Fubini’s theorem to evaluate the improper
integral.

Solution

First we plot the region  (Figure ); then we express it in another way.

Figure : The function  is continuous at all points of the region  except .

The other way to express the same region  is

Thus we can use Fubini’s theorem for improper integrals and evaluate the integral as

f dA∬

D

D f

D = {(x, y) | |x−y| ≥ 2} f(x, y) = 1/(1 − −2 )x2 y2 +3 ≥ 1x2 y2

xy dA where D = {(x, y)|| x−y| ≥ 2};∬

D

dA where D = {(x, y)| +3 ≤ 1}.∬

D

1

1 − −2x2 y2
x2 y2

 Theorem: Fubini’s Theorem for Improper Integrals

D

{(x, y) : a ≤ x ≤ b,  g(x) ≤ y ≤ h(x)}

{(x, y) : c ≤ y ≤ d,  j(y) ≤ x ≤ k(y)} f D D

f  dA = f(x, y)dy dx = f(x, y)dx dy∬

D

∫
x=b

x=a

∫
y=h(x)

y=g(x)
∫

y=d

y=c

∫
x=k(y)

x=j(y)

D

D

 Example : Evaluating a Double Improper Integral15.2.10

f(x, y) = ey

y
D = {(x, y) : 0 ≤ x ≤ 1,  x ≤ y ≤ }.x−−√

D (0, 0)

D 15.2.15

15.2.15 f D (0, 0)

D

D = {(x, y) : 0 ≤ y ≤ 1,   ≤ x ≤ y}.y2
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Therefore, we have

As mentioned before, we also have an improper integral if the region of integration is unbounded. Suppose now that the function  is
continuous in an unbounded rectangle .

If  is an unbounded rectangle such as , then when the limit exists, we have

The following example shows how this theorem can be used in certain cases of improper integrals.

Evaluate the integral  where  is the first quadrant of the plane.

Solution

The region  is the first quadrant of the plane, which is unbounded. So

Thus,

is convergent and the value is .

where .

Hint

Notice that the integral is nonnegative and discontinuous on . Express the region  as 
 and integrate using the method of substitution.

Answer

In some situations in probability theory, we can gain insight into a problem when we are able to use double integrals over general regions.
Before we go over an example with a double integral, we need to set a few definitions and become familiar with some important properties.

dx dy.∫
y=1

y=0
∫

x=y

x=y2

ey

y

dx dy = dy = (y− )dy = ( −y )dy = e−2.∫
y=1

y=0
∫

x=y

x=y2

ey

y
∫

y=1

y=0
x

ey

y

∣
∣
∣
x=y

x=y2

∫
y=1

y=0

ey

y
y2 ∫

1

0
ey ey

f

R

 Theorem: Improper Integrals on an Unbounded Region

R R = {(x, y) : a ≤ x ≤ ∞,  c ≤ y ≤ ∞}

f(x, y)dA = ( f(x, y)dy) dx = ( f(x, y)dx) dy.∬

R

lim
(b,d)→(∞,∞)

∫
b

a

∫
d

c

lim
(b,d)→(∞,∞)

∫
d

c

∫
b

a

 Example 15.2.11

xy dA∬
R

e− −x2 y2
R

R

xy dA∬

R

e− −x2 y2

= ( xy dy) dxlim
(b,d)→(∞,∞)

∫
x=b

x=0
∫

y=d

y=0
e− −x2 y2

= xy dylim
(b,d)→(∞,∞)

∫
x=b

y=0
e− −x2 y2

= (1 − )(1 − ) =lim
(b,d)→(∞,∞)

1

4
e−b2

e−d2 1

4

xy dA∬

R

e− −x2 y2

1
4

 Exercise 15.2.9

dA∬

D

y

1 − −x2 y2− −−−−−−−−√

D = {(x, y) : x ≥ 0,  y ≥ 0,   + ≤ 1}x2 y2

+ = 1x2 y2 D

D = {(x, y) : 0 ≤ x ≤ 1,  0 ≤ y ≤ }1 −x2
− −−−−√

π

4
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Consider a pair of continuous random variables  and  such as the birthdays of two people or the number of sunny and rainy days in a
month. The joint density function  of  and  satisfies the probability that  lies in a certain region :

Since the probabilities can never be negative and must lie between 0 and 1 the joint density function satisfies the following inequality
and equation:

The variables  and  are said to be independent random variables if their joint density function is the product of their individual
density functions:

At Sydney’s Restaurant, customers must wait an average of 15 minutes for a table. From the time they are seated until they have finished
their meal requires an additional 40 minutes, on average. What is the probability that a customer spends less than an hour and a half at
the diner, assuming that waiting for a table and completing the meal are independent events?

Solution

Waiting times are mathematically modeled by exponential density functions, with  being the average waiting time, as

if  and  are random variables for ‘waiting for a table’ and ‘completing the meal,’ then the probability density functions are,
respectively,

Clearly, the events are independent and hence the joint density function is the product of the individual functions

We want to find the probability that the combined time  is less than 90 minutes. In terms of geometry, it means that the region 
is in the first quadrant bounded by the line  (Figure ).

 Definition: Joint Density Function

X Y

f X Y (X,Y ) D

P ((X,Y ) ∈ D) = f(x, y)dA.∬

D

f(x, y) ≥ 0 and  f(x, y)dA = 1.∬

R

 Definition: Independent Random Variables

X Y

f(x, y) = (x) (y).f1 f2

 Example : Application to Probability15.2.12

m

f(t) ={
0,

,
1

m
e−t/m

if t < 0

if t ≥ 0.

X Y

(x) ={ and (y) ={f1

0,

,
1

15
e−x/15

if x < 0.

if x ≥ 0.
f2

0,

,
1

40
e−y/40

if y < 0

if y ≥ 0.

f(x, y) = (x) (y) ={f1 f2

0,

,
1

600
e−x/15

if x < 0 or y < 0,

if x, y ≥ 0

X+Y D

x+y = 90 15.2.16
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Figure : The region of integration for a joint probability density function.

Hence, the probability that  is in the region  is

Since  is the same as , we have a region of Type I, so

Thus, there is an  chance that a customer spends less than an hour and a half at the restaurant.

Another important application in probability that can involve improper double integrals is the calculation of expected values. First we define
this concept and then show an example of a calculation.

In probability theory, we denote the expected values  and  respectively, as the most likely outcomes of the events. The
expected values  and  are given by

where  is the sample space of the random variables  and .

Find the expected time for the events ‘waiting for a table’ and ‘completing the meal’ in Example .

Solution

Using the first quadrant of the rectangular coordinate plane as the sample space, we have improper integrals for  and . The
expected time for a table is

15.2.16

(X,Y ) D

P (X+Y ≤ 90) = P ((X,Y ) ∈ D) = f(x, y)dA = dA.∬

D

∬

D

1

600
e−x/15e−y/40

x+y = 90 y = 90 −x

D

P (X+Y ≤ 90)

= {(x, y) | 0 ≤ x ≤ 90,  0 ≤ y ≤ 90 −x},

= dx dy = dx dy
1

600
∫

x=90

x=0
∫

y=90−x

y=0
e−(/15e−y/40 1

600
∫

x=90

x=0
∫

y=90−x

y=0
e−x/15e−y/40

= dx dy = 0.8328
1

600
∫

x=90

x=0
∫

y=90−x

y=0
e−(x/15+y/40)

83.2%

 Definition: Expected Values

E(X) E(Y )
E(X) E(Y )

E(X) = x f(x, y)dA and E(Y ) = y f(x, y)dA,∬

S

∬

S

S X Y

 Example : Finding Expected Value15.2.13

15.2.12

E(X) E(Y )
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A similar calculation shows that . This means that the expected values of the two random events are the average waiting
time and the average dining time, respectively.

The joint density function for two random variables  and  is given by

Find the probability that  is at most 10 and  is at least 5.

Hint

Compute the probability

Answer

Key Concepts
A general bounded region  on the plane is a region that can be enclosed inside a rectangular region. We can use this idea to define a
double integral over a general bounded region.
To evaluate an iterated integral of a function over a general nonrectangular region, we sketch the region and express it as a Type I or as a
Type II region or as a union of several Type I or Type II regions that overlap only on their boundaries.
We can use double integrals to find volumes, areas, and average values of a function over general regions, similarly to calculations over
rectangular regions.
We can use Fubini’s theorem for improper integrals to evaluate some types of improper integrals.

Key Equations
Iterated integral over a Type I region

Iterated integral over a Type II region

E(X) = x dA∬

S

1

600
e−x/15e−y/40

= x dA
1

600
∫

x=∞

x=0
∫

y=∞

y=0
e−x/15e−y/40

= x dx dy
1

600
lim

(a,b)→(∞,∞)
∫

x=a

x=0
∫

y=b

y=0
e−x/15e−y/40

= ( x dx)( dy)
1

600
lim
a→∞

∫
x=a

x=0
e−x/15 lim

b→∞
∫

y=b

y=0
e−y/40

= ( )( )
1

600
( (−15 (x+15)))lim
a→∞

e−x/15 ∣
∣

x=a

x=0
( (−40 ))lim
b→∞

e−y/40 ∣
∣∣
y=b

y=0

= ( (−15 (x+15) +225))( (−40 +40))
1

600
lim
a→∞

e−a/15 lim
b→∞

e−b/40

= (225)(40) = 15.
1

600

E(Y ) = 40

 Exercise 15.2.10

X Y

f(x, y) ={
( + ),1

600
x2 y2

0,

if ≤ x ≤ 15, 0 ≤ y ≤ 10

otherwise

X Y

P (X ≤ 10,  Y ≥ 5) = ( + )dy dx.∫
10

x=−∞
∫

y=10

y=5

1

6000
x2 y2

≈ 0.763855
72

D

f(x, y)dA = f(x, y)dy dx = [ f(x, y)dy] dx∬

D

∬

D

∫
b

a

∫
(x)g2

(x)g1
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Glossary

improper double integral
a double integral over an unbounded region or of an unbounded function

Type I
a region  in the - plane is Type I if it lies between two vertical lines and the graphs of two continuous functions  and 

Type II
a region  in the -plane is Type II if it lies between two horizontal lines and the graphs of two continuous functions  and 

15.2: Double Integrals over General Regions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.2: Double Integrals over General Regions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x, y)dA = (x, y)dx dy = [ f(x, y)dx] dy∬

D

∬

D

∫
d

c

∫
(y)h2

(y)h1

D xy (x)g1 (x)g2

D xy (y)h1 (h)h2
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15.3: Double Integrals in Polar Coordinates

Recognize the format of a double integral over a polar rectangular region.
Evaluate a double integral in polar coordinates by using an iterated integral.
Recognize the format of a double integral over a general polar region.
Use double integrals in polar coordinates to calculate areas and volumes.

Double integrals are sometimes much easier to evaluate if we change rectangular coordinates to polar coordinates. However, before
we describe how to make this change, we need to establish the concept of a double integral in a polar rectangular region.

Polar Rectangular Regions of Integration
When we defined the double integral for a continuous function in rectangular coordinates—say,  over a region  in the -plane
—we divided  into subrectangles with sides parallel to the coordinate axes. These sides have either constant -values and/or
constant -values. In polar coordinates, the shape we work with is a polar rectangle, whose sides have constant -values and/or
constant -values. This means we can describe a polar rectangle as in Figure , with .

Figure : (a) A polar rectangle  (b) divided into subrectangles  (c) Close-up of a subrectangle.

In this section, we are looking to integrate over polar rectangles. Consider a function  over a polar rectangle . We divide
the interval  into  subintervals  of length  and divide the interval  into  subintervals 

 of width . This means that the circles  and rays  for  and  divide the
polar rectangle  into smaller polar subrectangles  (Figure ).

As before, we need to find the area  of the polar subrectangle  and the “polar” volume of the thin box above . Recall
that, in a circle of radius  the length  of an arc subtended by a central angle of  radians is . Notice that the polar rectangle 

 looks a lot like a trapezoid with parallel sides  and  and with a width . Hence the area of the polar subrectangle 
 is

Simplifying and letting

we have .

Therefore, the polar volume of the thin box above  (Figure ) is

 Learning Objectives

g R xy

R x

y r

θ 15.3.1a R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}

15.3.1 R Rij

f(r, θ) R

[a, b] m [ , ]ri−1 ri Δr = (b−a)/m [α, β] n

[ , ]θi−1 θi Δθ = (β−α)/n r = ri θ = θi 1 ≤ i ≤ m 1 ≤ j≤ n

R Rij 15.3.1b

ΔA Rij Rij

r s θ s = rθ

Rij Δθri−1 Δθri Δr

Rij

ΔA = Δr( Δθ+ Δθ).
1

2
ri−1 ri

= ( + )r∗
ij

1

2
ri−1 ri

ΔA = ΔrΔθr∗
ij

Rij 15.3.2

f( , )ΔA = f( , ) ΔrΔθ.r∗
ij θ∗

ij r∗
ij θ∗

ij r∗
ij
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Figure : Finding the volume of the thin box above polar rectangle .

Using the same idea for all the subrectangles and summing the volumes of the rectangular boxes, we obtain a double Riemann sum
as

As we have seen before, we obtain a better approximation to the polar volume of the solid above the region  when we let  and 
 become larger. Hence, we define the polar volume as the limit of the double Riemann sum,

This becomes the expression for the double integral.

The double integral of the function  over the polar rectangular region  in the -plane is defined as

Again, just as in section on Double Integrals over Rectangular Regions, the double integral over a polar rectangular region can be
expressed as an iterated integral in polar coordinates. Hence,

Notice that the expression for  is replaced by  when working in polar coordinates. Another way to look at the polar
double integral is to change the double integral in rectangular coordinates by substitution. When the function  is given in terms of 

 and  using , and  changes it to

Note that all the properties listed in section on Double Integrals over Rectangular Regions for the double integral in rectangular
coordinates hold true for the double integral in polar coordinates as well, so we can use them without hesitation.

Sketch the polar rectangular region

15.3.2 Rij

f( , ) ΔrΔθ.∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

R m

n

V = f( , ) ΔrΔθ.lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

 Definition: The double integral in polar coordinates

f(r, θ) R rθ

f(r, θ)dA∬
R

= f( , )ΔAlim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij

= f( , ) ΔrΔθ.lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

(15.3.1)

(15.3.2)

f(r, θ)dA = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
R

∬
R

∫
θ=β

θ=α

∫
r=b

r=a

dA r dr dθ

f

x y x = r cos θ, y = r sin θ dA = r dr dθ

f(x, y)dA = f(r cos θ, r sin θ) r dr dθ.∬
R

∬
R

 Example : Sketching a Polar Rectangular Region15.3.1A

R = {(r, θ) | 1 ≤ r ≤ 3, 0 ≤ θ ≤ π}.
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Solution

As we can see from Figure ,  and  are circles of radius 1 and 3 and  covers the entire top half of
the plane. Hence the region  looks like a semicircular band.

Figure : The polar region  lies between two semicircles.

Now that we have sketched a polar rectangular region, let us demonstrate how to evaluate a double integral over this region by
using polar coordinates.

Evaluate the integral  over the region 

Solution

First we sketch a figure similar to Figure , but with outer radius . From the figure we can see that we have

Sketch the region , and evaluate .

Hint

Follow the steps in Example .

Answer

Evaluate the integral

where  is the unit circle on the -plane.

Solution

15.3.3 r = 1 r = 3 0 ≤ θ ≤ π

R

15.3.3 R

 Example : Evaluating a Double Integral over a Polar Rectangular Region15.3.1B

3x dA∬
R

R = {(r, θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.

15.3.3 r = 2

3x dA∬
R

= 3r cos θ r dr dθ Use an integral with correct limits of integration.∫
θ=π

θ=0
∫

r=2

r=1

= cos θ[ ]dθ Integrate first with respect to r.∫
θ=π

θ=0
r3∣∣

r=2

r=1

= 7 cos θ dθ∫
θ=π

θ=0

= 7 sin θ = 0.
∣
∣
∣
θ=π

θ=0

 Exercise 15.3.1

D = {(r, θ)|1 ≤ r ≤ 2, − ≤ θ ≤ }π

2
π

2
x dA∬

R

15.3.1A

14
3

 Example : Evaluating a Double Integral by Converting from Rectangular Coordinates15.3.2A

(1 − − )dA∬
R

x2 y2

R xy
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The region  is a unit circle, so we can describe it as .

Using the conversion , and , we have

Evaluate the integral

where 

Solution

We can see that  is an annular region that can be converted to polar coordinates and described as 
 (see the following graph).

Figure : The annular region of integration .

Hence, using the conversion , and , we have

Evaluate the integral

R R = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}

x = r cos θ, y = r sin θ dA = r dr dθ

(1 − − )dA∬
R

x2 y2 = (1 − ) r dr dθ∫
2π

0
∫

1

0
r2

= (r− )dr dθ∫
2π

0
∫

1

0
r3

= dθ∫
2π

0
[ − ]
r2

2

r4

4

1

0

= dθ = .∫
2π

0

1

4

π

2

 Example : Evaluating a Double Integral by Converting from Rectangular Coordinates15.3.2B

(x+y)dA∬
R

R = {(x, y) | 1 ≤ + ≤ 4, x ≤ 0}.x2 y2

R

R = {(r, θ) | 1 ≤ r ≤ 2, ≤ θ ≤ }π

2
3π
2

15.3.4 R

x = r cos θ, y = r sin θ dA = r dr dθ

(x+y)dA∬
R

= (r cos θ+r sin θ)r dr dθ∫
θ=3π/2

θ=π/2
∫

r=2

r=1

=( dr)( (cos θ+sin θ)dθ)∫
r=2

r=1
r2 ∫

3π/2

π/2

= [sin θ−cos θ][ ]
r3

3

2

1

∣

∣
∣

3π/2

π/2

= − .
14

3

 Exercise 15.3.2

(4 − − )dA∬
R

x2 y2
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where  is the circle of radius 2 on the -plane.

Hint

Follow the steps in the previous example.

Answer

General Polar Regions of Integration

To evaluate the double integral of a continuous function by iterated integrals over general polar regions, we consider two types of
regions, analogous to Type I and Type II as discussed for rectangular coordinates in section on Double Integrals over General
Regions. It is more common to write polar equations as  than , so we describe a general polar region as 

 (Figure ).

Figure : A general polar region between  and .

If  is continuous on a general polar region  as described above, then

Evaluate the integral

where  is the region bounded by the polar axis and the upper half of the cardioid .

Solution

We can describe the region  as  as shown in Figure .

R xy

8π

r = f(θ) θ = f(r)
R = {(r, θ) |α ≤ θ ≤ β, (θ) ≤ r ≤ (θ)}h1 h2 15.3.5

15.3.5 α ≤ θ ≤ β (θ) ≤ r ≤ (θ)h1 h2

 Theorem: Double Integrals over General Polar Regions

f(r, θ) D

f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
D

∫
θ=β

θ=α

∫
r= (θ)h2

r= (θ)h1

 Example : Evaluating a Double Integral over a General Polar Region15.3.3

sinθ r dr dθ∬
D

r2

D r = 1 +cos θ

D {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 1 +cos θ} 15.3.6
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Figure : The region  is the top half of a cardioid.

Hence, we have

Evaluate the integral

where .

Hint

Graph the region and follow the steps in the previous example.

Answer

Polar Areas and Volumes
As in rectangular coordinates, if a solid  is bounded by the surface , as well as by the surfaces ,
and , we can find the volume  of  by double integration, as

If the base of the solid can be described as , then the double integral for the volume
becomes

15.3.6 D

sin θ r dr dθ∬
D

r2 = ( sin θ) r dr dθ∫
θ=π

θ=0
∫

r=1+cos θ

r=0
r2

= sin θ dθ
1

4
[ ]∫

θ=π

θ=0
r4

∣

∣
∣

r=1+cos θ

r=0

= (1 +cos θ sin θ dθ
1

4
∫

θ=π

θ=0
)4

= − = .
1

4
[ ]

(1 +cos θ)5

5

π

0

8

5

 Exercise 15.3.3

2θ r dr dθ∬
D

r2 sin2

D = {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 }cos 2θ
− −−−−

√

π

8

S z = f(r, θ) r = a, r = b, θ = α

θ = β V S

V = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
R

∫
θ=β

θ=α

∫
r=b

r=a

D = {(r, θ)|α ≤ θ ≤ β, (θ) ≤ r ≤ (θ)}h1 h2

V = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
D

∫
θ=β

θ=α

∫
r= (θ)h2

r= (θ)h1
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We illustrate this idea with some examples.

Find the volume of the solid that lies under the paraboloid  and above the unit circle on the -plane (Figure 
).

Figure : Finding the volume of a solid under a paraboloid and above the unit circle.

Solution

By the method of double integration, we can see that the volume is the iterated integral of the form

where .

This integration was shown before in Example , so the volume is  cubic units.

Find the volume of the solid that lies under the paraboloid  and above the disk  on the -
plane. See the paraboloid in Figure  intersecting the cylinder  above the -plane.

Figure : Finding the volume of a solid with a paraboloid cap and a circular base.

 Example : Finding a Volume Using a Double Integral15.3.4A

z = 1 − −x2 y2 xy

15.3.7

15.3.7

(1 − − )dA∬
R

x2 y2

R = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}

15.3.2A π
2

 Example : Finding a Volume Using Double Integration15.3.4B

z = 4 − −x2 y2 (x−1 + = 1)2 y2 xy

15.3.8 (x−1 + = 1)2 y2 xy

15.3.8
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Solution

First change the disk  to polar coordinates. Expanding the square term, we have .
Then simplify to get , which in polar coordinates becomes  and then either  or .
Similarly, the equation of the paraboloid changes to . Therefore we can describe the disk  on the 

 -plane as the region

Hence the volume of the solid bounded above by the paraboloid  and below by  is

Notice in the next example that integration is not always easy with polar coordinates. Complexity of integration depends on the
function and also on the region over which we need to perform the integration. If the region has a more natural expression in polar
coordinates or if  has a simpler antiderivative in polar coordinates, then the change in polar coordinates is appropriate; otherwise,
use rectangular coordinates.

Find the volume of the region that lies under the paraboloid  and above the triangle enclosed by the lines 
, and  in the -plane.

Solution

First examine the region over which we need to set up the double integral and the accompanying paraboloid.

Figure : Finding the volume of a solid under a paraboloid and above a given triangle.

The region  is . Converting the lines , and  in the -plane to
functions of  and  we have , and , respectively. Graphing the region on the -
plane, we see that it looks like .

Now converting the equation of the surface gives . Therefore, the volume of the solid is given by the double
integral

(x−1 + = 1)2 y2 −2x+1 + = 1x2 y2

+ = 2xx2 y2 = 2r cos θr2 r = 0 r = 2 cos θ
z = 4 −r2 (x−1 + = 1)2 y2

xy

D = {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 cosθ}.

z = 4 − −x2 y2 r = 2 cosθ

V = f(r, θ) r dr dθ∬
D

= (4 − ) r dr dθ∫
θ=π

θ=0
∫

r=2 cos θ

r=0
r2

= ] dθ∫
θ=π

θ=0
[4 −

r2

2

r4

4

∣

∣
∣

2 cos θ

0

= [8 θ−4 θ] dθ∫
π

0
cos2 cos4

= = π .[ θ+ sin θ cos θ−sin θ θ]
5

2

5

2
cos3

π

0

5

2
units3

f

 Example : Finding a Volume Using a Double Integral15.3.5A

z = +x2 y2

y = x, x = 0 x+y = 2 xy

15.3.9

D {(x, y) | 0 ≤ x ≤ 1, x ≤ y ≤ 2 −x} y = x, x = 0 x+y = 2 xy

r θ θ = π/4, θ = π/2 r = 2/(cos θ+sin θ) xy

D = {(r, θ) | π/4 ≤ θ ≤ π/2, 0 ≤ r ≤ 2/(cos θ+sin θ)}

z = + =x2 y2 r2
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As you can see, this integral is very complicated. So, we can instead evaluate this double integral in rectangular coordinates as

Evaluating gives

To answer the question of how the formulas for the volumes of different standard solids such as a sphere, a cone, or a cylinder are
found, we want to demonstrate an example and find the volume of an arbitrary cone.

Use polar coordinates to find the volume inside the cone  and above the -plane.

Solution

The region  for the integration is the base of the cone, which appears to be a circle on the -plane (Figure ).

V = f(r, θ) r dr dθ∬
D

= r drdθ∫
θ=π/2

θ=π/4
∫

r=2/(cos θ+sin θ)

r=0
r2

= dθ∫
π/2

π/4
[ ]
r4

4

2/(cos θ+sin θ)

0

= dθ
1

4
∫

π/2

π/4
( )

2

cos θ+sin θ

4

= dθ
16

4
∫

π/2

π/4
( )

1

cos θ+sin θ

4

= 4 dθ.∫
π/2

π/4
( )

1

cos θ+sin θ

4

V = ( + )dy dx.∫
1

0
∫

2−x

x

x2 y2

V = ( + )dy dx∫
1

0
∫

2−x

x

x2 y2

= dx∫
1

0
[ y+ ]x2 y3

3

∣

∣
∣
2−x

x

= −4x+4 − dx∫
1

0

8

3
x2 8x3

3

= [ −2 + − ]
8x

3
x2 4x3

3

2x4

3

∣

∣
∣

1

0

= .
4

3
units3

 Example : Finding a Volume Using a Double Integral15.3.5B

z = 2 − +x2 y2
− −−−−−

√ xy

D xy 15.3.10
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Figure : Finding the volume of a solid inside the cone and above the -plane.

We find the equation of the circle by setting :

This means the radius of the circle is  so for the integration we have  and . Substituting  and
 in the equation  we have . Therefore, the volume of the cone is

Analysis

Note that if we were to find the volume of an arbitrary cone with radius  units and height  units, then the equation of the cone
would be .

We can still use Figure  and set up the integral as

Evaluating the integral, we get .

Use polar coordinates to find an iterated integral for finding the volume of the solid enclosed by the paraboloids 
and .

Hint

Sketching the graphs can help.

Answer

As with rectangular coordinates, we can also use polar coordinates to find areas of certain regions using a double integral. As
before, we need to understand the region whose area we want to compute. Sketching a graph and identifying the region can be
helpful to realize the limits of integration. Generally, the area formula in double integration will look like

15.3.10 xy

z = 0

0

2

+x2 y2

= 2 − +x2 y2
− −−−−−

√

= +x2 y2
− −−−−−

√

= 4.

2 0 ≤ θ ≤ 2π 0 ≤ r ≤ 2 x = r cosθ

y = r sin θ z = 2 − +x2 y2
− −−−−−

√ z = 2 −r

(2 −r) r dr dθ = 2π = cubic units.∫
θ=2π

θ=0
∫

r=2

r=0

4

3

8π

3

α h

z = h− h
a

+x2 y2
− −−−−−

√

15.3.10

(h− r) r dr dθ.∫
θ=2π

θ=0
∫

r=a

r=0

h

a

π h1
3

a2

 Exercise 15.3.5

z = +x2 y2

z = 16 − −x2 y2

V = (16 −2 ) r dr dθ = 64π cubic units.∫
2π

0
∫

2 2√

0
r2
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Evaluate the area bounded by the curve .

Solution

Sketching the graph of the function  reveals that it is a polar rose with eight petals (see the following figure).

Figure : Finding the area of a polar rose with eight petals.

Using symmetry, we can see that we need to find the area of one petal and then multiply it by 8. Notice that the values of  for
which the graph passes through the origin are the zeros of the function , and these are odd multiples of . Thus, one of
the petals corresponds to the values of  in the interval . Therefore, the area bounded by the curve  is

Find the area enclosed by the circle  and the cardioid .

Solution

First and foremost, sketch the graphs of the region (Figure ).

Area ofA = 1 r dr dθ.∫
β

α

∫
(θ)h2

(θ)h1

 Example : Finding an Area Using a Double Integral in Polar Coordinates15.3.6A

r = cos 4θ

r = cos 4θ

15.3.11

θ

cos 4θ π/8
θ [−π/8, π/8] r = cos 4θ

A = 8 1 r dr dθ∫
θ=π/8

θ=−π/8
∫

r=cos 4θ

r=0

= 8 ] dθ∫
θ=π/8

θ=−π/8
[

1

2
r2∣

∣
∣
cos 4θ

0

= 8 4θ dθ∫
π/8

−π/8

1

2
cos2

= 8 ][ θ+ sin 4θ cos 4θ
1

4

1

16
∣
∣
∣
π/8

−π/8

= 8 [ ]= .
π

16

π

2
units2

 Example : Finding Area Between Two Polar Curves15.3.6B

r = 3 cos θ r = 1 +cos θ

15.3.12

https://libretexts.org/
https://math.libretexts.org/@go/page/4547?pdf


15.3.12 https://math.libretexts.org/@go/page/4547

Figure : Finding the area enclosed by both a circle and a cardioid.

We can from see the symmetry of the graph that we need to find the points of intersection. Setting the two equations equal to
each other gives

One of the points of intersection is . The area above the polar axis consists of two parts, with one part defined by the
cardioid from  to  and the other part defined by the circle from  to . By symmetry, the total area
is twice the area above the polar axis. Thus, we have

Evaluating each piece separately, we find that the area is

Find the area enclosed inside the cardioid  and outside the cardioid .

Hint

Sketch the graph, and solve for the points of intersection.

Answer

Evaluate the integral

15.3.12

3 cos θ = 1 +cos θ.

θ = π/3
θ = 0 θ = π/3 θ = π/3 θ = π/2

A = 2 [ 1 r dr dθ+ 1 r dr dθ] .∫
θ=π/3

θ=0
∫

r=1+cos θ

r=0
∫

θ=π/2

θ=π/3
∫

r=3 cos θ

r=0

A = 2( π+ + π− ) = 2( π) = π square units.
1

4

9

16
3
–

√
3

8

9

16
3
–

√
5

8

5

4

 Exercise 15.3.6

r = 3 −3 sinθ r = 1 +sinθ

A = 2 r dr dθ = (8π+9 )∫
π/6

−π/2
∫

3−3 sin θ

1+sin θ

3
–

√ units2

 Example : Evaluating an Improper Double Integral in Polar Coordinates15.3.7

dx dy.∬
R2

e−10( + )x2 y2
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Solution

This is an improper integral because we are integrating over an unbounded region . In polar coordinates, the entire plane 
can be seen as .

Using the changes of variables from rectangular coordinates to polar coordinates, we have

Evaluate the integral

Hint

Convert to the polar coordinate system.

Answer

Key Concepts
To apply a double integral to a situation with circular symmetry, it is often convenient to use a double integral in polar
coordinates. We can apply these double integrals over a polar rectangular region or a general polar region, using an iterated
integral similar to those used with rectangular double integrals.
The area  in polar coordinates becomes .
Use , and  to convert an integral in rectangular coordinates to an integral in polar
coordinates.
Use  and  to convert an integral in polar coordinates to an integral in rectangular coordinates, if
needed.
To find the volume in polar coordinates bounded above by a surface  over a region on the -plane, use a double
integral in polar coordinates.

Key Equations
Double integral over a polar rectangular region 

Double integral over a general polar region

R2 R2

0 ≤ θ ≤ 2π, 0 ≤ r ≤ ∞

dx dy∬
R2

e−10( + )x2 y2

= r dr dθ = ( r dr) dθ∫
θ=2π

θ=0
∫

r=∞

r=0
e−10r2

∫
θ=2π

θ=0
lim
a→∞

∫
r=a

r=0
e−10r2

=( ) dθ( r dr)∫
θ=2π

θ=0
lim
a→∞

∫
r=a

r=0
e−10r2

= 2π( r dr)lim
a→∞

∫
r=a

r=0
e−10r2

= 2π (− )( )lim
a→∞

1

20
e−10r2 ∣

∣
a

0

= 2π(− ) ( −1)
1

20
lim
a→∞

e−10a2

= .
π

10

 Exercise 15.3.7

dx dy.∬
R2

e−4( + )x2 y2

π

4

dA r dr dθ

x = r cos θ, y = r sin θ dA = r dr dθ

= +r2 x2 y2 θ = ta ( )n−1 y

x

z = f(r, θ) xy

R

f(r, θ)dA = f( , )ΔA = f( , ) ΔrΔθ∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij
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Glossary

polar rectangle
the region enclosed between the circles  and  and the angles  and ; it is described as 

15.3: Double Integrals in Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.3: Double Integrals in Polar Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(r, θ) r dr dθ = f(r, θ) r dr dθ∬
D

∫
θ=β

θ=α

∫
(θ)r2

r= (θ)h1

r = a r = b θ = α θ = β

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}
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15.4: Applications of Double Integrals

Recognize when a function of two variables is integrable over a rectangular region.
Recognize and use some of the properties of double integrals.
Evaluate a double integral over a rectangular region by writing it as an iterated integral.
Use a double integral to calculate the area of a region, volume under a surface, or average value of a function over a plane region.

In this section we investigate double integrals and show how we can use them to find the volume of a solid over a rectangular region in the xy-plane. Many of
the properties of double integrals are similar to those we have already discussed for single integrals.

Volumes and Double Integrals
We begin by considering the space above a rectangular region . Consider a continuous function  of two variables defined on the closed rectangle 

:

Here  denotes the Cartesian product of the two closed intervals  and . It consists of rectangular pairs  such that  and 
. The graph of  represents a surface above the -plane with equation  where  is the height of the surface at the point . Let  be

the solid that lies above  and under the graph of  (Figure ). The base of the solid is the rectangle  in the -plane. We want to find the volume  of
the solid .

Figure : The graph of  over the rectangle R in the -plane is a curved surface.

We divide the region  into small rectangles , each with area  and with sides  and  (Figure ). We do this by dividing the interval  into 
 subintervals and dividing the interval  into  subintervals. Hence , , and .

Figure : Rectangle  is divided into small rectangles  each with area .

The volume of a thin rectangular box above  is , where ( ) is an arbitrary sample point in each  as shown in the following figure, 
 is the height of the corresponding thin rectangular box, and  is the area of each rectangle .

 Learning Objectives

R f(x, y) ≥ 0
R

R = [a, b] × [c, d] = {(x, y) ∈ | a ≤ x ≤ b, c ≤ y ≤ d}R
2

[a, b] × [c, d] [a, b] [c, d] (x, y) a ≤ x ≤ b

c ≤ y ≤ d f xy z = f(x, y) z (x, y) S

R f 15.4.1 R xy V

S

15.4.1 f(x,y) xy

R Rij ΔA Δx Δy 15.4.2 [a, b]

m [c, d] n Δx = b−a

m
Δy = d−c

n
ΔA = ΔxΔy

15.4.2 R Rij ΔA

Rij f( , ) ΔAx∗
ij y∗

ij ,x∗
ij y∗

ij Rij

f( , )x∗
ij y∗

ij ΔA Rij

https://libretexts.org/
https://math.libretexts.org/@go/page/4548?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals/15.04%3A_Applications_of_Double_Integrals


15.4.2 https://math.libretexts.org/@go/page/4548

Figure : A thin rectangular box above  with height .

Using the same idea for all the subrectangles, we obtain an approximate volume of the solid S as

This sum is known as a double Riemann sum and can be used to approximate the value of the volume of the solid. Here the double sum means that for each
subrectangle we evaluate the function at the chosen point, multiply by the area of each rectangle, and then add all the results.

As we have seen in the single-variable case, we obtain a better approximation to the actual volume if  and  become larger.

or

Note that the sum approaches a limit in either case and the limit is the volume of the solid with the base . Now we are ready to define the double integral.

The double integral of the function  over the rectangular region  in the -plane is defined as

If , then the volume  of the solid , which lies above  in the -plane and under the graph of , is the double integral of the function 
over the rectangle . If the function is ever negative, then the double integral can be considered a “signed” volume in a manner similar to the way we defined
net signed area in The Definite Integral.

Consider the function  over the rectangular region  (Figure ).

a. Set up a double integral for finding the value of the signed volume of the solid  that lies above  and “under” the graph of .
b. Divide  into four squares with , and choose the sample point as the upper right corner point of each square (1,1),(2,1),(1,2), and (2,2)

(Figure ) to approximate the signed volume of the solid  that lies above  and “under” the graph of .
c. Divide  into four squares with , and choose the sample point as the midpoint of each square: (1/2, 1/2), (3/2, 1/2), (1/2,3/2), and (3/2, 3/2)

to approximate the signed volume.

Figure : The function  graphed over the rectangular region .

Solution

a. As we can see, the function  is above the plane. To find the signed volume of , we need to divide the region  into small
rectangles , each with area  and with sides  and , and choose  as sample points in each . Hence, a double integral is set up as
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b. Approximating the signed volume using a Riemann sum with  we have . Also, the sample points are (1, 1), (2,
1), (1, 2), and (2, 2) as shown in the following figure.

Figure : Subrectangles for the rectangular region .

Hence,

c. Approximating the signed volume using a Riemann sum with  we have . In this case the sample points are (1/2,
1/2), (3/2, 1/2), (1/2, 3/2), and (3/2, 3/2). 
Hence, 

Analysis

Notice that the approximate answers differ due to the choices of the sample points. In either case, we are introducing some error because we are using only
a few sample points. Thus, we need to investigate how we can achieve an accurate answer.

Use the same function  over the rectangular region .

Divide  into the same four squares with , and choose the sample points as the upper left corner point of each square (0,1), (1,1), (0,2), and
(1,2) (Figure ) to approximate the signed volume of the solid  that lies above  and “under” the graph of .

Hint

Follow the steps of the previous example.
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Answer

Note that we developed the concept of double integral using a rectangular region . This concept can be extended to any general region. However, when a
region is not rectangular, the subrectangles may not all fit perfectly into , particularly if the base area is curved. We examine this situation in more detail in the
next section, where we study regions that are not always rectangular and subrectangles may not fit perfectly in the region . Also, the heights may not be exact
if the surface  is curved. However, the errors on the sides and the height where the pieces may not fit perfectly within the solid  approach 0 as 
and  approach infinity. Also, the double integral of the function  exists provided that the function  is not too discontinuous. If the function is
bounded and continuous over  except on a finite number of smooth curves, then the double integral exists and we say that ff is integrable over .

Since , we can express  as  or . This means that, when we are using rectangular coordinates, the double integral over a
region  denoted by

can be written as

or

Now let’s list some of the properties that can be helpful to compute double integrals.

Properties of Double Integrals
The properties of double integrals are very helpful when computing them or otherwise working with them. We list here six properties of double integrals.
Properties 1 and 2 are referred to as the linearity of the integral, property 3 is the additivity of the integral, property 4 is the monotonicity of the integral, and
property 5 is used to find the bounds of the integral. Property 6 is used if  is a product of two functions  and .

Assume that the functions  and  are integrable over the rectangular region ;  and  are subregions of ; and assume that  and  are
real numbers.

i. The sum  is integrable and

ii. If c is a constant, then  is integrable and

iii. If  and  except an overlap on the boundaries, then

iv. If  for  in , then

v. If  and , then

vi. In the case where  can be factored as a product of a function  of  only and a function  of  only, then over the region 
, the double integral can be written as

These properties are used in the evaluation of double integrals, as we will see later. We will become skilled in using these properties once we become familiar
with the computational tools of double integrals. So let’s get to that now.
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Iterated Integrals
So far, we have seen how to set up a double integral and how to obtain an approximate value for it. We can also imagine that evaluating double integrals by
using the definition can be a very lengthy process if we choose larger values for  and .Therefore, we need a practical and convenient technique for
computing double integrals. In other words, we need to learn how to compute double integrals without employing the definition that uses limits and double
sums.

The basic idea is that the evaluation becomes easier if we can break a double integral into single integrals by integrating first with respect to one variable and
then with respect to the other. The key tool we need is called an iterated integral.

Assume , , , and  are real numbers. We define an iterated integral for a function  over the rectangular region  as

or

The notation  means that we integrate  with respect to  while holding  constant. Similarly, the notation 

means that we integrate  with respect to  while holding  constant. The fact that double integrals can be split into iterated integrals is expressed in
Fubini’s theorem. Think of this theorem as an essential tool for evaluating double integrals.

Suppose that  is a function of two variables that is continuous over a rectangular region . Then we see
from Figure  that the double integral of  over the region equals an iterated integral,

More generally, Fubini’s theorem is true if  is bounded on  and  is discontinuous only on a finite number of continuous curves. In other words,  has to
be integrable over .

Figure : (a) Integrating first with respect to  and then with respect to  to find the area  and then the volume ; (b) integrating first with respect to 
 and then with respect to  to find the area  and then the volume .

Use Fubini’s theorem to compute the double integral  where  and .

Solution

Fubini’s theorem offers an easier way to evaluate the double integral by the use of an iterated integral. Note how the boundary values of the region 
become the upper and lower limits of integration.

m n
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The double integration in this example is simple enough to use Fubini’s theorem directly, allowing us to convert a double integral into an iterated integral.
Consequently, we are now ready to convert all double integrals to iterated integrals and demonstrate how the properties listed earlier can help us evaluate
double integrals when the function  is more complex. Note that the order of integration can be changed (see Example 7).

Evaluate the double integral

Solution

This function has two pieces: one piece is  and the other is . Also, the second piece has a constant 3. Notice how we use properties i and ii to help
evaluate the double integral.

Over the region , we have . Find a lower and an upper bound for the integral 

Solution

For a lower bound, integrate the constant function 2 over the region . For an upper bound, integrate the constant function 13 over the region .

Hence, we obtain 

Evaluate the integral  over the region .
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 Example : Illustrating Properties i and ii15.4.3
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Property i: Integral of a sum is the sum of the integrals.

Convert double integrals to iterated integrals.

Integrate with respect to x, holding y constant.

Property ii: Placing the constant before the integral.

Integrate with respect to y.

 Example : Illustrating Property v.15.4.4
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This is a great example for property vi because the function  is clearly the product of two single-variable functions  and . Thus we can split
the integral into two parts and then integrate each one as a single-variable integration problem.

a. Use the properties of the double integral and Fubini’s theorem to evaluate the integral

b. Show that  where .

Hint

Use properties i. and ii. and evaluate the iterated integral, and then use property v.

Answer

a. 

b. Answers may vary.

As we mentioned before, when we are using rectangular coordinates, the double integral over a region  denoted by  can be written as 
 or  The next example shows that the results are the same regardless of which order of integration we choose.

Let’s return to the function  from Example 1, this time over the rectangular region . Use Fubini’s theorem to evaluate 
 in two different ways:

a. First integrate with respect to  and then with respect to ;
b. First integrate with respect to  and then with respect to .

Solution

Figure  shows how the calculation works in two different ways.

a. First integrate with respect to  and then integrate with respect to :

b. First integrate with respect to  and then integrate with respect to : 

Analysis
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With either order of integration, the double integral gives us an answer of . We might wish to interpret this answer as a volume in cubic units of the solid 
 below the function  over the region . However, remember that the interpretation of a double integral as a (non-

signed) volume works only when the integrand  is a nonnegative function over the base region .

Evaluate

Hint

Use Fubini’s theorem.

Answer

In the next example we see that it can actually be beneficial to switch the order of integration to make the computation easier. We will come back to this idea
several times in this chapter.

Consider the double integral  over the region  (Figure ).

a. Express the double integral in two different ways.
b. Analyze whether evaluating the double integral in one way is easier than the other and why.
c. Evaluate the integral.

Figure : The function  over the rectangular region 

a. We can express  in the following two ways: first by integrating with respect to  and then with respect to ; second by integrating
with respect to  and then with respect to . 

 
Integrate first with respect to . 

 
Integrate first with respect to .

b. If we want to integrate with respect to y first and then integrate with respect to , we see that we can use the substitution , which gives 
. Hence the inner integral is simply  and we can change the limits to be functions of ,

However, integrating with respect to  first and then integrating with respect to  requires integration by parts for the inner integral, with  and 

15
S f(x, y) = 3 −yx2 R = [0, 2] ×[0, 3]

f R

 Exercise 15.4.3
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− 1340
3

 Example : Switching the Order of Integration15.4.7

x sin(xy)dA∬
R

R = {(x, y) | 0 ≤ x ≤ π, 1 ≤ y ≤ 2} 15.4.7

15.4.7 z = f(x,y) = x sin(xy) R = [0,π] × [1, 2].

x sin(xy)dA∬R y x

x y

x sin(xy)dA = x sin(xy)dy dx∬
R

∫
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∫
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du = x dy ∫ sinu du x

x sin(xy)dA = x sin(xy)dy dx = [ sin(u)du] dx.∬
R

∫
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∫
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∫
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x y u = x
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Then  and , so

Since the evaluation is getting complicated, we will only do the computation that is easier to do, which is clearly the first method.

c. Evaluate the double integral using the easier way.

Evaluate the integral  where .

Hint

Integrate with respect to  first.

Answer

Applications of Double Integrals
Double integrals are very useful for finding the area of a region bounded by curves of functions. We describe this situation in more detail in the next section.
However, if the region is a rectangular shape, we can find its area by integrating the constant function  over the region .

The area of the region  is given by

This definition makes sense because using  and evaluating the integral make it a product of length and width. Let’s check this formula with an
example and see how this works.

Find the area of the region  by using a double integral, that is, by integrating  over the region .

Solution

The region is rectangular with length  and width , so we know that the area is . We get the same answer when we use a double integral:

We have already seen how double integrals can be used to find the volume of a solid bounded above by a function  over a region  provided 
 for all  in . Here is another example to illustrate this concept.

Find the volume  of the solid  that is bounded by the elliptic paraboloid , the planes  and , and the three coordinate
planes.

Solution

First notice the graph of the surface  in Figure (a) and above the square region . However, we need the
volume of the solid bounded by the elliptic paraboloid , the planes  and , and the three coordinate planes.

du = dx v= −
cos(xy)

y

x sin(xy)dA = x sin(xy)dx dy = [− + cos(xy)dx] dy.∬
R

∫
y=2

y=1
∫

x=π

x=0
∫

y=2

y=1

x cos(xy)

y

∣
∣
∣
x=π

x=0

1

y
∫

x=π

x=0

x sin(xy)dA∬
R

= x sin(xy)dy dx∫
x=π

x=0
∫

y=2

y=1

= [ sin(u)du] dx = [−cosu ] dx∫
x=π

x=0
∫

u=2x

u=x

∫
x=π

x=0

∣
∣
∣
u=2x

u=x

= (−cos 2x+cosx)dx∫
x=π

x=0

=(− sin2x+sinx) = 0.
1

2
∣
∣
∣
x=π

x=0

 Exercise 15.4.4

x dA∬
R

exy R = [0, 1] ×[0, ln5]

y

4−ln 5

ln 5

f(x, y) = 1 R

 Definition: Area of a Region R

R

A(R) = 1 dA.∬
R

f(x, y) = 1

 Example : Finding Area Using a Double Integral15.4.8

R = { (x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2} 1 R

3 2 6

A(R) = 1 dx dy = [x ] dy = 3dy = 3 dy = 3y = 3(2) = 6 .∫
2

0
∫

3

0
∫

2

0

∣∣
3

0
∫

2

0
∫

2

0

∣
∣
∣
2

0
units2

f(x, y) ≥ 0 R

f(x, y) ≥ 0 (x, y) R

 Example : Volume of an Elliptic Paraboloid15.4.9

V S 2 + +z = 27x2 y2 x = 3 y = 3

z = 27 −2 −x2 y2 15.4.8 = [−3, 3] ×[−3, 3]R1

2 + +z = 27x2 y2 x = 3 y = 3
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Figure : (a) The surface  above the square region . (b) The solid  lies under the surface 
 above the square region .

Now let’s look at the graph of the surface in Figure (b). We determine the volume  by evaluating the double integral over :

Find the volume of the solid bounded above by the graph of  and below by the -plane on the rectangular region 
.

Hint

Graph the function, set up the integral, and use an iterated integral.

Answer

Recall that we defined the average value of a function of one variable on an interval  as

Similarly, we can define the average value of a function of two variables over a region . The main difference is that we divide by an area instead of the width
of an interval.

The average value of a function of two variables over a region  is

In the next example we find the average value of a function over a rectangular region. This is a good example of obtaining useful information for an integration
by making individual measurements over a grid, instead of trying to find an algebraic expression for a function.

The weather map in Figure  shows an unusually moist storm system associated with the remnants of Hurricane Karl, which dumped 4–8 inches
(100–200 mm) of rain in some parts of the Midwest on September 22–23, 2010. The area of rainfall measured 300 miles east to west and 250 miles north to
south. Estimate the average rainfall over the entire area in those two days.

15.4.8 z = 27 − 2 −x2 y2 R1 = [−3, 3] × [−3, 3] S

z = 27 − 2 −x2 y2 R1 = [0, 3] × [0, 3]

15.4.8 V R2

V = z dA = (27 −2 − )dA∬
R

∬
R

x2 y2

= (27 −2 − )dx dy∫
y=3

y=0
∫

x=3

x=0
x2 y2

= [27x− − x] dy∫
y=3

y=0

2

3
x3 y2 ∣

∣
∣
x=3

x=0

= (63 −3 )dy = 63y− = 162.∫
y=3

y=0
y2 y3∣

∣
∣
y=3

y=0

 Convert to literal integral.

Integrate with respect to x.

 Exercise 15.4.5

f(x, y) = xy sin( y)x2 xy

R = [0, 1] ×[0, π]

π

2

[a, b]

= f(x)dx.fave
1

b−a
∫

b

a

R

 Definition: Average Value of a Function

R

= f(x, y)dx dy.Fave

1

Area ofR
∬

R

 Example : Calculating Average Storm Rainfall15.4.10

15.4.9
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Figure : Effects of Hurricane Karl, which dumped 4–8 inches (100–200 mm) of rain in some parts of southwest Wisconsin, southern Minnesota, and
southeast South Dakota over a span of 300 miles east to west and 250 miles north to south.

Solution

Place the origin at the southwest corner of the map so that all the values can be considered as being in the first quadrant and hence all are positive. Now
divide the entire map into six rectangles  and , as shown in Figure . Assume  denotes the storm rainfall in inches at a point
approximately  miles to the east of the origin and  miles to the north of the origin. Let  represent the entire area of  square miles.
Then the area of each subrectangle is

Assume  are approximately the midpoints of each subrectangle . Note the color-coded region at each of these points, and estimate the
rainfall. The rainfall at each of these points can be estimated as:

At ( ), the rainfall is 0.08.
At ( ), the rainfall is 0.08.
At ( ), the rainfall is 0.01.
At ( ), the rainfall is 1.70.
At ( ), the rainfall is 1.74.
At ( ), the rainfall is 3.00.

Figure : Storm rainfall with rectangular axes and showing the midpoints of each subrectangle.

According to our definition, the average storm rainfall in the entire area during those two days was

15.4.9

(m = 2 n = 3) 15.4.9 f(x, y)
x y R 250 ×300 = 75000

ΔA = (75000) = 12500.
1

6

( ∗, ∗)xij yij Rij

,x11 y11

,x12 y12

,x13 y13

,x21 y21

,x22 y22

,x23 y23

15.4.10

https://libretexts.org/
https://math.libretexts.org/@go/page/4548?pdf


15.4.12 https://math.libretexts.org/@go/page/4548

During September 22–23, 2010 this area had an average storm rainfall of approximately 1.10 inches.

A contour map is shown for a function  on the rectangle .

a. Use the midpoint rule with  and  to estimate the value of 

b. Estimate the average value of the function .

Hint

Divide the region into six rectangles, and use the contour lines to estimate the values for .

Answer

Answers to both parts a. and b. may vary.

Key Concepts
We can use a double Riemann sum to approximate the volume of a solid bounded above by a function of two variables over a rectangular region. By taking
the limit, this becomes a double integral representing the volume of the solid.
Properties of double integral are useful to simplify computation and find bounds on their values.
We can use Fubini’s theorem to write and evaluate a double integral as an iterated integral.
Double integrals are used to calculate the area of a region, the volume under a surface, and the average value of a function of two variables over a
rectangular region.

Key Equations

or

= f(x, y)dx dyfave
1

AreaR
∬

R

= f(x, y)dx dy
1

75000
∬

R

≈ f( , )ΔA
1

75000
∑
i=1

3

∑
j=1

2

x∗
ij y∗

ij

= [f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA+f( , )ΔA]
1

75000
x∗

11 y∗
11 x∗

12 y∗
12 x∗

13 y∗
13 x∗

21 y∗
21 x∗

22 y∗
22 x∗

23 y∗
23

≈ [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]ΔA
1

75000

= [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]12500
1

75000

= [0.08 +0.08 +0.01 +1.70 +1.74 +3.00]
1

6

≈ 1.10 in.

 Exercise 15.4.6

f(x, y) R = [−3, 6] ×[−1, 4]

m = 3 n = 2 f(x, y)dA.∬
R

f(x, y)

f(x, y)

f(x, y)dA = f( j∗, j∗) ΔA∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

xi yi

f(x, y)dx dy = [ f(x, y)dy]dx∫
b

a

∫
d

c

∫
b

a

∫
d

c

f(x, y)dx dy = [ f(x, y)dx]dy∫
d

c

∫
b

a

∫
d

c

∫
b

a

= f(x, y)dx dyfave
1

Area ofR
∬

R
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Glossary

double integral
of the function  over the region  in the -plane is defined as the limit of a double Riemann sum,

double Riemann sum
of the function  over a rectangular region  is

where  is divided into smaller subrectangles  and  is an arbitrary point in 

Fubini’s theorem
if  is a function of two variables that is continuous over a rectangular region , then the double integral
of  over the region equals an iterated integral,

iterated integral
for a function  over the region  is

a. 

b. 

where , and  are any real numbers and 

15.4: Applications of Double Integrals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.1: Double Integrals over Rectangular Regions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(x, y) R xy

f(x, y)dA = f( , ) ΔA.∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

f(x, y) R

f( , ) ΔA,∑
i=1

m

∑
j=1

n

x∗
ij y∗

ij

R Rij ( , )x∗
ij y∗

ij Rij

f(x, y) R = {(x, y) ∈ | a ≤ x ≤ b, c ≤ y ≤ d}R
2

f

f(x, y)dA = f(x, y)dx dy = f(x, y)dx dy∬
R

∫
b

a

∫
d

c

∫
d

c

∫
b

a

f(x, y) R

f(x, y)dx dy = [ f(x, y)dy] dx,∫
b

a

∫
d

c

∫
b

a

∫
d

c

f(x, y)dx dy = [ f(x, y)dx] dy,∫
d

c

∫
b

a

∫
d

c

∫
b

a

a, b, c d R = [a, b] × [c, d]

https://libretexts.org/
https://math.libretexts.org/@go/page/4548?pdf
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals/15.04%3A_Applications_of_Double_Integrals
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/15%3A_Multiple_Integrals/15.04%3A_Applications_of_Double_Integrals?no-cache
https://math.libretexts.org/@go/page/2609
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


1 https://math.libretexts.org/@go/page/4549

Welcome to the Mathematics Library. This Living Library is a principal hub of the LibreTexts project, which is a multi-institutional
collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher
learning. The LibreTexts approach is highly collaborative where an Open Access textbook environment is under constant revision
by students, faculty, and outside experts to supplant conventional paper-based books.

https://libretexts.org/
https://math.libretexts.org/@go/page/4549?pdf
https://libretexts.org/


15.6.1 https://math.libretexts.org/@go/page/4550

15.6: Triple Integrals

Recognize when a function of three variables is integrable over a rectangular box.
Evaluate a triple integral by expressing it as an iterated integral.
Recognize when a function of three variables is integrable over a closed and bounded region.
Simplify a calculation by changing the order of integration of a triple integral.
Calculate the average value of a function of three variables.

Previously, we discussed the double integral of a function  of two variables over a rectangular region in the plane. In this section we define the triple
integral of a function  of three variables over a rectangular solid box in space, . Later in this section we extend the definition to more general
regions in .

Integrable Functions of Three Variables

We can define a rectangular box  in  as

We follow a similar procedure to what we did in previously. We divide the interval  into  subintervals  of equal length  with

divide the interval  into  subintervals  of equal length  with

and divide the interval  into  subintervals  of equal length  with

Then the rectangular box  is subdivided into  subboxes:

as shown in Figure .

Figure : A rectangular box in  divided into subboxes by planes parallel to the coordinate planes.

For each  and , consider a sample point  in each sub-box . We see that its volume is . Form the triple Riemann
sum

 Learning Objectives

f(x, y)
f(x, y, z) R

3

R
3

B R
3

B = {(x, y, z) | a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f}.

[a, b] l [ , ]xi−1 xi Δx

Δx = ,
−xi xi−1

l

[c, d] m [ , ]yi−1 yi Δy

Δy = ,
−yj yj−1

m

[e, f ] n [ , ]zi−1 zi Δz

Δz =
−zk zk−1

n

B lmn

= [ , ] ×[ , ] × [ , ],Bijk xi−1 xi yi−1 yi zi−1 zi

15.6.1

15.6.1 R3

i, j, k ( , , )x∗
ijk y∗

ijk z∗
ijk Bijk ΔV = ΔxΔyΔz

f( , , ) ΔxΔyΔz.∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk y∗

ijk z∗
ijk
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We define the triple integral in terms of the limit of a triple Riemann sum, as we did for the double integral in terms of a double Riemann sum.

The triple integral of a function  over a rectangular box  is defined as

if this limit exists.

When the triple integral exists on  the function  is said to be integrable on . Also, the triple integral exists if  is continuous on .
Therefore, we will use continuous functions for our examples. However, continuity is sufficient but not necessary; in other words,  is bounded on  and
continuous except possibly on the boundary of . The sample point  can be any point in the rectangular sub-box  and all the properties
of a double integral apply to a triple integral. Just as the double integral has many practical applications, the triple integral also has many applications, which
we discuss in later sections.

Now that we have developed the concept of the triple integral, we need to know how to compute it. Just as in the case of the double integral, we can have an
iterated triple integral, and consequently, a version of Fubini’s theorem for triple integrals exists.

If  is continuous on a rectangular box , then

This integral is also equal to any of the other five possible orderings for the iterated triple integral.

For  and  real numbers, the iterated triple integral can be expressed in six different orderings:

For a rectangular box, the order of integration does not make any significant difference in the level of difficulty in computation. We compute triple integrals
using Fubini’s Theorem rather than using the Riemann sum definition. We follow the order of integration in the same way as we did for double integrals
(that is, from inside to outside).

Evaluate the triple integral

Solution

The order of integration is specified in the problem, so integrate with respect to  first, then y, and then .

 Definition: The triple integral

f(x, y, z) B

f( , , ) ΔxΔyΔz = f(x, y, z)dVlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk

y∗
ijk

z∗
ijk

∭
B

B f(x, y, z) B f(x, y, z) B

f B

B ( , , )x∗
ijk y∗

ijk z∗
ijk Bijk

 Fubini’s Theorem for Triple Integrals

f(x, y, z) B = [a, b] × [c, d] × [e, f ]

f(x, y, z)dV = f(x, y, z)dx dy dz.∬
B

∫
f

e

∫
d

c

∫
b

a

a, b, c, d, e f

f(x, y, z)dx dy dz = ( ( f(x, y, z)dx) dy) dz∫
f

e

∫
d

c

∫
b

a

∫
f

e

∫
d

c

∫
b

a

= ( ( f(x, y, z)dx) dz) dy∫
d

c

∫
f

e

∫
b

a

= ( ( f(x, y, z)dy) dz) dx∫
b

a

∫
f

e

∫
d

c

= ( ( f(x, y, z)dy) dx) dz∫
f

e

∫
b

a

∫
d

c

= ( ( f(x, y, z)dz) dx) dy∫
d

c

∫
b

a

∫
d

c

= ( ( f(x, y, z)dz) dy) dx∫
b

a

∫
d

c

∫
f

e

(15.6.1)

(15.6.2)

(15.6.3)

(15.6.4)

(15.6.5)

(15.6.6)

 Example : Evaluating a Triple Integral15.6.1

(x+y )dx dy dz.∫
z=1

z=0
∫

y=4

y=2
∫

x=5

x=−1
z2

x z
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Evaluate the triple integral

where  as shown in Figure .

Figure : Evaluating a triple integral over a given rectangular box.

Solution

The order is not specified, but we can use the iterated integral in any order without changing the level of difficulty. Choose, say, to integrate  first, then 
, and then .

Now try to integrate in a different order just to see that we get the same answer. Choose to integrate with respect to  first, then , then 

(x+y )dx dy dz∫
z=1

z=0
∫

y=4

y=2
∫

x=5

x=−1
z2

= ] dy dz∫
z=1

z=0
∫

y=4

y=2
[ +xy
x2

2
z2∣

∣
∣
x=5

x=−1

= [12 +6y ] dy dz∫
z=1

z=0
∫

y=4

y=2
z2

= [ ] dz∫
z=1

z=0
12y+6

y2

2
z2

∣

∣
∣
y=4

y=2

= [24 +36 ] dz∫
z=1

z=0
z2

= [24z+36 ]
z3

3

z=1

z=0

= 36.

Integrate with respect to x.

Evaluate.

Integrate with respect to y.

Evaluate.

Integrate with respect to z.

Evaluate.

 Example : Evaluating a Triple Integral15.6.2

yz dV∭
B

x2

B = {(x, y, z) | −2 ≤ x ≤ 1, 0 ≤ y ≤ 3, 1 ≤ z ≤ 5} 15.6.2

15.6.2

y

x z

yz dV∭

B

x2 = [ yz] dy dx dz∫
5

1
∫

1

−2
∫

3

0
x2

= [ ] dx dz∫
5

1
∫

1

−2
zx2 y

3

3

∣

∣
∣
3

0

= z dx dz∫
5

1
∫

1

−2

y

2
x2

= [ ] dz∫
5

1
z

9

2

x3

3

∣

∣
∣
1

−2

= z dz∫
5

1

27

2

= = 162.
27

2

z2

2

∣

∣
∣
5

1

x z y
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Evaluate the triple integral

where .

Hint

Follow the steps in the previous example.

Answer

Triple Integrals over a General Bounded Region

We now expand the definition of the triple integral to compute a triple integral over a more general bounded region  in . The general bounded regions
we will consider are of three types. First, let  be the bounded region that is a projection of  onto the -plane. Suppose the region  in  has the form

For two functions  and , such that  for all  in  as shown in the following figure.

Figure : We can describe region  as the space between  and  above the projection  of  onto the -plane.

The triple integral of a continuous function  over a general three-dimensional region

in , where  is the projection of  onto the -plane, is

yz dV∭

B

x2 = [ yz] dx dz dy∫
3

0
∫

5

1
∫

1

−2
x2

= [ ] dz dy∫
3

0
∫

5

1
yz

x3

3

∣

∣
∣
1

−2

= 3yz dz dy∫
3

0
∫

5

1

= ] dy∫
3

0
[3y

z2

2

∣

∣
∣
5

1

= 36y dy∫
3

0

= = 18(9 −0) = 162.36
y2

2

∣

∣
∣
3

0

 Exercise 15.6.1

z sin x cos y dV∭
B

B = {(x, y, z) | 0 ≤ x ≤ π, ≤ y ≤ 2π, 1 ≤ z ≤ 3}
3π

2

z sin x cos y dV = 8∭
B

E R
3

D E xy E R
3

E = {(x, y, z) | (x, y) ∈ D, (x, y) ≤ z ≤ (x, y)}.u1 u2

z = (x, y)u1 (x, y)u2 (x, y) ≤ (x, y)u1 u2 (x, y) D

15.6.3 E (x,y)u1 (x,y)u2 D E xy

 Triple Integral over a General Region

f(x, y, z)

E = {(x, y, z) | (x, y) ∈ D, (x, y) ≤ z ≤ (x, y)}u1 u2

R
3 D E xy

f(x, y, z)dV = [ f(x, y, z)dz] dA.∭
E

∬
D

∫
(x,y)u2

(x,y)u1
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Similarly, we can consider a general bounded region  in the -plane and two functions  and  such that  for
all  in . Then we can describe the solid region  in  as

where  is the projection of  onto the -plane and the triple integral is

Finally, if  is a general bounded region in the -plane and we have two functions  and  such that  for all 
 in , then the solid region  in  can be described as

where  is the projection of  onto the -plane and the triple integral is

Note that the region  in any of the planes may be of Type I or Type II as described in previously. If  in the -plane is of Type I (Figure ), then

Figure : A box  where the projection  in the -plane is of Type I.

Then the triple integral becomes

If  in the -plane is of Type II (Figure ), then

Figure : A box  where the projection  in the -plane is of Type II.

Then the triple integral becomes

D xy y = (x, z)u1 y = (x, z)u2 (x, z) ≤ (x, z)u1 u2

(x, z) D E R
3

E = {(x, y, z) | (x, z) ∈ D, (x, z) ≤ z ≤ (x, z)}u1 u2

D E xy

f(x, y, z)dV = [ f(x, y, z)dy] dA.∭
E

∬
D

∫
(x,z)u2

(x,z)u1

D xy x = (y, z)u1 x = (y, z)u2 (y, z) ≤ (y, z)u1 u2

(y, z) D E R
3

E = {(x, y, z) | (y, z) ∈ D, (y, z) ≤ z ≤ (y, z)}u1 u2

D E xy

f(x, y, z)dV = [ f(x, y, z)dx] dA.∭
E

∬
D

∫
(y,z)u2

(y,z)u1

D D xy 15.6.4

E = {(x, y, z) | a ≤ x ≤ b, (x) ≤ y ≤ (x), (x, y) ≤ z ≤ (x, y)}.g1 g2 u1 u2

15.6.4 E D xy

f(x, y, z)dV = f(x, y, z)dz dy dx.∭
E

∫
b

a

∫
(x)g2

(x)g1

∫
(x,y)u2

(x,y)u1

D xy 15.6.5

E = {(x, y, z) | c ≤ x ≤ d, (x) ≤ y ≤ (x), (x, y) ≤ z ≤ (x, y)}.h1 h2 u1 u2

15.6.5 E D xy
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Evaluate the triple integral of the function  over the solid tetrahedron bounded by the planes , and 
.

Solution

Figure  shows the solid tetrahedron  and its projection  on the -plane.

Figure : The solid  has a projection  on the -plane of Type I.

We can describe the solid region tetrahedron as

Hence, the triple integral is

To simplify the calculation, first evaluate the integral . We have

Now evaluate the integral

obtaining

Finally evaluate

Putting it all together, we have

Just as we used the double integral

to find the area of a general bounded region  we can use

to find the volume of a general solid bounded region . The next example illustrates the method.

f(x, y, z)dV = f(x, y, z)dz dx dy.∭
E

∫
y=d

y=c

∫
x= (y)h2

x= (y)h1

∫
z= (x,y)u2

z= (x,y)u1

 Example : Evaluating a Triple Integral over a General Bounded Region15.6.3A

f(x, y, z) = 5x−3y x = 0, y = 0, z = 0
x+y+z = 1

15.6.6 E D xy

15.6.6 E D xy

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 −x, 0 ≤ z ≤ 1 −x−y}.

f(x, y, z)dV = (5x−3y)dz dy dx.∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

(5x−3y)dz∫
z=1−x−y

z=0

(5x−3y)dz = (5x−3y)z = (5x−3y)(1 −x−y).∫
z=1−x−y

z=0

∣
∣
∣
z=1−x−y

z=0

(5x−3y)(1 −x−y)dy,∫
y=1−x

y=0

(5x−3y)(1 −x−y)dy = (x−1 (6x−1).∫
y=1−x

y=0

1

2
)2

(x−1 (6x−1)dx = .∫
x=1

x=0

1

2
)2 1

12

f(x, y, z)dV = (5x−3y)dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

1

12

1 dA∬
D

D

1 dV∭
E

E
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Find the volume of a right pyramid that has the square base in the -plane  and vertex at the point  as shown in the following
figure.

Figure : Finding the volume of a pyramid with a square base.

Solution

In this pyramid the value of  changes from 0 to 1 and at each height  the cross section of the pyramid for any value of  is the square

Hence, the volume of the pyramid is

where

Thus, we have

Hence, the volume of the pyramid is  cubic units.

Consider the solid sphere . Write the triple integral

for an arbitrary function  as an iterated integral. Then evaluate this triple integral with . Notice that this gives the volume of a sphere
using a triple integral.

Hint

Follow the steps in the previous example. Use symmetry.

Answer

 Example : Finding a Volume by Evaluating a Triple Integral15.6.3B

xy [−1, 1] ×[−1, 1] (0, 0, 1)

15.6.7

z z z

[−1 +z, 1 −z] × [−1 +z, 1 −z].

1 dV∭
E

E = {(x, y, z) | 0 ≤ z ≤ 1, −1 +z ≤ y ≤ 1 −z, −1 +z ≤ x ≤ 1 −z}.

1 dV∭
E

= 1 dx dy dz∫
z=1

z=0
∫

y=1−z

y=−1+z

∫
x=1−z

x=−1+z

= (2 −2z)dy dz∫
z=1

z=0
∫

y=1−z

y=−1+z

= (2 −2z dz = .∫
z=1

z=0
)2 4

3

4

3

 Exercise 15.6.3

E = {(x, y, z) | + + = 9}x2 y2 z2

f(x, y, z)dV∭
E

f f(x, y, z) = 1

1 dV = 8 1 dz dy dx∭
E

∫
x=3

x=−3
∫

y= 9−z2√

y=− 9−z2√
∫

z= 9− −x2 y2√

z=− 9− −x2 y2√

= 36π cubic units.
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Changing the Order of Integration
As we have already seen in double integrals over general bounded regions, changing the order of the integration is done quite often to simplify the
computation. With a triple integral over a rectangular box, the order of integration does not change the level of difficulty of the calculation. However, with a
triple integral over a general bounded region, choosing an appropriate order of integration can simplify the computation quite a bit. Sometimes making the
change to polar coordinates can also be very helpful. We demonstrate two examples here.

Consider the iterated integral

The order of integration here is first with respect to z, then y, and then x. Express this integral by changing the order of integration to be first with
respect to , then , and then . Verify that the value of the integral is the same if we let .

Solution

The best way to do this is to sketch the region  and its projections onto each of the three coordinate planes. Thus, let

and

We need to express this triple integral as

Knowing the region  we can draw the following projections (Figure ):

on the -plane is 

on the -plane is , and

on the -plane is .

Figure . The three cross sections of  on the three coordinate planes.

Now we can describe the same region  as , and consequently, the triple integral becomes

Now assume that  in each of the integrals. Then we have

 Example : Changing the Order of Integration15.6.4

f(x, y, z)dz dy dx.∫
x=1

x=0
∫

y=x2

y=0
∫

z=y

z=0

x z y f(x, y, z) = xyz

E

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ , 0 ≤ z ≤ y}.x2

f(x, y, z)dz dy dx = f(x, y, z)dV .∫
x=1

x=0
∫

y=x2

y=0
∫

z=x2

z=0
∭

E

f(x, y, z)dx dz dy.∫
y=d

y=c

∫
z= (y)v2

z= (y)v1

∫
x= (y,z)u2

x= (y,z)u1

E 15.6.8

xy = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ } = {(x, y) | 0 ≤ y ≤ 1, ≤ x ≤ 1},D1 x2 y√

yz = {(y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ }D2 y2

xz = {(x, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ }D3 x2

15.6.8 E

E {(x, y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ , ≤ x ≤ 1}y2 y√

f(x, y, z)dx dz dy = f(x, y, z)dx dz dy∫
y=d

y=c

∫
z= (y)v2

z= (y)v1

∫
x= (y,z)u2

x= (y,z)u1

∫
y=1

y=0
∫

z=x2

z=0
∫

x=1

x= y√

f(x, y, z) = xyz
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The answers match.

Write five different iterated integrals equal to the given integral

Hint

Follow the steps in the previous example, using the region  as , and describe and sketch the
projections onto each of the three planes, five different times.

Answer

Evaluate the triple integral

where  is the region bounded by the paraboloid  (Figure ) and the plane .

xyz dz dy dx∫
x=1

x=0
∫

y=x2

y=0
∫

z=y2

z=0
= ] dy dx∫

x=1

x=0
∫

y=x2

y=0
[xy

z2

2

∣

∣
∣
z=y2

z=0

= (x ) dy dx∫
x=1

x=0
∫

y=x2

y=0

y5

2

= ] dx∫
x=1

x=0
[x

y6

12

∣

∣
∣
y=x2

y=0

= dx =∫
x=1

x=0

x13

12

x14

168

∣

∣
∣
x=1

x=0

= ,
1

168

xyz dx dz dy∫
y=1

y=0
∫

z=y2

z=0
∫

x=1

x= y√

= ] dz dy∫
y=1

y=0
∫

z=y2

z=0
[yz

x2

2

∣

∣
∣
1

y√

= ( − ) dz dy∫
y=1

y=0
∫

z=y2

z=0

yz

2

zy2

2

= ] dy∫
y=1

y=0
[ −
yz2

4

y2z2

4

∣

∣
∣
z=y2

z=0

= ( − ) dy∫
y=1

y=0

y5

4

y6

4

= ( − )
y6

24

y7

28

∣

∣
∣
y=1

y=0

= .
1

168

 Exercise 15.6.4

f(x, y, z)dx dy dz.∫
z=4

z=0
∫

y=4−z

y=0
∫

x= y√

x=0

E {(x, y, z) | 0 ≤ z ≤ 4, 0 ≤ y ≤ 4 −z, 0 ≤ x ≤ }y√

(i) f(x, y, z)dy dx dz, (ii) f(x, y, z)dx dz dy, (iii) f(x, y, z)dz dx dy,∫
z=4

z=0
∫

x= 4−z√

x=0
∫

y=4−z

y=x2
∫

y=4

y=0
∫

z=4−y

z=0
∫

x= y√

x=0
∫

y=4

y=0
∫

x= y√

x=0
∫

Z=4−y

z=0

(iv) f(x, y, z)dz dy dx, (v) f(x, y, z)dy dz dx∫
x=2

x=0
∫

y=4

y=x2
∫

z=4−y

z=0
∫

x=2

x=0
∫

z=4−x2

z=0
∫

y=4−z

y=x2

 Example : Changing Integration Order and Coordinate Systems15.6.5

dV ,∭
E

+x2 z2− −−−−−
√

E y = +x2 z2 15.6.9 y = 4

https://libretexts.org/
https://math.libretexts.org/@go/page/4550?pdf


15.6.10 https://math.libretexts.org/@go/page/4550

Figure . Integrating a triple integral over a paraboloid.

Solution

The projection of the solid region  onto the -plane is the region bounded above by  and below by the parabola  as shown.

Figure . Cross section in the -plane of the paraboloid in Figure .

Thus, we have

The triple integral becomes

This expression is difficult to compute, so consider the projection of  onto the -plane. This is a circular disc . So we obtain

Here the order of integration changes from being first with respect to  then  and then  to being first with respect to  then to  and then to . It will
soon be clear how this change can be beneficial for computation. We have

Now use the polar substitution , and  in the -plane. This is essentially the same thing as when we used
polar coordinates in the -plane, except we are replacing  by . Consequently the limits of integration change and we have, by using ,

Average Value of a Function of Three Variables

Recall that we found the average value of a function of two variables by evaluating the double integral over a region on the plane and then dividing by the
area of the region. Similarly, we can find the average value of a function in three variables by evaluating the triple integral over a solid region and then
dividing by the volume of the solid.

15.6.9

E xy y = 4 y = x2

15.6.10 xy 15.6.9

E = {(x, y, z) | −2 ≤ x ≤ 2, ≤ y ≤ 4, − ≤ z }.x2 y−x2
− −−−−
√ y−x2

− −−−−
√

dV = dz dy dx.∭
E

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

y=4

y=x2

∫
z= y−x2√

z=− y−x2√
+x2 z2− −−−−−

√

E xz + ≤ 4x2 z2

dV = dz dy dx = dy dz dx.∭
E

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

y=4

y=x2

∫
z= y−x2√

z=− y−x2√
+x2 z2− −−−−−

√ ∫
x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
∫

y=4

y= +x2 z2

+x2 z2− −−−−−
√

z y x y z x

dy dz dx = (4 − − ) dz dx.∫
x=2

x=−2
∫

z= 4−x2√

z= 4−x2√
∫

y=4

y= +x2 z2

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
x2 z2 +x2 z2− −−−−−

√

x = r cos θ, z = r sin θ dz dx = r dr dθ xz

xy y z = +r2 x2 z2

(4 − − ) dz dx = (4 − )rr dr dθ = ] dθ =∫
x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
x2 z2 +x2 z2− −−−−−

√ ∫
θ=2π

θ=0
∫

r=2

r=0
r2 ∫

2π

0
[ −

4r3

3

r5

5

∣

∣
∣

2

0

∫ dθ =
2π

0

64

15

128π

15
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If  is integrable over a solid bounded region  with positive volume  then the average value of the function is

Note that the volume is

The temperature at a point  of a solid  bounded by the coordinate planes and the plane  is .
Find the average temperature over the solid.

Solution

Use the theorem given above and the triple integral to find the numerator and the denominator. Then do the division. Notice that the plane 
 has intercepts  and . The region  looks like

Hence the triple integral of the temperature is

The volume evaluation is

Hence the average value is

.

Find the average value of the function  over the cube with sides of length 4 units in the first octant with one vertex at the origin and
edges parallel to the coordinate axes.

Hint

Follow the steps in the previous example.

Answer

Key Concepts
To compute a triple integral we use Fubini’s theorem, which states that if  is continuous on a rectangular box , then

and is also equal to any of the other five possible orderings for the iterated triple integral.
To compute the volume of a general solid bounded region  we use the triple integral

Interchanging the order of the iterated integrals does not change the answer. As a matter of fact, interchanging the order of integration can help simplify
the computation.
To compute the average value of a function over a general three-dimensional region, we use

 Average Value of a Function of Three Variables

f(x, y, z) E V (E),

= f(x, y, z)dV .fave
1

V (E)
∭

E

V (E) = 1 dV .∭
E

 Example : Finding an Average Temperature15.6.6

(x, y, z) E x+y+z = 1 T (x, y, z) = (xy+8z+20) °C

x+y+z = 1 (1, 0, 0), (0, 1, 0), (0, 0, 1) E

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 −x, 0 ≤ z ≤ 1 −x−y}.

f(x, y, z)dV = (xy+8z+20)dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

147

40

V (E) = 1 dV = 1 dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

1

6

= = = °CTave
147/40

1/6

6(147)

40

441

20

 Exercise 15.6.6

f(x, y, z) = xyz

= 8fave

f(x, y, z) B = [a, b] × [c, d] × [e, f ]

f(x, y, z)dV = f(x, y, z)dx dy dz∭
B

∫
f

e

∫
d

c

∫
b

a

E

V (E) = 1 dV .∭
E

= f(x, y, z)dV .fave
1

V (E)
∭

E
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Key Equations

Triple integral

Glossary

triple integral
the triple integral of a continuous function  over a rectangular solid box  is the limit of a Riemann sum for a function of three variables, if this
limit exists

15.6: Triple Integrals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.4: Triple Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-volume-1.

f( , , ) ΔxΔyΔz = f(x, y, z)dVlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk y∗

ijk z∗
ijk ∭

B

f(x, y, z) B
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15.7: Triple Integrals in Cylindrical Coordinates

Evaluate a triple integral by changing to cylindrical coordinates.
Evaluate a triple integral by changing to spherical coordinates.

Earlier in this chapter we showed how to convert a double integral in rectangular coordinates into a double integral in polar
coordinates in order to deal more conveniently with problems involving circular symmetry. A similar situation occurs with triple
integrals, but here we need to distinguish between cylindrical symmetry and spherical symmetry. In this section we convert triple
integrals in rectangular coordinates into a triple integral in either cylindrical or spherical coordinates.

Also recall the chapter prelude, which showed the opera house l’Hemisphèric in Valencia, Spain. It has four sections with one of
the sections being a theater in a five-story-high sphere (ball) under an oval roof as long as a football field. Inside is an IMAX
screen that changes the sphere into a planetarium with a sky full of  twinkling stars. Using triple integrals in spherical
coordinates, we can find the volumes of different geometric shapes like these.

Review of Cylindrical Coordinates

As we have seen earlier, in two-dimensional space  a point with rectangular coordinates  can be identified with  in
polar coordinates and vice versa, where ,  and  are the relationships between
the variables.

In three-dimensional space  a point with rectangular coordinates  can be identified with cylindrical coordinates 
and vice versa. We can use these same conversion relationships, adding  as the vertical distance to the point from the -plane as
shown in .

Figure : Cylindrical coordinates are similar to polar coordinates with a vertical  coordinate added.

To convert from rectangular to cylindrical coordinates, we use the conversion

To convert from cylindrical to rectangular coordinates, we use

 and

Note that that -coordinate remains the same in both cases.

In the two-dimensional plane with a rectangular coordinate system, when we say  (constant) we mean an unbounded vertical
line parallel to the -axis and when  (constant) we mean an unbounded horizontal line parallel to the -axis. With the polar

 Learning Objectives

9000

R
2 (x, y) (r, θ)

x = r cosθ y = r sin θ, = +r2 x2 y2 tan θ = ( )y
x

R
3 (x, y, z) (r, θ, z)

z (xy
15.7.1

15.7.1 z

x = r cosθ
y = r sin θ

z = z

= +r2 x2 y2

θ = ( )tan−1 y

x

z = z

z

x = k

y y = l x
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coordinate system, when we say  (constant), we mean a circle of radius  units and when  (constant) we mean an
infinite ray making an angle  with the positive -axis.

Similarly, in three-dimensional space with rectangular coordinates  the equations  and  where  and 
 are constants, represent unbounded planes parallel to the -plane, -plane and -plane, respectively. With cylindrical

coordinates , by , and , where , and  are constants, we mean an unbounded vertical cylinder with
the z-axis as its radial axis; a plane making a constant angle  with the -plane; and an unbounded horizontal plane parallel to the 

-plane, respectively. This means that the circular cylinder  in rectangular coordinates can be represented simply as 
 in cylindrical coordinates. (Refer to Cylindrical and Spherical Coordinates for more review.)

Integration in Cylindrical Coordinates

Triple integrals can often be more readily evaluated by using cylindrical coordinates instead of rectangular coordinates. Some
common equations of surfaces in rectangular coordinates along with corresponding equations in cylindrical coordinates are listed in
Table . These equations will become handy as we proceed with solving problems using triple integrals.

Table : Equations of Some Common Shapes
Circular cylinder Circular cone Sphere Paraboloid

Rectangular

Cylindrical

As before, we start with the simplest bounded region  in  to describe in cylindrical coordinates, in the form of a cylindrical
box,  (Figure ). Suppose we divide each interval into , and 
subdivisions such that , and . Then we can state the following definition for a triple integral in
cylindrical coordinates.

Figure : A cylindrical box  described by cylindrical coordinates.

Consider the cylindrical box (expressed in cylindrical coordinates)

If the function  is continuous on  and if  is any sample point in the cylindrical subbox 
 (Figure ), then we can define the triple integral in cylindrical coordinates as

the limit of a triple Riemann sum, provided the following limit exists:

r = c c θ = α

α x

(x, y, z) x = k, y = l z = m k, l
m yz xz xy

(r, θ, z) r = c, θ = α z = m c,α m

α xy

xy + =x2 y2 c2

r = c

15.7.1

15.7.1

+ =x2 y2 c2 = ( + )z2 c2 x2 y2 + + =x2 y2 z2 c2 z = c( + )x2 y2

r = c z = cr + =r2 z2 c2 z = cr2

B R
3

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d} 15.7.2 l, m n

Δr = , Δθ =b⋅a
l

β⋅α
m Δz = d⋅c

n

15.7.2 B

 DEFINITION: triple integral in cylindrical coordinates

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}.

f(r, θ, z) B ( , , )r∗
ijk

θ∗
ijk

z∗
ijk

= | , | ×| , | × | , |Bijk ri−1 ri θj−1 θj zk−1 ki 15.7.2

f( , , )ΔrΔθΔz.lim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

r∗
ijk

θ∗
ijk

z∗
ijk
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Note that if  is the function in rectangular coordinates and the box  is expressed in rectangular coordinates, then the
triple integral

is equal to the triple integral

and we have

As mentioned in the preceding section, all the properties of a double integral work well in triple integrals, whether in rectangular
coordinates or cylindrical coordinates. They also hold for iterated integrals. To reiterate, in cylindrical coordinates, Fubini’s
theorem takes the following form:

Suppose that  is continuous on a rectangular box  which when described in cylindrical coordinates looks like 
.

Then  and

The iterated integral may be replaced equivalently by any one of the other five iterated integrals obtained by integrating with
respect to the three variables in other orders.

Cylindrical coordinate systems work well for solids that are symmetric around an axis, such as cylinders and cones. Let us look at
some examples before we define the triple integral in cylindrical coordinates on general cylindrical regions.

Evaluate the triple integral

where the cylindrical box  is 

Solution

As stated in Fubini’s theorem, we can write the triple integral as the iterated integral

The evaluation of the iterated integral is straightforward. Each variable in the integral is independent of the others, so we can
integrate each variable separately and multiply the results together. This makes the computation much easier:

g(x, y, z) B

g(x, y, z)dV∭
B

g(r cosθ, r sin θ, z)r dr dθdz∭
B

g(x, y, z)dV = g(r cosθ, r sin θ, z)r dr dθdz = f(r, θ z)r dr dθdz.∭
B

∭
B

∭
B

 Theorem: Fubini’s Theorem in Cylindrical Coordinates

g(x, y, z) B

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}

g(x, y, z) = g(r cosθ, r sin θ, z) = f(r, θ, z)

g(x, y, z)dV = f(r, θ, z)r dr dθdz.∭
B

∫
d

c

∫
α

β

∫
b

a

 Example : Evaluating a Triple Integral over a Cylindrical Box15.7.1

(zr sin θ)r dr dθdz∭
B

B B = {(r, θ, z)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, 0, ≤ z ≤ 4}.

(zr sin θ)r dr dθdz = (zr sin θ)r dz dr dθ.∭
B

∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0

(zr sin θ)r dz dr dθ =( sin θ dθ)( dr)( z dz)∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0
∫

π/2

0
∫

2

0
r2 ∫

4

0

= ( )( )( ) = .−cosθ|
π/2
0

r3

3

∣

∣
∣
2

0

z2

2

∣

∣
∣
4

0

64

3
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Evaluate the triple integral

Hint

Follow the same steps as in the previous example.

Answer

If the cylindrical region over which we have to integrate is a general solid, we look at the projections onto the coordinate planes.
Hence the triple integral of a continuous function  over a general solid region 

 in  where  is the projection of  onto the -plane, is

In particular, if , then we have

Similar formulas exist for projections onto the other coordinate planes. We can use polar coordinates in those planes if necessary.

Consider the region  inside the right circular cylinder with equation , bounded below by the -plane and
bounded above by the sphere with radius  centered at the origin (Figure 15.5.3). Set up a triple integral over this region with a
function  in cylindrical coordinates.

Figure : Setting up a triple integral in cylindrical coordinates over a cylindrical region.

Solution

First, identify that the equation for the sphere is . We can see that the limits for  are from  to .
Then the limits for  are from  to . Finally, the limits for  are from  to . Hence the region is 

 Therefore, the triple integral is

 Exercise :15.7.1

rz sin θr dz dr dθ.∫
θ=π

θ=0
∫

r=1

r=0
∫

z=4

z=0

8

f(r, θ, z)
E = {(r, θ, z)|(r, θ) ∈ D, (r, θ) ≤ z ≤ (r, θ)}u1 u2 R

3 D E rθ

f(r, θ, z)r dr dθdz = [ f(r, θ, z)dz] r dr dθ.∭
E

∬
D

∫
(r,θ)u2

(r,θ)u1

D = {(r, θ)| (θ) ≤ r ≤ (θ),α ≤ θ ≤ β}G1 g2

f(r, θ, z)r dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=β

θ=α

∫
r= (θ)g2

r= (θ)g1

∫
z= (r,θ)u2

z= (r,θ)u1

 Example : Setting up a Triple Integral in Cylindrical Coordinates over a General Region15.7.2

E r = 2 sin θ rθ

4
f(r, θ, z)

15.7.3

+ = 16r2 z2 z 0 z = 16 −r2
− −−−−−

√

r 0 r = 2 sin θ θ 0 π

E = {(r, θ, z)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, 0 ≤ z ≤ }.16 −r2
− −−−−−

√

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z= 16−r2√

z=0
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Consider the region inside the right circular cylinder with equation  bounded below by the -plane and bounded
above by . Set up a triple integral with a function  in cylindrical coordinates.

Hint

Analyze the region, and draw a sketch.

Answer

Let  be the region bounded below by the cone  and above by the paraboloid . (Figure
15.5.4). Set up a triple integral in cylindrical coordinates to find the volume of the region, using the following orders of
integration:

a. 

b. 

Figure : Setting up a triple integral in cylindrical coordinates over a conical region.

Solution

a. The cone is of radius 1 where it meets the paraboloid. Since  and  (assuming
 is nonnegative), we have . Solving, we have . Since , we have .

Therefore . So the intersection of these two surfaces is a circle of radius  in the plane . The cone is the lower
bound for  and the paraboloid is the upper bound. The projection of the region onto the -plane is the circle of radius 
centered at the origin.

Thus, we can describe the region as .

Hence the integral for the volume is

b. We can also write the cone surface as  and the paraboloid as . The lower bound for  is zero, but the upper
bound is sometimes the cone and the other times it is the paraboloid. The plane  divides the region into two regions. Then
the region can be described as

 Exercise :15.7.2

r = 2 sin θ rθ

z = 4 −y f(r, θ, z)

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z=4−r sin θ

z=0

 Example : Setting up a Triple Integral in Two Ways15.7.3

E z = +x2 y2− −−−−−√ z = 2 − −x2 y2

dz dr dθ

dr dz dθ

15.7.4

z = 2 − − = 2 −x2 y2 r2 z = =+x2 y2− −−−−−
√ r2

r 2 − = rr2 +r−2 = (r+2)(r−1) = 0r2 r ≥ 0 r = 1
z = 1 1 z = 1
z xy 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ 2 − }r2

V = r dz dr dθ.∫
θ=2π

θ=0
∫

r=1

r=0
∫

z=2−r2

z=r

r = z = 2 −zr2 r

z = 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ z} ∪ {(r, θ, z)|0 ≤ θ ≤ 2π, 1 ≤ z ≤ 2, 0 ≤ r ≤ }.2 −z
− −−−

√
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Now the integral for the volume becomes

Redo the previous example with the order of integration .

Hint

Note that  is independent of  and .

Answer

 and

Let E be the region bounded below by the -plane, above by the sphere , and on the sides by the cylinder 
 (Figure 15.5.5). Set up a triple integral in cylindrical coordinates to find the volume of the region using the

following orders of integration, and in each case find the volume and check that the answers are the same:

a. 
b. .

Figure : Finding a cylindrical volume with a triple integral in cylindrical coordinates.

Solution

a. Note that the equation for the sphere is

and the equation for the cylinder is

Thus, we have for the region 

Hence the integral for the volume is

V = r dr dz dθ+ r dr dz dθ.∫
θ=2π

θ=0
∫

z=1

z=0
∫

r=z

r=0
∫

θ=2π

θ=0
∫

z=2

z=1
∫

r= 2−z√

r=0

 Exercise :15.7.3

dθdz dr

θ r z

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ 2 − }z2

V = r dθdz dr.∫
r=1

r=0
∫

z=2−r2

z=0
∫

θ=2π

θ=0

 Example : Finding a Volume with Triple Integrals in Two Ways15.7.4

rθ + + = 4x2 y2 z2

+ = 1x2 y2

dz dr dθ

dr dz dθ

15.7.5

+ + = 4 or + = 4x2 y2 z2 r2 z2

+ = 1 or = 1.x2 y2 r2

E

E = {(r, θ, z)|0 ≤ z ≤ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}4 −r2− −−−−
√

https://libretexts.org/
https://math.libretexts.org/@go/page/4551?pdf


15.7.7 https://math.libretexts.org/@go/page/4551

b. Since the sphere is , which is , and the cylinder is , which is , we have 
, that is, . Thus we have two regions, since the sphere and the cylinder intersect at  in the -plane

and

Hence the integral for the volume is

Redo the previous example with the order of integration .

Hint

A figure can be helpful. Note that  is independent of  and .

Answer

 and

Review of Spherical Coordinates

In three-dimensional space  in the spherical coordinate system, we specify a point  by its distance  from the origin, the polar
angle  from the positive -axis (same as in the cylindrical coordinate system), and the angle  from the positive -axis and the
line  (Figure ). Note that  and . (Refer to Cylindrical and Spherical Coordinates for a review.) Spherical
coordinates are useful for triple integrals over regions that are symmetric with respect to the origin.

V (E) = r dz dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
∫

z= 4−r2√

z=0

= [ ]dr dθ = (r )dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
⟩rz|

z= 4−r2√
z=0 ∫

θ=2π

θ=0
∫

r=1

r=0
4 −r2− −−−−

√

= ( − ) dθ = 2π( − ) cubic units.∫
2π

0

8

3
3
–

√
8

3
3
–

√

(15.7.1)

(15.7.2)

(15.7.3)

+ + = 4x2 y2 z2 + = 4r2 z2 + = 1x2 y2 = 1r2

1 + = 4z2 = 3z2 (1, )3
–

√ rz

= {(r, θ, z)|0 ≤ r ≤ , ≤ z ≤ 2, 0 ≤ θ ≤ 2π}E1 4 −r2− −−−−√ 3
–

√

= {(r, θ, z)|0 ≤ r ≤ 1, 0 ≤ z ≤ , 0 ≤ θ ≤ 2π}.E2 3
–

√

V (E) = r dr dz dθ+ r dr dz dθ∫
θ=2π

θ=0
∫

z=2

z= 3√
∫

r= 4−r2√

r=0
∫

θ=2π

θ=0
∫

z= 3√

z=0
∫

r=1

r=0

= π+( −3 )π = 2π( − ) cubic units.3
–

√
16

3
3
–

√
8

3
3
–

√

(15.7.4)

(15.7.5)

 Exercise 15.7.4

dθdz dr

θ r z

= {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ }E2 4 −r2
− −−−−

√

V = r dθdz dr.∫
r=1

r=0
∫

z= 4−r2√

z=r

∫
θ=2π

θ=0

R
3 P ρ

θ x φ z

OP 15.7.6 ρ > 0 0 ≤ φ ≤ π
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Figure : The spherical coordinate system locates points with two angles and a distance from the origin.

Recall the relationships that connect rectangular coordinates with spherical coordinates.

From spherical coordinates to rectangular coordinates:

From rectangular coordinates to spherical coordinates:

Other relationships that are important to know for conversions are

 These equations are used to convert from spherical coordinates to cylindrical coordinates.

and

 These equations are used to convert from cylindrical coordinates to spherical coordinates.

 shows a few solid regions that are convenient to express in spherical coordinates.

Figure : Spherical coordinates are especially convenient for working with solids bounded by these types of surfaces. (The
letter  indicates a constant.)

Integration in Spherical Coordinates
We now establish a triple integral in the spherical coordinate system, as we did before in the cylindrical coordinate system. Let the
function  be continuous in a bounded spherical box, . We then
divide each interval into  and  subdivisions such that . Now we can illustrate the

15.7.6

x = ρ sin φ cosθ, y = ρ sin φ sin θ, and z = ρ cos φ.

= + + , tan θ = , φ = arccos( ).ρ2 x2 y2 z2 y

x

z

+ +x2 y2 z2− −−−−−−−−−
√

r = ρ sin φ

θ = θ

z = ρ cos φ

ρ = +r2 z2− −−−−−
√

θ = θ

φ = arccos( )z

+r2 z2√

15.7.7

15.7.7
c

f(ρ, θ,φ) B = {(ρ, θ,φ)|a ≤ ρ ≤ b, α ≤ θ ≤ β, γ ≤ φ ≤ ψ}

l,m,n n Δρ = , Δθ = . Δφ =b−a

l

β−α

m

ψ−γ

n
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following theorem for triple integrals in spherical coordinates with  being any sample point in the spherical subbox 
. For the volume element of the subbox  in spherical coordinates, we have , as shown in

the following figure.

Figure : The volume element of a box in spherical coordinates.

The triple integral in spherical coordinates is the limit of a triple Riemann sum,

provided the limit exists.

As with the other multiple integrals we have examined, all the properties work similarly for a triple integral in the spherical
coordinate system, and so do the iterated integrals. Fubini’s theorem takes the following form.

If  is continuous on a spherical solid box , then

This iterated integral may be replaced by other iterated integrals by integrating with respect to the three variables in other
orders.

As stated before, spherical coordinate systems work well for solids that are symmetric around a point, such as spheres and cones.
Let us look at some examples before we consider triple integrals in spherical coordinates on general spherical regions.

Evaluate the iterated triple integral

Solution

As before, in this case the variables in the iterated integral are actually independent of each other and hence we can integrate
each piece and multiply:

( , , )ρ∗
ijk θ∗

ijk φ∗
ijk

Bijk ΔV ΔV = (Δρ) (ρΔφ) (ρ sin φΔθ)

15.7.8

 Definition: triple integral in spherical coordinates

f( , , )( sin φΔρΔθΔφlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

ρ∗
ijk θ∗

ijk φ∗
ijk ρ∗

ijk)2

 Theorem: Fubini’s Theorem for Spherical Coordinates

f(ρ, θ,φ) B = [a, b] × [α, β] × [γ,ψ]

f(ρ, θ,φ) sin φdρ dφ dθ = f(ρ, θ,φ) sin φ dρ dφ dθ.∭
B

ρ2 ∫
φ=ψ

φ=γ

∫
θ=β

θ=α

∫
ρ=b

ρ=a

ρ2

 Example : Evaluating a Triple Integral in Spherical Coordinates15.7.5

sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2

sin φ dρ dφ dθ = dθ sin φ dφ dρ = (2π) (1) ( ) =∫
2π

0
∫

π/2

0
∫

1

0
ρ2 ∫

2π

0
∫

π/2

0
∫

1

0
ρ2 1

3

2π

3
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The concept of triple integration in spherical coordinates can be extended to integration over a general solid, using the
projections onto the coordinate planes. Note that  and  mean the increments in volume and area, respectively. The
variables  and  are used as the variables for integration to express the integrals.

The triple integral of a continuous function  over a general solid region

in , where  is the projection of  onto the -plane, is

In particular, if , the we have

Similar formulas occur for projections onto the other coordinate planes.

Set up an integral for the volume of the region bounded by the cone  and the hemisphere 
 (see the figure below).

Figure : A region bounded below by a cone and above by a hemisphere.

Solution

Using the conversion formulas from rectangular coordinates to spherical coordinates, we have:

For the cone:  or  or  or .

For the sphere:  or  or  or .

Thus, the triple integral for the volume is

Set up a triple integral for the volume of the solid region bounded above by the sphere  and bounded below by the cone 
.

Hint

Follow the steps of the previous example.

dV dA

V A

f(ρ, θ,φ)

E = {(ρ, θ,φ)|(ρ, θ) ∈ D, (ρ, θ) ≤ φ ≤ (ρ, θ)}u1 u2

R
3 D E ρθ

f(ρ, θ,φ)dV = [ f(ρ, θ,φ)dφ] dA.∭
E

∬
D

∫
(ρ,θ)u2

(ρ,θ)u1

D = {(ρ, θ)| (θ) ≤ ρ ≤ (θ), α ≤ θ ≤ β}g1 g2

f(ρ, θ,φ)dV = f(ρ, θ,φ) sin φ dφ dρ dθ.∭
E

∫
β

α

∫
(θ)g2

(θ)g1

∫
(ρ,θ)u2

(ρ,θ)u1

ρ2

 Example : Setting up a Triple Integral in Spherical Coordinates15.7.6

z = 3( + )x2 y2− −−−−−−−√
z = 4 − −x2 y2

− −−−−−−−−
√

15.7.9

z = 3( + )x2 y2− −−−−−−−
√ ρ cos φ = ρ sin φ3

–
√ tan φ = 1

3√
φ = π

6

z = 4 − −x2 y2− −−−−−−−−
√ + + = 4z2 x2 y2 = 4ρ2 ρ = 2

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ+π/6

φ=0
∫

ρ=2

ρ=0
ρ2

 Exercise 15.7.5

ρ = 2
φ = π/3
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Answer

Let  be the region bounded below by the cone  and above by the sphere  (Figure 15.5.10).
Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:

a. 
b. 

Figure :. A region bounded below by a cone and above by a sphere.

Solution

a. Use the conversion formulas to write the equations of the sphere and cone in spherical coordinates.

For the sphere:

For the cone:

Hence the integral for the volume of the solid region  becomes

b. Consider the -plane. Note that the ranges for  and  (from part a.) are

V (E) = sin φ dρ dφ dθ∫
θ=2π

θ=0
∫

φ=π/3

φ=0
∫

ρ=2

ρ=0
ρ2

 Example : Interchanging Order of Integration in Spherical Coordinates15.7.7

E z = +x2 y2− −−−−−
√ z = + +x2 y2 z2

dρ dϕ dθ

dφ dρ dθ

15.7.10

+ + = zx2 y2 z2

= ρ cos φρ2

ρ = cos φ.

(15.7.6)

(15.7.7)

(15.7.8)

z = +x2 y2
− −−−−−

√

ρ cos φ = φ ϕρ2 sin2 cos2
− −−−−−−−−−−−

√

ρ cos φ = φ ( ϕ+ ϕ)ρ2 sin2 cos2 sin2
− −−−−−−−−−−−−−−−−−−−

√

ρ cos φ = ρ sin φ

cos φ = sin φ

φ = π/4.

(15.7.9)

(15.7.10)

(15.7.11)

(15.7.12)

(15.7.13)

(15.7.14)

E

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/4

φ=0
∫

ρ=cos φ

ρ=0
ρ2

φρ φ ρ

0 ≤ ρ /2and ≤ ρ12
–

√ 2
–

√

0 ≤ φ ≤ π/40 ≤ ρ ≤ cos φ

(15.7.15)

(15.7.16)
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The curve  meets the line  at the point . Thus, to change the order of integration, we need to
use two pieces:

and

Hence the integral for the volume of the solid region  becomes

In each case, the integration results in .

Before we end this section, we present a couple of examples that can illustrate the conversion from rectangular coordinates to
cylindrical coordinates and from rectangular coordinates to spherical coordinates.

Convert the following integral into cylindrical coordinates:

Solution

The ranges of the variables are

The first two inequalities describe the right half of a circle of radius . Therefore, the ranges for  and  are

The limits of  are , hence

Convert the following integral into spherical coordinates:

Solution

The ranges of the variables are

ρ = cos φ φ = π/4 (π/4, /2)2
–

√

0 ≤ ρ ≤ /2, 0 ≤ φ ≤ π/42
–

√

/2 ≤ ρ ≤ 1, 0 ≤ φ ≤ ρ.2
–

√ cos−1

E

V (E) = sin φ dφ dρ dθ+ sin φ dφ dρ dθ∫
θ=2π

θ=0
∫

ρ= /22√

ρ=0
∫

φ=π/4

φ=0
ρ2 ∫

θ=2π

θ=0
∫

ρ=1

ρ= /22√
∫

φ= ρcos−1

φ=0
ρ2

V (E) = π
8

 Example : Converting from Rectangular Coordinates to Cylindrical Coordinates15.7.8

xyz dz dx dy.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

−1 ≤ y ≤ y

0 ≤ x ≤ 1 −y2
− −−−−

√

+ ≤ z ≤ .x2 y2 +x2 y2
− −−−−−

√

(15.7.17)

(15.7.18)

(15.7.19)

1 θ r

− ≤ θ ≤ and 0 ≤ r ≤ 1.
π

2

π

2

z ≤ z ≤ rr2

xyz dz dx dy = r(r cosθ) (r sin θ) z dz dr dθ.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

∫
θ=π/2

θ=−π/2
∫

r=1

r=0
∫

z=r

z=r2

 Example : Converting from Rectangular Coordinates to Spherical Coordinates15.7.9

( + + )dz dx dy.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2

0 ≤ y ≤ 3

0 ≤ x ≤ 9 −y2
− −−−−

√

≤ z ≤ .+x2 y2
− −−−−−

√ 18 − −x2 y2
− −−−−−−−−−

√

(15.7.20)

(15.7.21)

(15.7.22)
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The first two ranges of variables describe a quarter disk in the first quadrant of the -plane. Hence the range for  is 
.

The lower bound  is the upper half of a cone and the upper bound  is the upper half of a
sphere. Therefore, we have , which is .

For the ranges of  we need to find where the cone and the sphere intersect, so solve the equation

This gives

Putting this together, we obtain

Use rectangular, cylindrical, and spherical coordinates to set up triple integrals for finding the volume of the region inside the
sphere  but outside the cylinder .

Answer: Rectangular

Answer: Cylindrical

Answer: Spherical

Now that we are familiar with the spherical coordinate system, let’s find the volume of some known geometric figures, such as
spheres and ellipsoids.

Find the volume of the spherical planetarium in l’Hemisphèric in Valencia, Spain, which is five stories tall and has a radius of
approximately  ft, using the equation .

xy θ

0 ≤ θ ≤ π

2

z = +x2 y2− −−−−−√ z = 18 − −x2 y2− −−−−−−−−−√
0 ≤ ρ ≤ 18

−−
√ 0 ≤ ρ ≤ 3 2

–
√

φ

+ = 18r2 z2

( + = 18+x2 y2
− −−−−−

√ )2 z2

+ = 18z2 z2

2 = 18z2

= 9z2

z = 3.

(15.7.23)

(15.7.24)

(15.7.25)

(15.7.26)

(15.7.27)

(15.7.28)

3 cos φ = 32
–

√

cos φ =
1

2
–

√

φ = .
π

4

(15.7.29)

(15.7.30)

(15.7.31)

( + + )dz dx dy = sin φ dρ dθdφ.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2 ∫

φ=π/4

φ=0
∫

θ=π/2

θ=0
∫

ρ=3 2√

ρ=0
ρ4

 Exercise :15.7.6

+ + = 4x2 y2 z2 + = 1x2 y2

dz dy dx− dz dy dx.∫
x=2

x=−2
∫

y= 4−x2√

y=− 4−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√
∫

x=1

x=−1
∫

y= 1−x2√

y=− 1−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√

r dz dr dθ.∫
θ=2π

θ=0
∫

r=2

r=1
∫

z= 4−r2√

z=− 4−r2√

sin φ dρ dθdφ.∫
φ=5π/6

φ=π/6
∫

θ=2π

θ=0
∫

ρ=2

ρ=csc φ

ρ2

 Example : Chapter Opener: Finding the Volume of l’Hemisphèric15.7.10

50 + + =x2 y2 z2 r2
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Figure : (credit: modification of work by Javier Yaya Tur, Wikimedia Commons)

Solution

We calculate the volume of the ball in the first octant, where , and , using spherical coordinates, and then
multiply the result by  for symmetry. Since we consider the region  as the first octant in the integral, the ranges of the
variables are

Therefore,

This exactly matches with what we knew. So for a sphere with a radius of approximately  ft, the volume is 
.

For the next example we find the volume of an ellipsoid.

Find the volume of the ellipsoid .

Solution

We again use symmetry and evaluate the volume of the ellipsoid using spherical coordinates. As before, we use the first octant 
, and  and then multiply the result by .

In this case the ranges of the variables are

Also, we need to change the rectangular to spherical coordinates in this way:

Then the volume of the ellipsoid becomes

15.7.11

x ≤ 0, y ≤ 0 z ≤ 0
8 D

0 ≤ φ ≤ , 0 ≤ ρ ≤ r, 0 ≤ θ ≤ .
π

2

π

2

V = dx dy dz = 8 sin θ dφ dρ dφ∭
D

∫
θ=π/2

θ=0
∫

ρ=π

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8 dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=r

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8 ( ) ( ) (1)
π

2

r3

3

= π .
4

3
r3

(15.7.32)

(15.7.33)

(15.7.34)

(15.7.35)

50
π(50 ≈ 523, 600 f4

3
)3 t3

 Example : Finding the Volume of an Ellipsoid15.7.11

+ + = 1x2

a2

y2

b2

z2

c2

x ≤ 0, y ≤ 0 z ≤ 0 8

0 ≤ φ ≤ 0 ≤ ρ ≤ 1, and 0 ≤ θ ≤ .
π

2

π

2

x = aρ cos φ sin θ, y = bρ sin φ sin θ, andz = cp cosθ.
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Find the volume of the space inside the ellipsoid  and outside the sphere .

Solution

This problem is directly related to the l’Hemisphèric structure. The volume of space inside the ellipsoid and outside the sphere
might be useful to find the expense of heating or cooling that space. We can use the preceding two examples for the volume of
the sphere and ellipsoid and then substract.

First we find the volume of the ellipsoid using  ft,  ft, and  ft in the result from Example. Hence the
volume of the ellipsoid is

From Example, the volume of the sphere is

Therefore, the volume of the space inside the ellipsoid  and outside the sphere  is
approximately

Hot air ballooning is a relaxing, peaceful pastime that many people enjoy. Many balloonist gatherings take place around the
world, such as the Albuquerque International Balloon Fiesta. The Albuquerque event is the largest hot air balloon festival in
the world, with over  balloons participating each year.

Figure : Balloons lift off at the  Albuquerque International Balloon Fiesta. (credit: David Herrera, Flickr)

As the name implies, hot air balloons use hot air to generate lift. (Hot air is less dense than cooler air, so the balloon floats as
long as the hot air stays hot.) The heat is generated by a propane burner suspended below the opening of the basket. Once the
balloon takes off, the pilot controls the altitude of the balloon, either by using the burner to heat the air and ascend or by using
a vent near the top of the balloon to release heated air and descend. The pilot has very little control over where the balloon

V = dx dy dz∭
D

= 8 abc sin θ dφ dρ dθ∫
θ=π/2

θ=0
∫

ρ=1

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8abc dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8abc( )( ) (1)
π

2

1

3

= πabc.
4

3

(15.7.36)

(15.7.37)

(15.7.38)

(15.7.39)

(15.7.40)

(15.7.41)

 Example : Finding the Volume of the Space Inside an Ellipsoid and Outside a Sphere15.7.12

+ + = 1x2

752

y2

802

z2

902
+ + =x2 y2 z2 502

a = 75 b = 80 c = 90

= π(75)(80)(90) ≈ 2, 262, 000 f .Vellipsoid
4

3
t3

≈ 523, 600 f .Vsphere t3

+ + = 1x2

752

y2

802

z2

902 + + =x2 y2 z2 502

= − = 1, 738, 400 f .VHemispheric Vellipsoid Vsphere t3

 Student Project: Hot air balloons
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goes, however—balloons are at the mercy of the winds. The uncertainty over where we will end up is one of the reasons
balloonists are attracted to the sport.

In this project we use triple integrals to learn more about hot air balloons. We model the balloon in two pieces. The top of the
balloon is modeled by a half sphere of radius 28

feet. The bottom of the balloon is modeled by a frustum of a cone (think of an ice cream cone with the pointy end cut off). The
radius of the large end of the frustum is  feet and the radius of the small end of the frustum is  feet. A graph of our balloon
model and a cross-sectional diagram showing the dimensions are shown in the following figure.

Figure : (a) Use a half sphere to model the top part of the balloon and a frustum of a cone to model the bottom part of
the balloon. (b) A cross section of the balloon showing its dimensions.

We first want to find the volume of the balloon. If we look at the top part and the bottom part of the balloon separately, we see
that they are geometric solids with known volume formulas. However, it is still worthwhile to set up and evaluate the integrals
we would need to find the volume. If we calculate the volume using integration, we can use the known volume formulas to
check our answers. This will help ensure that we have the integrals set up correctly for the later, more complicated stages of the
project.

1. Find the volume of the balloon in two ways.

a. Use triple integrals to calculate the volume. Consider each part of the balloon separately. (Consider using spherical
coordinates for the top part and cylindrical coordinates for the bottom part.)

b. Verify the answer using the formulas for the volume of a sphere, , and for the volume of a cone, .

In reality, calculating the temperature at a point inside the balloon is a tremendously complicated endeavor. In fact, an entire
branch of physics (thermodynamics) is devoted to studying heat and temperature. For the purposes of this project, however, we
are going to make some simplifying assumptions about how temperature varies from point to point within the balloon. Assume
that just prior to liftoff, the temperature (in degrees Fahrenheit) of the air inside the balloon varies according to the function

2. What is the average temperature of the air in the balloon just prior to liftoff? (Again, look at each part of the balloon
separately, and do not forget to convert the function into spherical coordinates when looking at the top part of the balloon.)

Now the pilot activates the burner for  seconds. This action affects the temperature in a -foot-wide column  feet high,
directly above the burner. A cross section of the balloon depicting this column in shown in the following figure

28 28

15.7.13

V = π4
3

r3 V = π h1
3

r2

(r, θ, z) = +210.T0
z−r

10

10 12 20
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Figure : Activating the burner heats the air in a -foot-high, -foot-wide column directly above the burner.

Assume that after the pilot activates the burner for  seconds, the temperature of the air in the column described above
increases according to the formula

Then the temperature of the air in the column is given by

while the temperature in the remainder of the balloon is still given by

3. Find the average temperature of the air in the balloon after the pilot has activated the burner for  seconds.

Key Concepts
To evaluate a triple integral in cylindrical coordinates, use the iterated integral

To evaluate a triple integral in spherical coordinates, use the iterated integral

Key Equations

Triple integral in cylindrical coordinates

Triple integral in spherical coordinates

Glossary

triple integral in cylindrical coordinates

the limit of a triple Riemann sum, provided the following limit exists:

15.7.14 20 12

10

H(r, θ, z) = −2z−48.

(r, θ, z) = +210 +(−2z−48),T1
z−r

10

(r, θ, z) = +210.T0
z−r

10

10

f(r, θ, z)r dz dr dθ.∫
θ=β

θ=α

∫
r= (θ)g2

r= (θ)g1

∫
(r,θ)u2

z= (r,θ)u1

f(ρ, θ,φ) sinφ dφ dρ dθ.∫
θ=β

θ=α

∫
ρ= (θ)g2

ρ= (θ)g1

∫
(r,θ)u2

φ= (r,θ)u1

ρ2

g(s, y, z)dV = g(r cosθ, r sin θ, z)r dr dθdz = f(r, θ, z)r dr dθdz∭
B

∭
B

∭
B

f(ρ, θ,φ) sinφ dρ dφ dθ = f(ρ, θ,φ) sin φ dρ dφ dθ∭
B

ρ2 ∫
φ=ψ

φ=γ

∫
θ=β

θ=α

∫
ρ=b

ρ=a

ρ2
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triple integral in spherical coordinates

the limit of a triple Riemann sum, provided the following limit exists:

15.7: Triple Integrals in Cylindrical Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.5: Triple Integrals in Cylindrical and Spherical Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0.
Original source: https://openstax.org/details/books/calculus-volume-1.
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15.8: Triple Integrals in Spherical Coordinates

Evaluate a triple integral by changing to cylindrical coordinates.
Evaluate a triple integral by changing to spherical coordinates.

Earlier in this chapter we showed how to convert a double integral in rectangular coordinates into a double integral in polar
coordinates in order to deal more conveniently with problems involving circular symmetry. A similar situation occurs with triple
integrals, but here we need to distinguish between cylindrical symmetry and spherical symmetry. In this section we convert triple
integrals in rectangular coordinates into a triple integral in either cylindrical or spherical coordinates.

Also recall the chapter prelude, which showed the opera house l’Hemisphèric in Valencia, Spain. It has four sections with one of
the sections being a theater in a five-story-high sphere (ball) under an oval roof as long as a football field. Inside is an IMAX
screen that changes the sphere into a planetarium with a sky full of  twinkling stars. Using triple integrals in spherical
coordinates, we can find the volumes of different geometric shapes like these.

Review of Cylindrical Coordinates

As we have seen earlier, in two-dimensional space  a point with rectangular coordinates  can be identified with  in
polar coordinates and vice versa, where ,  and  are the relationships between
the variables.

In three-dimensional space  a point with rectangular coordinates  can be identified with cylindrical coordinates 
and vice versa. We can use these same conversion relationships, adding  as the vertical distance to the point from the -plane as
shown in .

Figure : Cylindrical coordinates are similar to polar coordinates with a vertical  coordinate added.

To convert from rectangular to cylindrical coordinates, we use the conversion

To convert from cylindrical to rectangular coordinates, we use

 and

Note that that -coordinate remains the same in both cases.

In the two-dimensional plane with a rectangular coordinate system, when we say  (constant) we mean an unbounded vertical
line parallel to the -axis and when  (constant) we mean an unbounded horizontal line parallel to the -axis. With the polar
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coordinate system, when we say  (constant), we mean a circle of radius  units and when  (constant) we mean an
infinite ray making an angle  with the positive -axis.

Similarly, in three-dimensional space with rectangular coordinates  the equations  and  where  and 
 are constants, represent unbounded planes parallel to the -plane, -plane and -plane, respectively. With cylindrical

coordinates , by , and , where , and  are constants, we mean an unbounded vertical cylinder with
the z-axis as its radial axis; a plane making a constant angle  with the -plane; and an unbounded horizontal plane parallel to the 

-plane, respectively. This means that the circular cylinder  in rectangular coordinates can be represented simply as 
 in cylindrical coordinates. (Refer to Cylindrical and Spherical Coordinates for more review.)

Integration in Cylindrical Coordinates

Triple integrals can often be more readily evaluated by using cylindrical coordinates instead of rectangular coordinates. Some
common equations of surfaces in rectangular coordinates along with corresponding equations in cylindrical coordinates are listed in
Table . These equations will become handy as we proceed with solving problems using triple integrals.

Table : Equations of Some Common Shapes
Circular cylinder Circular cone Sphere Paraboloid

Rectangular

Cylindrical

As before, we start with the simplest bounded region  in  to describe in cylindrical coordinates, in the form of a cylindrical
box,  (Figure ). Suppose we divide each interval into , and 
subdivisions such that , and . Then we can state the following definition for a triple integral in
cylindrical coordinates.

Figure : A cylindrical box  described by cylindrical coordinates.

Consider the cylindrical box (expressed in cylindrical coordinates)

If the function  is continuous on  and if  is any sample point in the cylindrical subbox 
 (Figure ), then we can define the triple integral in cylindrical coordinates as

the limit of a triple Riemann sum, provided the following limit exists:

r = c c θ = α

α x

(x, y, z) x = k, y = l z = m k, l
m yz xz xy

(r, θ, z) r = c, θ = α z = m c,α m

α xy

xy + =x2 y2 c2

r = c

15.8.1

15.8.1

+ =x2 y2 c2 = ( + )z2 c2 x2 y2 + + =x2 y2 z2 c2 z = c( + )x2 y2

r = c z = cr + =r2 z2 c2 z = cr2

B R
3

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d} 15.8.2 l, m n

Δr = , Δθ =b⋅a
l

β⋅α
m Δz = d⋅c

n

15.8.2 B

 DEFINITION: triple integral in cylindrical coordinates

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}.
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Note that if  is the function in rectangular coordinates and the box  is expressed in rectangular coordinates, then the
triple integral

is equal to the triple integral

and we have

As mentioned in the preceding section, all the properties of a double integral work well in triple integrals, whether in rectangular
coordinates or cylindrical coordinates. They also hold for iterated integrals. To reiterate, in cylindrical coordinates, Fubini’s
theorem takes the following form:

Suppose that  is continuous on a rectangular box  which when described in cylindrical coordinates looks like 
.

Then  and

The iterated integral may be replaced equivalently by any one of the other five iterated integrals obtained by integrating with
respect to the three variables in other orders.

Cylindrical coordinate systems work well for solids that are symmetric around an axis, such as cylinders and cones. Let us look at
some examples before we define the triple integral in cylindrical coordinates on general cylindrical regions.

Evaluate the triple integral

where the cylindrical box  is 

Solution

As stated in Fubini’s theorem, we can write the triple integral as the iterated integral

The evaluation of the iterated integral is straightforward. Each variable in the integral is independent of the others, so we can
integrate each variable separately and multiply the results together. This makes the computation much easier:

g(x, y, z) B

g(x, y, z)dV∭
B

g(r cosθ, r sin θ, z)r dr dθdz∭
B

g(x, y, z)dV = g(r cosθ, r sin θ, z)r dr dθdz = f(r, θ z)r dr dθdz.∭
B

∭
B

∭
B

 Theorem: Fubini’s Theorem in Cylindrical Coordinates

g(x, y, z) B

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}

g(x, y, z) = g(r cosθ, r sin θ, z) = f(r, θ, z)

g(x, y, z)dV = f(r, θ, z)r dr dθdz.∭
B

∫
d

c

∫
α

β

∫
b

a

 Example : Evaluating a Triple Integral over a Cylindrical Box15.8.1

(zr sin θ)r dr dθdz∭
B

B B = {(r, θ, z)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, 0, ≤ z ≤ 4}.

(zr sin θ)r dr dθdz = (zr sin θ)r dz dr dθ.∭
B

∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0

(zr sin θ)r dz dr dθ =( sin θ dθ)( dr)( z dz)∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0
∫

π/2

0
∫

2

0
r2 ∫

4

0

= ( )( )( ) = .−cosθ|
π/2
0

r3

3

∣

∣
∣
2

0

z2

2

∣

∣
∣
4

0

64

3
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Evaluate the triple integral

Hint

Follow the same steps as in the previous example.

Answer

If the cylindrical region over which we have to integrate is a general solid, we look at the projections onto the coordinate planes.
Hence the triple integral of a continuous function  over a general solid region 

 in  where  is the projection of  onto the -plane, is

In particular, if , then we have

Similar formulas exist for projections onto the other coordinate planes. We can use polar coordinates in those planes if necessary.

Consider the region  inside the right circular cylinder with equation , bounded below by the -plane and
bounded above by the sphere with radius  centered at the origin (Figure 15.5.3). Set up a triple integral over this region with a
function  in cylindrical coordinates.

Figure : Setting up a triple integral in cylindrical coordinates over a cylindrical region.

Solution

First, identify that the equation for the sphere is . We can see that the limits for  are from  to .
Then the limits for  are from  to . Finally, the limits for  are from  to . Hence the region is 

 Therefore, the triple integral is

 Exercise :15.8.1

rz sin θr dz dr dθ.∫
θ=π

θ=0
∫

r=1

r=0
∫

z=4

z=0

8

f(r, θ, z)
E = {(r, θ, z)|(r, θ) ∈ D, (r, θ) ≤ z ≤ (r, θ)}u1 u2 R

3 D E rθ

f(r, θ, z)r dr dθdz = [ f(r, θ, z)dz] r dr dθ.∭
E

∬
D

∫
(r,θ)u2

(r,θ)u1

D = {(r, θ)| (θ) ≤ r ≤ (θ),α ≤ θ ≤ β}G1 g2

f(r, θ, z)r dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=β

θ=α

∫
r= (θ)g2

r= (θ)g1

∫
z= (r,θ)u2

z= (r,θ)u1

 Example : Setting up a Triple Integral in Cylindrical Coordinates over a General Region15.8.2

E r = 2 sin θ rθ

4
f(r, θ, z)

15.8.3

+ = 16r2 z2 z 0 z = 16 −r2
− −−−−−

√

r 0 r = 2 sin θ θ 0 π

E = {(r, θ, z)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, 0 ≤ z ≤ }.16 −r2
− −−−−−

√

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z= 16−r2√

z=0
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Consider the region inside the right circular cylinder with equation  bounded below by the -plane and bounded
above by . Set up a triple integral with a function  in cylindrical coordinates.

Hint

Analyze the region, and draw a sketch.

Answer

Let  be the region bounded below by the cone  and above by the paraboloid . (Figure
15.5.4). Set up a triple integral in cylindrical coordinates to find the volume of the region, using the following orders of
integration:

a. 

b. 

Figure : Setting up a triple integral in cylindrical coordinates over a conical region.

Solution

a. The cone is of radius 1 where it meets the paraboloid. Since  and  (assuming
 is nonnegative), we have . Solving, we have . Since , we have .

Therefore . So the intersection of these two surfaces is a circle of radius  in the plane . The cone is the lower
bound for  and the paraboloid is the upper bound. The projection of the region onto the -plane is the circle of radius 
centered at the origin.

Thus, we can describe the region as .

Hence the integral for the volume is

b. We can also write the cone surface as  and the paraboloid as . The lower bound for  is zero, but the upper
bound is sometimes the cone and the other times it is the paraboloid. The plane  divides the region into two regions. Then
the region can be described as

 Exercise :15.8.2

r = 2 sin θ rθ

z = 4 −y f(r, θ, z)

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z=4−r sin θ

z=0

 Example : Setting up a Triple Integral in Two Ways15.8.3

E z = +x2 y2− −−−−−√ z = 2 − −x2 y2

dz dr dθ

dr dz dθ

15.8.4

z = 2 − − = 2 −x2 y2 r2 z = =+x2 y2− −−−−−
√ r2

r 2 − = rr2 +r−2 = (r+2)(r−1) = 0r2 r ≥ 0 r = 1
z = 1 1 z = 1
z xy 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ 2 − }r2

V = r dz dr dθ.∫
θ=2π

θ=0
∫

r=1

r=0
∫

z=2−r2

z=r

r = z = 2 −zr2 r

z = 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ z} ∪ {(r, θ, z)|0 ≤ θ ≤ 2π, 1 ≤ z ≤ 2, 0 ≤ r ≤ }.2 −z
− −−−

√
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Now the integral for the volume becomes

Redo the previous example with the order of integration .

Hint

Note that  is independent of  and .

Answer

 and

Let E be the region bounded below by the -plane, above by the sphere , and on the sides by the cylinder 
 (Figure 15.5.5). Set up a triple integral in cylindrical coordinates to find the volume of the region using the

following orders of integration, and in each case find the volume and check that the answers are the same:

a. 
b. .

Figure : Finding a cylindrical volume with a triple integral in cylindrical coordinates.

Solution

a. Note that the equation for the sphere is

and the equation for the cylinder is

Thus, we have for the region 

Hence the integral for the volume is

V = r dr dz dθ+ r dr dz dθ.∫
θ=2π

θ=0
∫

z=1

z=0
∫

r=z

r=0
∫

θ=2π

θ=0
∫

z=2

z=1
∫

r= 2−z√

r=0

 Exercise :15.8.3

dθdz dr

θ r z

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ 2 − }z2

V = r dθdz dr.∫
r=1

r=0
∫

z=2−r2

z=0
∫

θ=2π

θ=0

 Example : Finding a Volume with Triple Integrals in Two Ways15.8.4

rθ + + = 4x2 y2 z2

+ = 1x2 y2

dz dr dθ

dr dz dθ

15.8.5

+ + = 4 or + = 4x2 y2 z2 r2 z2

+ = 1 or = 1.x2 y2 r2

E

E = {(r, θ, z)|0 ≤ z ≤ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}4 −r2− −−−−
√
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b. Since the sphere is , which is , and the cylinder is , which is , we have 
, that is, . Thus we have two regions, since the sphere and the cylinder intersect at  in the -plane

and

Hence the integral for the volume is

Redo the previous example with the order of integration .

Hint

A figure can be helpful. Note that  is independent of  and .

Answer

 and

Review of Spherical Coordinates

In three-dimensional space  in the spherical coordinate system, we specify a point  by its distance  from the origin, the polar
angle  from the positive -axis (same as in the cylindrical coordinate system), and the angle  from the positive -axis and the
line  (Figure ). Note that  and . (Refer to Cylindrical and Spherical Coordinates for a review.) Spherical
coordinates are useful for triple integrals over regions that are symmetric with respect to the origin.

V (E) = r dz dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
∫

z= 4−r2√

z=0

= [ ]dr dθ = (r )dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
⟩rz|

z= 4−r2√
z=0 ∫

θ=2π

θ=0
∫

r=1

r=0
4 −r2− −−−−

√

= ( − ) dθ = 2π( − ) cubic units.∫
2π

0

8

3
3
–

√
8

3
3
–

√

(15.8.1)

(15.8.2)

(15.8.3)

+ + = 4x2 y2 z2 + = 4r2 z2 + = 1x2 y2 = 1r2

1 + = 4z2 = 3z2 (1, )3
–

√ rz

= {(r, θ, z)|0 ≤ r ≤ , ≤ z ≤ 2, 0 ≤ θ ≤ 2π}E1 4 −r2− −−−−√ 3
–

√

= {(r, θ, z)|0 ≤ r ≤ 1, 0 ≤ z ≤ , 0 ≤ θ ≤ 2π}.E2 3
–

√

V (E) = r dr dz dθ+ r dr dz dθ∫
θ=2π

θ=0
∫

z=2

z= 3√
∫

r= 4−r2√

r=0
∫

θ=2π

θ=0
∫

z= 3√

z=0
∫

r=1

r=0

= π+( −3 )π = 2π( − ) cubic units.3
–

√
16

3
3
–

√
8

3
3
–

√

(15.8.4)

(15.8.5)

 Exercise 15.8.4

dθdz dr

θ r z

= {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ }E2 4 −r2
− −−−−

√

V = r dθdz dr.∫
r=1

r=0
∫

z= 4−r2√

z=r

∫
θ=2π

θ=0

R
3 P ρ

θ x φ z

OP 15.8.6 ρ > 0 0 ≤ φ ≤ π
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Figure : The spherical coordinate system locates points with two angles and a distance from the origin.

Recall the relationships that connect rectangular coordinates with spherical coordinates.

From spherical coordinates to rectangular coordinates:

From rectangular coordinates to spherical coordinates:

Other relationships that are important to know for conversions are

 These equations are used to convert from spherical coordinates to cylindrical coordinates.

and

 These equations are used to convert from cylindrical coordinates to spherical coordinates.

 shows a few solid regions that are convenient to express in spherical coordinates.

Figure : Spherical coordinates are especially convenient for working with solids bounded by these types of surfaces. (The
letter  indicates a constant.)

Integration in Spherical Coordinates
We now establish a triple integral in the spherical coordinate system, as we did before in the cylindrical coordinate system. Let the
function  be continuous in a bounded spherical box, . We then
divide each interval into  and  subdivisions such that . Now we can illustrate the

15.8.6

x = ρ sin φ cosθ, y = ρ sin φ sin θ, and z = ρ cos φ.

= + + , tan θ = , φ = arccos( ).ρ2 x2 y2 z2 y

x

z

+ +x2 y2 z2− −−−−−−−−−
√

r = ρ sin φ

θ = θ

z = ρ cos φ

ρ = +r2 z2− −−−−−
√

θ = θ

φ = arccos( )z

+r2 z2√

15.8.7

15.8.7
c

f(ρ, θ,φ) B = {(ρ, θ,φ)|a ≤ ρ ≤ b, α ≤ θ ≤ β, γ ≤ φ ≤ ψ}

l,m,n n Δρ = , Δθ = . Δφ =b−a

l

β−α

m

ψ−γ

n
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following theorem for triple integrals in spherical coordinates with  being any sample point in the spherical subbox 
. For the volume element of the subbox  in spherical coordinates, we have , as shown in

the following figure.

Figure : The volume element of a box in spherical coordinates.

The triple integral in spherical coordinates is the limit of a triple Riemann sum,

provided the limit exists.

As with the other multiple integrals we have examined, all the properties work similarly for a triple integral in the spherical
coordinate system, and so do the iterated integrals. Fubini’s theorem takes the following form.

If  is continuous on a spherical solid box , then

This iterated integral may be replaced by other iterated integrals by integrating with respect to the three variables in other
orders.

As stated before, spherical coordinate systems work well for solids that are symmetric around a point, such as spheres and cones.
Let us look at some examples before we consider triple integrals in spherical coordinates on general spherical regions.

Evaluate the iterated triple integral

Solution

As before, in this case the variables in the iterated integral are actually independent of each other and hence we can integrate
each piece and multiply:

( , , )ρ∗
ijk θ∗

ijk φ∗
ijk

Bijk ΔV ΔV = (Δρ) (ρΔφ) (ρ sin φΔθ)

15.8.8

 Definition: triple integral in spherical coordinates

f( , , )( sin φΔρΔθΔφlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

ρ∗
ijk θ∗

ijk φ∗
ijk ρ∗

ijk)2

 Theorem: Fubini’s Theorem for Spherical Coordinates

f(ρ, θ,φ) B = [a, b] × [α, β] × [γ,ψ]

f(ρ, θ,φ) sin φdρ dφ dθ = f(ρ, θ,φ) sin φ dρ dφ dθ.∭
B

ρ2 ∫
φ=ψ

φ=γ

∫
θ=β

θ=α

∫
ρ=b

ρ=a

ρ2

 Example : Evaluating a Triple Integral in Spherical Coordinates15.8.5

sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2

sin φ dρ dφ dθ = dθ sin φ dφ dρ = (2π) (1) ( ) =∫
2π

0
∫

π/2

0
∫

1

0
ρ2 ∫

2π

0
∫

π/2

0
∫

1

0
ρ2 1

3

2π

3
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The concept of triple integration in spherical coordinates can be extended to integration over a general solid, using the
projections onto the coordinate planes. Note that  and  mean the increments in volume and area, respectively. The
variables  and  are used as the variables for integration to express the integrals.

The triple integral of a continuous function  over a general solid region

in , where  is the projection of  onto the -plane, is

In particular, if , the we have

Similar formulas occur for projections onto the other coordinate planes.

Set up an integral for the volume of the region bounded by the cone  and the hemisphere 
 (see the figure below).

Figure : A region bounded below by a cone and above by a hemisphere.

Solution

Using the conversion formulas from rectangular coordinates to spherical coordinates, we have:

For the cone:  or  or  or .

For the sphere:  or  or  or .

Thus, the triple integral for the volume is

Set up a triple integral for the volume of the solid region bounded above by the sphere  and bounded below by the cone 
.

Hint

Follow the steps of the previous example.

dV dA

V A

f(ρ, θ,φ)

E = {(ρ, θ,φ)|(ρ, θ) ∈ D, (ρ, θ) ≤ φ ≤ (ρ, θ)}u1 u2

R
3 D E ρθ

f(ρ, θ,φ)dV = [ f(ρ, θ,φ)dφ] dA.∭
E

∬
D

∫
(ρ,θ)u2

(ρ,θ)u1

D = {(ρ, θ)| (θ) ≤ ρ ≤ (θ), α ≤ θ ≤ β}g1 g2

f(ρ, θ,φ)dV = f(ρ, θ,φ) sin φ dφ dρ dθ.∭
E

∫
β

α

∫
(θ)g2

(θ)g1

∫
(ρ,θ)u2

(ρ,θ)u1

ρ2

 Example : Setting up a Triple Integral in Spherical Coordinates15.8.6

z = 3( + )x2 y2− −−−−−−−√
z = 4 − −x2 y2

− −−−−−−−−
√

15.8.9

z = 3( + )x2 y2− −−−−−−−
√ ρ cos φ = ρ sin φ3

–
√ tan φ = 1

3√
φ = π

6

z = 4 − −x2 y2− −−−−−−−−
√ + + = 4z2 x2 y2 = 4ρ2 ρ = 2

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ+π/6

φ=0
∫

ρ=2

ρ=0
ρ2

 Exercise 15.8.5

ρ = 2
φ = π/3
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Answer

Let  be the region bounded below by the cone  and above by the sphere  (Figure 15.5.10).
Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:

a. 
b. 

Figure :. A region bounded below by a cone and above by a sphere.

Solution

a. Use the conversion formulas to write the equations of the sphere and cone in spherical coordinates.

For the sphere:

For the cone:

Hence the integral for the volume of the solid region  becomes

b. Consider the -plane. Note that the ranges for  and  (from part a.) are

V (E) = sin φ dρ dφ dθ∫
θ=2π

θ=0
∫

φ=π/3

φ=0
∫

ρ=2

ρ=0
ρ2

 Example : Interchanging Order of Integration in Spherical Coordinates15.8.7

E z = +x2 y2− −−−−−
√ z = + +x2 y2 z2

dρ dϕ dθ

dφ dρ dθ

15.8.10

+ + = zx2 y2 z2

= ρ cos φρ2

ρ = cos φ.

(15.8.6)

(15.8.7)

(15.8.8)

z = +x2 y2
− −−−−−

√

ρ cos φ = φ ϕρ2 sin2 cos2
− −−−−−−−−−−−

√

ρ cos φ = φ ( ϕ+ ϕ)ρ2 sin2 cos2 sin2
− −−−−−−−−−−−−−−−−−−−

√

ρ cos φ = ρ sin φ

cos φ = sin φ

φ = π/4.

(15.8.9)

(15.8.10)

(15.8.11)

(15.8.12)

(15.8.13)

(15.8.14)

E

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/4

φ=0
∫

ρ=cos φ

ρ=0
ρ2

φρ φ ρ

0 ≤ ρ /2and ≤ ρ12
–

√ 2
–

√

0 ≤ φ ≤ π/40 ≤ ρ ≤ cos φ

(15.8.15)

(15.8.16)
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The curve  meets the line  at the point . Thus, to change the order of integration, we need to
use two pieces:

and

Hence the integral for the volume of the solid region  becomes

In each case, the integration results in .

Before we end this section, we present a couple of examples that can illustrate the conversion from rectangular coordinates to
cylindrical coordinates and from rectangular coordinates to spherical coordinates.

Convert the following integral into cylindrical coordinates:

Solution

The ranges of the variables are

The first two inequalities describe the right half of a circle of radius . Therefore, the ranges for  and  are

The limits of  are , hence

Convert the following integral into spherical coordinates:

Solution

The ranges of the variables are

ρ = cos φ φ = π/4 (π/4, /2)2
–

√

0 ≤ ρ ≤ /2, 0 ≤ φ ≤ π/42
–

√

/2 ≤ ρ ≤ 1, 0 ≤ φ ≤ ρ.2
–

√ cos−1

E

V (E) = sin φ dφ dρ dθ+ sin φ dφ dρ dθ∫
θ=2π

θ=0
∫

ρ= /22√

ρ=0
∫

φ=π/4

φ=0
ρ2 ∫

θ=2π

θ=0
∫

ρ=1

ρ= /22√
∫

φ= ρcos−1

φ=0
ρ2

V (E) = π
8

 Example : Converting from Rectangular Coordinates to Cylindrical Coordinates15.8.8

xyz dz dx dy.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

−1 ≤ y ≤ y

0 ≤ x ≤ 1 −y2
− −−−−

√

+ ≤ z ≤ .x2 y2 +x2 y2
− −−−−−

√

(15.8.17)

(15.8.18)

(15.8.19)

1 θ r

− ≤ θ ≤ and 0 ≤ r ≤ 1.
π

2

π

2

z ≤ z ≤ rr2

xyz dz dx dy = r(r cosθ) (r sin θ) z dz dr dθ.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

∫
θ=π/2

θ=−π/2
∫

r=1

r=0
∫

z=r

z=r2

 Example : Converting from Rectangular Coordinates to Spherical Coordinates15.8.9

( + + )dz dx dy.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2

0 ≤ y ≤ 3

0 ≤ x ≤ 9 −y2
− −−−−

√

≤ z ≤ .+x2 y2
− −−−−−

√ 18 − −x2 y2
− −−−−−−−−−

√

(15.8.20)

(15.8.21)

(15.8.22)
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The first two ranges of variables describe a quarter disk in the first quadrant of the -plane. Hence the range for  is 
.

The lower bound  is the upper half of a cone and the upper bound  is the upper half of a
sphere. Therefore, we have , which is .

For the ranges of  we need to find where the cone and the sphere intersect, so solve the equation

This gives

Putting this together, we obtain

Use rectangular, cylindrical, and spherical coordinates to set up triple integrals for finding the volume of the region inside the
sphere  but outside the cylinder .

Answer: Rectangular

Answer: Cylindrical

Answer: Spherical

Now that we are familiar with the spherical coordinate system, let’s find the volume of some known geometric figures, such as
spheres and ellipsoids.

Find the volume of the spherical planetarium in l’Hemisphèric in Valencia, Spain, which is five stories tall and has a radius of
approximately  ft, using the equation .

xy θ

0 ≤ θ ≤ π

2

z = +x2 y2− −−−−−√ z = 18 − −x2 y2− −−−−−−−−−√
0 ≤ ρ ≤ 18

−−
√ 0 ≤ ρ ≤ 3 2

–
√

φ

+ = 18r2 z2

( + = 18+x2 y2
− −−−−−

√ )2 z2

+ = 18z2 z2

2 = 18z2

= 9z2

z = 3.

(15.8.23)

(15.8.24)

(15.8.25)

(15.8.26)

(15.8.27)

(15.8.28)

3 cos φ = 32
–

√

cos φ =
1

2
–

√

φ = .
π

4

(15.8.29)

(15.8.30)

(15.8.31)

( + + )dz dx dy = sin φ dρ dθdφ.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2 ∫

φ=π/4

φ=0
∫

θ=π/2

θ=0
∫

ρ=3 2√

ρ=0
ρ4

 Exercise :15.8.6

+ + = 4x2 y2 z2 + = 1x2 y2

dz dy dx− dz dy dx.∫
x=2

x=−2
∫

y= 4−x2√

y=− 4−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√
∫

x=1

x=−1
∫

y= 1−x2√

y=− 1−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√

r dz dr dθ.∫
θ=2π

θ=0
∫

r=2

r=1
∫

z= 4−r2√

z=− 4−r2√

sin φ dρ dθdφ.∫
φ=5π/6

φ=π/6
∫

θ=2π

θ=0
∫

ρ=2

ρ=csc φ

ρ2

 Example : Chapter Opener: Finding the Volume of l’Hemisphèric15.8.10

50 + + =x2 y2 z2 r2
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Figure : (credit: modification of work by Javier Yaya Tur, Wikimedia Commons)

Solution

We calculate the volume of the ball in the first octant, where , and , using spherical coordinates, and then
multiply the result by  for symmetry. Since we consider the region  as the first octant in the integral, the ranges of the
variables are

Therefore,

This exactly matches with what we knew. So for a sphere with a radius of approximately  ft, the volume is 
.

For the next example we find the volume of an ellipsoid.

Find the volume of the ellipsoid .

Solution

We again use symmetry and evaluate the volume of the ellipsoid using spherical coordinates. As before, we use the first octant 
, and  and then multiply the result by .

In this case the ranges of the variables are

Also, we need to change the rectangular to spherical coordinates in this way:

Then the volume of the ellipsoid becomes

15.8.11

x ≤ 0, y ≤ 0 z ≤ 0
8 D

0 ≤ φ ≤ , 0 ≤ ρ ≤ r, 0 ≤ θ ≤ .
π

2

π

2

V = dx dy dz = 8 sin θ dφ dρ dφ∭
D

∫
θ=π/2

θ=0
∫

ρ=π

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8 dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=r

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8 ( ) ( ) (1)
π

2

r3

3

= π .
4

3
r3

(15.8.32)

(15.8.33)

(15.8.34)

(15.8.35)

50
π(50 ≈ 523, 600 f4

3
)3 t3

 Example : Finding the Volume of an Ellipsoid15.8.11

+ + = 1x2

a2

y2

b2

z2

c2

x ≤ 0, y ≤ 0 z ≤ 0 8

0 ≤ φ ≤ 0 ≤ ρ ≤ 1, and 0 ≤ θ ≤ .
π

2

π

2

x = aρ cos φ sin θ, y = bρ sin φ sin θ, andz = cp cosθ.
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Find the volume of the space inside the ellipsoid  and outside the sphere .

Solution

This problem is directly related to the l’Hemisphèric structure. The volume of space inside the ellipsoid and outside the sphere
might be useful to find the expense of heating or cooling that space. We can use the preceding two examples for the volume of
the sphere and ellipsoid and then substract.

First we find the volume of the ellipsoid using  ft,  ft, and  ft in the result from Example. Hence the
volume of the ellipsoid is

From Example, the volume of the sphere is

Therefore, the volume of the space inside the ellipsoid  and outside the sphere  is
approximately

Hot air ballooning is a relaxing, peaceful pastime that many people enjoy. Many balloonist gatherings take place around the
world, such as the Albuquerque International Balloon Fiesta. The Albuquerque event is the largest hot air balloon festival in
the world, with over  balloons participating each year.

Figure : Balloons lift off at the  Albuquerque International Balloon Fiesta. (credit: David Herrera, Flickr)

As the name implies, hot air balloons use hot air to generate lift. (Hot air is less dense than cooler air, so the balloon floats as
long as the hot air stays hot.) The heat is generated by a propane burner suspended below the opening of the basket. Once the
balloon takes off, the pilot controls the altitude of the balloon, either by using the burner to heat the air and ascend or by using
a vent near the top of the balloon to release heated air and descend. The pilot has very little control over where the balloon

V = dx dy dz∭
D

= 8 abc sin θ dφ dρ dθ∫
θ=π/2

θ=0
∫

ρ=1

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8abc dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8abc( )( ) (1)
π

2

1

3

= πabc.
4

3

(15.8.36)

(15.8.37)

(15.8.38)

(15.8.39)

(15.8.40)
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 Example : Finding the Volume of the Space Inside an Ellipsoid and Outside a Sphere15.8.12
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goes, however—balloons are at the mercy of the winds. The uncertainty over where we will end up is one of the reasons
balloonists are attracted to the sport.

In this project we use triple integrals to learn more about hot air balloons. We model the balloon in two pieces. The top of the
balloon is modeled by a half sphere of radius 28

feet. The bottom of the balloon is modeled by a frustum of a cone (think of an ice cream cone with the pointy end cut off). The
radius of the large end of the frustum is  feet and the radius of the small end of the frustum is  feet. A graph of our balloon
model and a cross-sectional diagram showing the dimensions are shown in the following figure.

Figure : (a) Use a half sphere to model the top part of the balloon and a frustum of a cone to model the bottom part of
the balloon. (b) A cross section of the balloon showing its dimensions.

We first want to find the volume of the balloon. If we look at the top part and the bottom part of the balloon separately, we see
that they are geometric solids with known volume formulas. However, it is still worthwhile to set up and evaluate the integrals
we would need to find the volume. If we calculate the volume using integration, we can use the known volume formulas to
check our answers. This will help ensure that we have the integrals set up correctly for the later, more complicated stages of the
project.

1. Find the volume of the balloon in two ways.

a. Use triple integrals to calculate the volume. Consider each part of the balloon separately. (Consider using spherical
coordinates for the top part and cylindrical coordinates for the bottom part.)

b. Verify the answer using the formulas for the volume of a sphere, , and for the volume of a cone, .

In reality, calculating the temperature at a point inside the balloon is a tremendously complicated endeavor. In fact, an entire
branch of physics (thermodynamics) is devoted to studying heat and temperature. For the purposes of this project, however, we
are going to make some simplifying assumptions about how temperature varies from point to point within the balloon. Assume
that just prior to liftoff, the temperature (in degrees Fahrenheit) of the air inside the balloon varies according to the function

2. What is the average temperature of the air in the balloon just prior to liftoff? (Again, look at each part of the balloon
separately, and do not forget to convert the function into spherical coordinates when looking at the top part of the balloon.)

Now the pilot activates the burner for  seconds. This action affects the temperature in a -foot-wide column  feet high,
directly above the burner. A cross section of the balloon depicting this column in shown in the following figure

28 28

15.8.13
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Figure : Activating the burner heats the air in a -foot-high, -foot-wide column directly above the burner.

Assume that after the pilot activates the burner for  seconds, the temperature of the air in the column described above
increases according to the formula

Then the temperature of the air in the column is given by

while the temperature in the remainder of the balloon is still given by

3. Find the average temperature of the air in the balloon after the pilot has activated the burner for  seconds.

Key Concepts
To evaluate a triple integral in cylindrical coordinates, use the iterated integral

To evaluate a triple integral in spherical coordinates, use the iterated integral

Key Equations

Triple integral in cylindrical coordinates

Triple integral in spherical coordinates

Glossary

triple integral in cylindrical coordinates

the limit of a triple Riemann sum, provided the following limit exists:

15.8.14 20 12
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z−r
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f(r, θ, z)r dz dr dθ.∫
θ=β

θ=α

∫
r= (θ)g2

r= (θ)g1

∫
(r,θ)u2

z= (r,θ)u1

f(ρ, θ,φ) sinφ dφ dρ dθ.∫
θ=β

θ=α

∫
ρ= (θ)g2

ρ= (θ)g1

∫
(r,θ)u2

φ= (r,θ)u1

ρ2

g(s, y, z)dV = g(r cosθ, r sin θ, z)r dr dθdz = f(r, θ, z)r dr dθdz∭
B

∭
B

∭
B

f(ρ, θ,φ) sinφ dρ dφ dθ = f(ρ, θ,φ) sin φ dρ dφ dθ∭
B

ρ2 ∫
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φ=γ

∫
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θ=α

∫
ρ=b

ρ=a
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triple integral in spherical coordinates

the limit of a triple Riemann sum, provided the following limit exists:

15.8: Triple Integrals in Spherical Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

15.5: Triple Integrals in Cylindrical and Spherical Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0.
Original source: https://openstax.org/details/books/calculus-volume-1.
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15.9: Change of Variables in Multiple Integrals
Given the difficulty of evaluating multiple integrals, the reader may be wondering if it is possible to simplify those integrals using a
suitable substitution for the variables. The answer is yes, though it is a bit more complicated than the substitution method which
you learned in single-variable calculus.

Recall that if you are given, for example, the definite integral

then you would make the substitution

which changes the limits of integration

so that we get

Let us take a different look at what happened when we did that substitution, which will give some motivation for how substitution
works in multiple integrals. First, we let . On the interval of integration , the function  is strictly
increasing (and maps  and hence has an inverse function (defined on the interval ). That is, on  we can
define , namely

Then substituting that expression for  into the function  gives

and we see that

so since

then performing the substitution as we did earlier gives

dx∫
2

1
x3 −1x2− −−−−
√ (15.9.1)

u

du

= −1 ⇒ = u+1x2 x2

= 2x dx

(15.9.2)

x

x

= 1 ⇒ u = 0

= 2 ⇒ u = 3

(15.9.3)

∫
2

1
x3 −1x2− −−−−√ = ⋅ 2x dx∫

2

1

1

2
x2 −1x2− −−−−√

= (u+1) du∫
3

0

1

2
u−−√

= ( + ) du,  which can be easily integrated to give
1

2
∫

3

0
u3/2 u1/2

=
14 3

–
√

5

u = −1x2 [1, 2] x ↦ −1x2

[1, 2] onto [0, 3]) [0, 3] [0, 3]
x as a function of u

x = g(u) = u+1− −−−−
√ (15.9.4)

x f(x) = x3 −1x2
− −−−−

√

f(x) = f(g(u)) = (u+1)3/2 u−−√ (15.9.5)

= (u) ⇒ dx
dx

du
g′

dx

= (u)dug′

= (u+1 du
1

2
)−1/2

(15.9.6)

g(0) = 1 ⇒ 0

g(3) = 2 ⇒ 3

= (1)g−1

= (2)g−1

(15.9.7)
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In general, if  is a one-to-one, differentiable function from an interval  (which you can think of as being on the “ -
axis”) onto an interval  (on the -axis), which means that  on the interval , so that 

, and

This is called the change of variable formula for integrals of single-variable functions, and it is what you were implicitly using
when doing integration by substitution. This formula turns out to be a special case of a more general formula which can be used to
evaluate multiple integrals. We will state the formulas for double and triple integrals involving real-valued functions of two and
three variables, respectively. We will assume that all the functions involved are continuously differentiable and that the regions and
solids involved all have “reasonable” boundaries. The proof of the following theorem is beyond the scope of the text.

Let  define a one-to-one mapping of a region  in the -plane onto a region  in the -plane
such that the determinant

is never in . Then

We use the notation  and  to denote the area element in the  coordinates, respectively.

Similarly, if  define a one-to-one mapping of a solid  in -space onto a
solid -space such that the determinant

is never 0 in , then

f(x)dx∫
2

1

f(x)dx∫
2

1

= dx∫
2

1
x3 −1x2− −−−−
√

= (u+1) du, which can be written as∫
3

0

1

2
u−−√

= (u+1 ⋅ (u+1 du,  which means∫
3

0
)3/2 u−−√

1

2
)−1/2

= f(g(u)) (u)du∫
(2)g−1

(1)g−1

g′

(15.9.8)

x = g(u) [c, d] u

[a, b] x g'(u) ≠ 0 (c, d)
a = g(c) and b = g(d),  then c = (a) and d = (b)g−1 g−1

f(x)dx = f(g(u)) (u)du∫
b

a

∫
(b)g−1

(a)g−1

g′ (15.9.9)

Theorem : Change of Variables Formula for Multiple Integrals15.9.1

x = x(u, v) and y = y(u, v) R' uv R xy

J(u, v) =

∣

∣

∣
∣
∣
∣
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∂x
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∣

∣

∣
∣
∣
∣

(15.9.10)

R′

f(x, y)dA(x, y) = f(x(u, v), y(u, v)) |J(u, v)| dA(u, v)∬

R

∬

R′

(15.9.11)

dA(x, y) dA(u, v) (x, y) and (u, v)

x = x(u, v,w), y = y(u, v,w) and z = z(u, v,w) S' uvw

S in xyz
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(15.9.12)

S ′

f(x, y, z)dV (x, y, z) = f(x(u, v,w), y(u, v,w), z(u, v,w))|J(u, v,w)|dV (u, v,w)∭

S

∭

S ′

(15.9.13)
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The determinant  in Equation  is called the Jacobian of , and is sometimes written
as

Similarly, the Jacobian  of three variables is sometimes written as

Notice that Equation  is saying that , which you can think of as a two-variable version of the
relation  in the single-variable case.

The following example shows how the change of variables formula is used.

Evaluate

where .

Solution

First, note that evaluating this double integral without using substitution is probably impossible, at least in a closed form. By
looking at the numerator and denominator of the exponent of , we will try the substitution . To use
the change of variables Formula , we need to write both  in terms of . So solving for  gives 

. In Figure  below, we see how the mapping 

 maps the region  onto  in a one-to-one manner.

Figure : The regions 

Now we see that

so using horizontal slices in , we have

J(u, v) 15.9.10 x and y with respect to u and v

J(u, v) =
∂(x, y)

∂(u, v)
(15.9.14)

J(u, v,w)

J(u, v,w) =
∂(x, y, z)

∂(u, v,w)
(15.9.15)

15.9.11 dA(x, y) = |J(u, v)|dA(u, v)
dx = g'(u)du

Example 15.9.1

dA∬
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15.9.11 x and y u and v x and y
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15.9.1
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The change of variables formula can be used to evaluate double integrals in polar coordinates. Letting

we have

so we have the following formula:

where the mapping  maps the region  in the -plane onto the region  in the -plane in a one-to-
one manner.

Find the volume  inside the paraboloid 

Solution

Using vertical slices, we see that

Figure : 

dA∬

R

e

x−y

x+y = f(x(u, v), y(u, v))|J(u, v)|dA∬

R′

= du dv∫
1

0
∫

v

−v

eu/v 1

2

= ( )dv∫
1

0

v

2
eu/v∣∣

u=v

u=−v

= (e− )dv∫
1

0

v

2
e1

= (e− ) = (e− ) =
v2

4
e1 ∣∣

1
0

1

4

1

e

−1e2

4e

x = x(r, θ) = r cosθ and y = y(r, θ) = r sinθ, (15.9.16)

J(u, v) = = = r θ+r θ = r ⇒ |J(u, v)| = |r| = r

∣

∣

∣
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∣
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∂x
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∂y

∂r
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∂θ

∂y

∂θ

∣

∣

∣
∣
∣
∣

∣

∣
∣
cosθ

sinθ

−r sinθ

r cosθ

∣

∣
∣ cos2 sin2 (15.9.17)

Double Integral in Polar Coordinates

f(x, y)dx dy = f(r cosθ, r sinθ)r dr dθ∬

R

∬

R′

(15.9.18)

x = r cosθ, y = r sinθ R' rθ R xy

Example : Volume of Paraboloid15.9.2

V z = +  for 0 ≤ z ≤ 1x2 y2

V = (1 −z)dA = (1 −( + ))dA∬

R

∬

R

x2 y2

15.9.2 z = +x2 y2

https://libretexts.org/
https://math.libretexts.org/@go/page/4553?pdf


15.9.5 https://math.libretexts.org/@go/page/4553

where  is the unit disk in  (see Figure ). In polar coordinates  we know that 
 and that the unit disk  is the set . Thus,

Find the volume  inside the cone .

Solution

Using vertical slices, we see that

Figure : 

where  is the unit disk in  (see Figure ). In polar coordinates  we know that 
 and that the unit disk  is the set . Thus,

In a similar fashion, it can be shown (see Exercises 5-6) that triple integrals in cylindrical and spherical coordinates take the
following forms:

R = (x, y) : + ≤ 1x2 y2 R
2 15.9.2 (r, θ)

+ =x2 y2 r2 R R' = (r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

V = (1 − )r dr dθ∫
2π

0
∫

1

0
r2

= (r− )dr dθ∫
2π

0
∫

1

0
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= ( − ) dθ∫
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o

r2

2

r4

4
∣∣
r=1
r=0

= dθ∫
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0

1

4

=
π

2

Example : Volume of Cone15.9.3

V z =  for 0 ≤ z ≤ 1+x2 y2− −−−−−
√
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∬
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+x2 y2
− −−−−−

√

15.9.3 z = +x2 y2− −−−−−
√

R = (x, y) : + ≤ 1x2 y2
R

2 15.9.3 (r, θ)

+ = rx2 y2− −−−−−−−−√ R R' = (r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π
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0
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0
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0
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∣∣
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where the mapping  maps the solid  in -space onto the solid -space in a one-to-
one manner.

where the mapping maps the solid  in - space onto the solid  in -
space in a one-to-one manner.

For , find the volume  inside the sphere .

Solution

We see that  is the set  in spherical coordinates, so
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Triple Integral in Cylindrical Coordinates

f(x, y, z)dx dy dz = (r cosθ, r sinθ, z)r dr dθdz∭

S

∭

S ′

(15.9.19)

x = r cosθ, y = r sinθ, z = z S' rθz S in xyz

Triple Integral in Spherical Coordinates

f(x, y, z)dx dy dz = f(ρ sinφ cosθ, ρ sinφ sinθ, ρ cosφ) sinφdρ dφ dθ∭

S

∭

S ′

ρ2 (15.9.20)

x = ρ sinφ cosθ, y = ρ sinφ sinθ, z = ρ cosφ S' ρφθ S xyz

Example 15.9.4

a > 0 V S = + + =x2 y2 z2 a2
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16.1: Vector Fields
We have already seen that a convenient way to describe a line in three dimensions is to provide a vector that "points to'' every point
on the line as a parameter  varies, like

Except that this gives a particularly simple geometric object, there is nothing special about the individual functions of  that make
up the coordinates of this vector---any vector with a parameter, like , will describe some curve in three dimensions
as  varies through all possible values.

Describe the curves , , and .

Solution

As  varies, the first two coordinates in all three functions trace out the points on the unit circle, starting with  when 
 and proceeding counter-clockwise around the circle as  increases. In the first case, the  coordinate is always 0, so this

describes precisely the unit circle in the -  plane. In the second case, the  and  coordinates still describe a circle, but now
the  coordinate varies, so that the height of the curve matches the value of . When , for example, the resulting vector is 

. A bit of thought should convince you that the result is a helix. In the third vector, the  coordinate varies twice as
fast as the parameter , so we get a stretched out helix. Both are shown in figure 13.1.1. On the left is the first helix, shown for 
 between 0 and ; on the right is the second helix, shown for  between 0 and . Both start and end at the same point, but

the first helix takes two full "turns'' to get there, because its  coordinate grows more slowly.

Figure 13.1.1. Two helixes.

A vector expression of the form  is called a vector function; it is a function from the real numbers  to the set of
all three-dimensional vectors.

We can alternately think of it as three separate functions, , , and , that describe points in space. In this
case we usually refer to the set of equations as parametric equations for the curve, just as for a line. While the parameter  in a
vector function might represent any one of a number of physical quantities, or be simply a "pure number'', it is often convenient and
useful to think of  as representing time. The vector function then tells you where in space 
a particular object is at any time.

Vector functions can be difficult to understand, that is, difficult to picture. When available, computer software can be very helpful.
When working by hand, one useful approach is to consider the "projections'' of the curve onto the three standard coordinate planes.
We have already done this in part: in example 13.1.1 we noted that all three curves project to a circle in the -  plane, since 

 is a two dimensional vector function for the unit circle.

Graph the projections of  onto the -  plane and the -  plane.

Solution

t

⟨1, 2, 3⟩+ t⟨1, −2, 2⟩ = ⟨1 + t, 2 −2t, 3 +2t⟩. (16.1.1)

t

⟨f(t), g(t), h(t)⟩

t

Example 13.1.1

⟨cos t, sin t, 0⟩ ⟨cos t, sin t, t⟩ ⟨cos t, sin t, 2t⟩

t (1, 0)

t = 0 t z

x y x y

z t t = π

⟨−1, 0, π⟩ z

t

t 4π t 2π

z

⟨f(t), g(t), h(t)⟩ R

x = f(t) y = g(t) z = h(t)

t

t

x y

⟨cos t, sin t⟩

Example 13.1.2

⟨cos t, sin t, 2t⟩ x z y z
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The two dimensional vector function for the projection onto the -  plane is , or in parametric form, , 
. By eliminating  we get the equation , the familiar curve shown on the left in figure~\xrefn{fig:helix

projections}. For the projection onto the -  plane, we start with the vector function , which is the same as ,
. Eliminating  gives , as shown on the right in figure 13.1.2.

Figure 13.1.2. The projections of  onto the -  and -  planes.
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16.2: Line Integrals
In single-variable calculus you learned how to integrate a real-valued function  over an interval  in . This integral
(usually called a Riemann integral) can be thought of as an integral over a path in , since an interval (or collection of intervals)
is really the only kind of “path” in . You may also recall that if  represented the force applied along the -axis to an object
at position  in , then the work  done in moving that object from position  was defined as the integral:

In this section, we will see how to define the integral of a function (either real-valued or vector-valued) of two variables over a
general path (i.e. a curve) in . This definition will be motivated by the physical notion of work. We will begin with real-valued
functions of two variables.

In physics, the intuitive idea of work is that

Suppose that we want to find the total amount  of work done in moving an object along a curve  in  with a smooth
parametrization , with a force  which varies with the position  of the object and is
applied in the direction of motion along  (see Figure  below).

Figure  Curve 

We will assume for now that the function  is continuous and real-valued, so we only consider the magnitude of the force.
Partition the interval  as follows:

As we can see from Figure , over a typical subinterval  the distance  traveled along the curve is approximately 

, by the Pythagorean Theorem. Thus, if the subinterval is small enough then the work done in moving the object

along that piece of the curve is approximately

where  for some , and so

is approximately the total amount of work done over the entire curve. But since

where , then

Taking the limit of that sum as the length of the largest subinterval goes to 0, the sum over all subintervals becomes the integral
from ,  become , respectively, and  becomes , so

f(x) [a, b] R
1

R
1

R
1 f(x) x

x [a, b] W x = a to x = b

W = f(x)dx∫
b

a

(16.2.1)

R
2

Work = Force × Distance (16.2.2)

W C R
2

x = x(t), y = y(t), a ≤ t ≤ b f(x, y) (x, y)
C 16.2.1

16.2.1 C : x = x(t), y = y(t) for t in [a, b]

f(x, y)
[a, b]

a = < < < ⋅ ⋅ ⋅ < < = b,  for some integer n ≥ 2t0 t1 t2 tn−1 tn (16.2.3)

16.2.1 [ , ]ti ti+1 Δsi

Δ +Δx2
i y2

i

− −−−−−−−−
√

Force × Distance ≈ f( , )xi∗ yi∗ Δ +Δx2
i y2

i

− −−−−−−−−
√ (16.2.4)

( , ) = (x( ), y( ))xi∗ yi∗ ti∗ ti∗  in [ , ]ti∗ ti ti+1

W ≈ f( , )∑
i=0

n−1

xi∗ yi∗ Δ +Δx2
i y2

i

− −−−−−−−−
√ (16.2.5)

= ΔΔ +Δx2
i y2

i

− −−−−−−−−
√ +( )

Δxi

Δti

2

( )
Δyi

Δti

2
− −−−−−−−−−−−−−−−−

√ ti (16.2.6)

Δ = −ti ti+1 ti

W ≈ f( , ) Δ∑
i=0

n−1

xi∗ yi∗ +( )
Δxi

Δti

2

( )
Δyi

Δti

2
− −−−−−−−−−−−−−−−−

√ ti (16.2.7)

t = a to t = b Δ Δ  and  Δ Δxi ti yi ti x'(t) and y'(t) f( , )xi∗ yi∗ f(x(t), y(t))
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that

The integral on the right side of the above equation gives us our idea of how to define, for any real-valued function , the
integral of  along the curve , called a line integral:

For a real-valued function  and a curve  in , parametrized by , the line integral of 
 along  with respect to arc length  is

The symbol  is the differential of the arc length function

which you may recognize from Section 1.9 as the length of the curve  over the interval , for all  in . That is,

by the Fundamental Theorem of Calculus.

For a general real-valued function , what does the line integral  represent? The preceding discussion of 
gives us a clue. You can think of differentials as infinitesimal lengths. So if you think of  as the height of a picket fence
along , then  can be thought of as approximately the area of a section of that fence over some infinitesimally small
section of the curve, and thus the line integral  is the total area of that picket fence (see Figure ).

Figure : Area of shaded rectangle = height × width ≈ 

Use a line integral to show that the lateral surface area  of a right circular cylinder of radius  and height  is .

Solution

We will use the right circular cylinder with base circle  given by  and with height  in the positive  direction
(see Figure ). Parametrize  as follows:

W = f(x(t), y(t)) dt∫
b

a

x'(t +y'(t)2 )2
− −−−−−−−−−−

√ (16.2.8)

f(x, y)
f(x, y) C

Definition : Line Integral of a scalar Field16.2.1

f(x, y) C R
2 x = x(t), y = y(t), a ≤ t ≤ b

f(x, y) C s

f(x, y)ds = f(x(t), y(t)) dt∫
C

∫
b

a

x'(t +y'(t)2 )2
− −−−−−−−−−−

√ (16.2.9)

ds

s = s(t) = du∫
t

a

x'(u +y'(u)2 )2
− −−−−−−−−−−−

√ (16.2.10)

C [a, t] t [a, b]

ds = s'(t)dt = dt,x'(t +y'(t)2 )2
− −−−−−−−−−−

√ (16.2.11)

f(x, y) f(x, y)ds∫
C

ds

f(x, y)
C f(x, y)ds

f(x, y)ds∫C 16.2.2

16.2.2 f(x,y) ds

Example 16.2.1

A r h 2πrh

C + =x2 y2 r2 h z

16.2.3 C

x = x(t) = r cos t, y = y(t) = r sin t, 0 ≤ t ≤ 2π (16.2.12)
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Figure 

Note in Example  that if we had traversed the circle  twice, i.e. let t vary from  then we would have gotten an area
of , i.e. twice the desired area, even though the curve itself is still the same (namely, a circle of radius ). Also, notice that we
traversed the circle in the counter-clockwise direction. If we had gone in the clockwise direction, using the parametrization

then it is easy to verify (Exercise 12) that the value of the line integral is unchanged.

In general, it can be shown (Exercise 15) that reversing the direction in which a curve  is traversed leaves 
unchanged, for any . If a curve  has a parametrization  then denote by  the same curve
as  but traversed in the opposite direction. Then  is parametrized by

and we have

Notice that our definition of the line integral was with respect to the arc length parameter . We can also define

as the line integral of  along  with respect to , and

as the line integral of  along  with respect to .

In the derivation of the formula for a line integral, we used the idea of work as force multiplied by distance. However, we know
that force is actually a vector. So it would be helpful to develop a vector form for a line integral. For this, suppose that we have a
function  defined on  by

for some continuous real-valued functions  and . Such a function  is called a vector field on . It is
defined at points in , and its values are vectors in . For a curve  with a smooth parametrization 

, let

16.2.3

A = f(x, y)ds = f(x(t), y(t)) dt∫
C

∫
b

a

x'(t +y'(t)2 )2
− −−−−−−−−−−

√

= h dt∫
2π

0
(−r sin t +(r cos t)2 )2
− −−−−−−−−−−−−−−−−

√

= h r dt∫
2π

0
t+ tsin2 cos2− −−−−−−−−−−

√

= rh 1 dt = 2πrh∫
2π

0

16.2.1 C 0 to 4π
4πrh r

x = x(t) = r cos(2π− t), y = y(t) = r sin(2π− t), 0 ≤ t ≤ 2π, (16.2.13)

C f(x, y)ds∫
C

f(x, y) C x = x(t), y = y(t), a ≤ t ≤ b, −C

C −C

x = x(a+b− t), y = y(a+b− t), a ≤ t ≤ b, (16.2.14)

f(x, y)ds = f(x, y)ds.∫
C

∫
−C

(16.2.15)

s

f(x, y)dx = f(x(t), y(t))x'(t)dt∫
C

∫
b

a

(16.2.16)

f(x, y) C x

f(x, y)dy = f(x(t), y(t))y'(t)dt∫
C

∫
b

a

(16.2.17)

f(x, y) C y

f(x, y) R
2

f(x, y) = P (x, y)i +Q(x, y)j

P (x, y) Q(x, y) on R2 f R
2

R
2

R
2 C

x = x(t), y = y(t), a ≤ t ≤ b
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be the position vector for a point  on . Then  and so

by definition of . Notice that the function  is a real-valued function on , so the last integral on the
right looks somewhat similar to our earlier definition of a line integral. This leads us to the following definition:

For a vector field  and a curve  with a smooth parametrization ,
the line integral of f along  is

where  is the position vector for points on .

We use the notation  to denote the differential of the vector-valued function r. The line integral in
Definition  is often called a line integral of a vector field to distinguish it from the line integral in Definition  which is
called a line integral of a scalar field. For convenience we will often write

where it is understood that the line integral along  is being applied to both . The quantity  is
known as a differential form. For a real-valued function , the differential of  is

A differential form  is called exact if it equals  for some function .

Recall that if the points on a curve  have position vector , then  is a tangent vector to  at the point 
 in the direction of increasing  (which we call the direction of ). Since  is a smooth curve, then 

and hence

is the unit tangent vector to  at . Putting Definitions  and  together we get the following theorem:

For a vector field  and a curve  with a smooth parametrization 
and position vector ,

r(t) = x(t)i +y(t)j

(x(t), y(t)) C (t) = (t)i + (t)jr′ x′ y′

P (x, y)dx+ Q(x, y)dy∫
C

∫
C

= P (x(t), y(t))x'(t)dt+ Q(x(t), y(t))y'(t)dt∫
b

a

∫
b

a

= (P (x(t), y(t))x'(t) +Q(x(t), y(t))y'(t))dt∫
b

a

= f(x(t), y(t)) ⋅ r'(t)dt∫
b

a

f(x, y) f(x(t), y(t)) ⋅ r'(t) [a, b]

Definition : Line Integral of a vector Field16.2.2

f(x, y) = P (x, y)i +Q(x, y)j C x = x(t), y = y(t), a ≤ t ≤ b

C

f ⋅ dr∫
C

= P (x, y)dx+ Q(x, y)dy∫
C

∫
C

= f(x(t), y(t)) ⋅ r'(t)dt∫
b

a

(16.2.18)

(16.2.19)

r(t) = x(t)i +y(t)j C

dr = r'(t)dt = dxi +dyj

16.2.2 16.2.1

P (x, y)dx+ Q(x, y)dy = P (x, y)dx+Q(x, y)dy,∫
C

∫
C

∫
C

C P  and Q P (x, y)dx+Q(x, y)dy
F (x, y) F

dF = dx+ dy.
∂F

∂x

∂F

∂y
(16.2.20)

P (x, y)dx+Q(x, y)dy dF F (x, y)

C r(t) = x(t)i +y(t)j r'(t) C

(x(t), y(t)) t C C r'(t) ≠ 0 on [a, b]

T(t) =
(t)r′

∥ (t)∥r′

C (x(t), y(t)) 16.2.1 16.2.2

Theorem 16.2.1

f(x, y) = P (x, y)i +Q(x, y)j C x = x(t), y = y(t), a ≤ t ≤ b

r(t) = x(t)i +y(t)j

f ⋅ dr = f ⋅ T ds,∫
C

∫
C

(16.2.21)
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where  is the unit tangent vector to  at .

If the vector field  represents the force moving an object along a curve , then the work  done by this force is
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4.1: Line Integrals by Michael Corral is licensed GNU FDL.

T(t) =
r'(t)

∥r'(t)∥
C (x(t), y(t))

f(x, y) C W

W = f ⋅ T ds = f ⋅ dr∫
C

∫
C

(16.2.22)
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16.3: The Fundamental Theorem for Line Integrals
One way to write the Fundamental Theorem of Calculus is:

$$\int_a^b f'(x)\,dx = f(b)-f(a).\]

That is, to compute the integral of a derivative  we need only compute the values of  at the endpoints. Something similar is true
for line integrals of a certain form.

Suppose a curve  is given by the vector function , with  and . Then

$$\int_C \nabla f\cdot d{\bf r} = f({\bf b})-f({\bf a}),\]

provided that  is sufficiently nice.

We write , so that . Also, we know that . Then

$$\int_C \nabla f\cdot d{\bf r} = \int_a^b \langle f_x,f_y,f_z\rangle\cdot\langle x'(t),y'(t),z'(t)\rangle \,dt=\int_a^b f_x x'+f_y
y'+f_z z' \,dt.\]

By the chain rule (see section 14.4) , where  in this context means , a
function of . In other words, all we have is

$$\int_a^b f'(t)\,dt=f(b)-f(a).\]

In this context, . Since , we can write ---this is a bit of
a cheat, since we are simultaneously using  to mean  and , and since  is not technically the
same as , but the concepts are clear and the different uses are compatible. Doing the same for , we get

$$\int_C \nabla f\cdot d{\bf r} = \int_a^b f'(t)\,dt=f(b)-f(a)=f({\bf b})-f({\bf a}).\]

This theorem, like the Fundamental Theorem of Calculus, says roughly that if we integrate a "derivative-like function'' (  or )
the result depends only on the values of the original function ( ) at the endpoints.

If a vector field  is the gradient of a function,

then we say that  is a conservative vector field. If  is a conservative force field, then the integral for work, , is in the
form required by the Fundamental Theorem of Line Integrals. This means that in a conservative force field, the amount of work
required to move an object from point  to point  depends only on those points, not on the path taken between them. In physics,
forces that can ascribed to a conservative vector field are called conservative forces and are important for many applications.

An object moves in the force field

along the curve  as  ranges from 0 to 1. Find the work done by the force on the object.

Solution

The straightforward way to do this involves substituting the components of  into , forming the dot product , and then
trying to compute the integral, but this integral is extraordinarily messy, perhaps impossible to compute. But since 

 we need only substitute:

f ′ f

Theorem: Fundamental Theorem of Line Integrals

C r(t) a = r(a) b = r(b)

r

Proof

r = ⟨x(t), y(t), z(t)⟩ = ⟨ (t), (t), (t)⟩r
′ x′ y′ z′ ∇f = ⟨ , , ⟩fx fy fz

+ + = df/dtfxx
′ fyy

′ fzz
′ f f(x(t), y(t), z(t))

t

f(a) = f(x(a), y(a), z(a)) a = r(a) = ⟨x(a), y(a), z(a)⟩ f(a) = f(a)
f f(t) f(x, y, z) f(x(a), y(a), z(a))

f(⟨x(a), y(a), z(a)⟩) b

□

f ′ ∇f

f

F

F = ∇f (16.3.1)

F F F ⋅ dr∫
C

a b

Example :16.3.2

F =⟨ , , ⟩ ,
−x

( + +x2 y2 z2)3/2

−y

( + +x2 y2 z2)3/2

−z

( + +x2 y2 z2)3/2
(16.3.2)

r = ⟨1 + t, , t cos(πt)⟩t3 t

r F F ⋅ r
′

F = ∇(1/ )+ +x2 y2 z2
− −−−−−−−−−

√
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Another immediate consequence of the Fundamental Theorem involves closed paths. A path  is closed if it forms a loop, so that
traveling over the  curve brings you back to the starting point. If  is a closed path, we can integrate around it starting at any
point ; since the starting and ending points are the same,

$$\int_C \nabla f\cdot d{\bf r}=f({\bf a})-f({\bf a})=0.\]

For example, in a gravitational field (an inverse square law field) the amount of work required to move an object around a closed
path is zero. Of course, it's only the net amount of work that is zero. It may well take a great deal of work to get from point  to
point , but then the return trip will "produce'' work. For example, it takes work to pump water from a lower to a higher elevation,
but if you then let gravity pull the water back down, you can recover work by running a water wheel or generator. (In the real world
you won't recover all the work because of various losses along the way.)

To make use of the Fundamental Theorem of Line Integrals, we need to be able to spot conservative vector fields  and to compute
 so that . Suppose that . Then  and , and provided that  is sufficiently nice, we know

from Clairaut's Theorem that . If we compute  and  and find that they are not equal, then  is not
conservative. If , then, again provided that  is sufficiently nice, we can be assured that  is conservative. Ultimately,
what's important is that we be able to find ; as this amounts to finding anti-derivatives, we may not always succeed.

Find an  so that .

Solution

First, note that

so the desired  does exist. This means that , so that ; the first two terms are needed to get 
, and the  could be any function of , as it would disappear upon taking a derivative with respect to . Likewise,

since , . The question now becomes, is it possible to find  and  so that

and of course the answer is yes: , . Thus, .

We can test a vector field  in a similar way. Suppose that . If we temporarily hold 
constant, then  is a function of  and , and by Clairaut's Theorem . Likewise, holding  constant
implies , and with  constant we get . Conversely, if we find that , 

, and  then  is conservative.
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F ⋅ dr = = −1.∫
C

1

+ +x2 y2 z2− −−−−−−−−−
√

∣

∣
∣

(2,1,−1)

(1,0,0)

1

6
–

√
(16.3.3)

C

C C

a

a

b

F

f F = ∇f F = ⟨P ,Q⟩ = ∇f P = fx Q = fy f

= = =Py fxy fyx Qx Py Qx F

=Py Qx F F

f

Example 16.3.3

f ⟨3 +2xy, −3 ⟩ = ∇fx2 y2

(3 +2xy) = 2x and ( −3 ) = 2x,
∂

∂y

∂

∂x
x2 y2 (16.3.4)

f = 3 +2xyfx f = 3x+ y+g(y)x2

3 +2xy g(y) y x

= −3fy x2 y2 f = y− +h(x)x2 y3 g(y) h(x)

3x+ y+g(y) = y− +h(x),x2 x2 y3 (16.3.5)

g(y) = −y3 h(x) = 3x f = 3x+ y−x2 y3

F = ⟨P ,Q,R⟩ ⟨P ,Q,R⟩ = ⟨ , , ⟩fx fy fz z

f(x, y, z) x y = = =Py fxy fyx Qx y

= = =Pz fxz fzx Rx x = = =Qz fyz fzy Ry =Py Qx

=Pz Rx =Qz Ry F
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16.4: Green's Theorem
We will now see a way of evaluating the line integral of a smooth vector field around a simple closed curve. A vector field 

 is smooth if its component functions  and  are smooth. We will use Green’s Theorem
(sometimes called Green’s Theorem in the plane) to relate the line integral around a closed curve with a double integral over the
region inside the curve:

Let  be a region in  whose boundary is a simple closed curve  which is piecewise smooth. Let 
 be a smooth vector field defined on both  and . Then

where  is traversed so that  is always on the left side of .

Proof: We will prove the theorem in the case for a simple region , that is, where the boundary curve  can be written as 
 in two distinct ways:

where  and  are the points on  farthest to the left and right, respectively; and

where  and  are the lowest and highest points, respectively, on . See Figure 4.3.1.

Figure 4.3.1

Integrate  around  using the representation  given by Equation  and Equation .

Since  (as  goes from  and  (as  goes from , as we see from Figure 4.3.1,
then we have

f(x, y) = P (x, y)i +Q(x, y)j P (x, y) Q(x, y)

Theorem 4.7: Green's Theorem

R R
2 C

f(x, y) = P (x, y)i +Q(x, y)j R C

f ⋅ dr = ( − ) dA,∮
C

∬

R

∂Q

∂x

∂P

∂y
(16.4.1)

C R C

R C

C = ∪C1 C2

C1

C2

=  the curve y = (x) from the point   to the point y1 X1 X2

=  the curve y = (x) from the point   to the point  ,y2 X2 X1

(16.4.2)

(16.4.3)

X1 X2 C

C1

C2

=  the curve x = (y) from the point   to the point x1 Y2 Y1

=  the curve x = (y) from the point   to the point  ,x2 Y1 Y2

(16.4.4)

(16.4.5)

Y1 Y2 C

P (x, y) C C = ∪C1 C2 16.4.3 16.4.4

y = (x) along y1 C1 x a to b) y = (x) along y2 C2 x b to a)
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Likewise, integrate  around  using the representation  given by Equation  and Equation . Since 
 (as  goes from  to ) and  (as  goes from  to ), as we see from Figure 4.3.1, then

we have

Though we proved Green’s Theorem only for a simple region , the theorem can also be proved for more general regions (say, a
union of simple regions).

P (x, y)dx∮
C

= P (x, y)dx+ P (x, y)dx∫
C1

∫
C2

= P (x, (x))dx+ P (x, (x))dx∫
b

a

y1 ∫
a

b

y2

= P (x, (x))dx− P (x, (x))dx∫
b

a

y1 ∫
b

a

y2

= − (P (x, (x)) −P (x, (x)))dx∫
b

a

y2 y1

= − (P (x, y) ) dx∫
b

a

∣
∣
y= (x)y2

y= (x)y1

= − dy dx (by the Fundamental Theorem of Calculus)∫
b

a

∫
(x)y2

(x)y1

∂P (x, y)

∂y

= − dA.∬

R

∂P

∂y
(16.4.6)

Q(x, y) C C = ∪C1 C2 16.4.5 ???

x = (y) along x1 C1 y d c x = (y) along x2 C2 y c d

Q(x, y)dy∮
C

= Q(x, y)dy+ Q(x, y)dy∫
C1

∫
C2

= Q( (y), y)dy+ Q( (y), y)dy∫
c

d

x1 ∫
d

c

x2

= − Q( (y), y)dy+ Q( (y), y)dy∫
d

c

x1 ∫
d

c

x2

= (Q( (y), y) −Q( (y), y))dy∫
d

c

x2 x1

= (Q(x, y) ) dy∫
d

c

∣
∣
x= (y)x2

x= (y)x1

= dx dy (by the Fundamental Theorem of Calculus)∫
d

c

∫
(y)x2

(y)x1

∂Q(x, y)

∂x

= dA,  and so∬

R

∂Q

∂x

f ⋅ dr∮
C

= P (x, y)dx+ Q(x, y)dy∮
C

∮
C

= − dA+ dA∬
R

∂P

∂y
∬

R

∂Q

∂x

= ( − ) dA.∬
R

∂Q

∂x

∂P

∂y

(QED)

R

https://libretexts.org/
https://math.libretexts.org/@go/page/4558?pdf


16.4.3 https://math.libretexts.org/@go/page/4558

Evaluate , where  is the boundary (traversed counterclockwise) of the region 
.

 is the shaded region in Figure 4.3.2. By Green’s Theorem, for , we have

Figure 4.3.2

We actually already knew that the answer was zero. Recall from Example 4.5 in Section 4.2 that the vector field 

 has a potential function , and so  by Corollary 4.6.

Let , where

and let . For the boundary curve , traversed counterclockwise, it was shown in
Exercise 9(b) in Section 4.2 that . But

This would seem to contradict Green’s Theorem. However, note that  is not the entire region enclosed by , since the point 
 is not contained in . That is,  has a “hole” at the origin, so Green’s Theorem does not apply.

If we modify the region  to be the annulus  (see Figure 4.3.3), and take the “boundary” 
, where  is the unit circle  traversed counterclockwise and  is the circle 

 traversed clockwise, then it can be shown (see Exercise 8) that

Figure 4.3.3 The annulus 

Example 4.7

( + )dx+2xy dy∮
C
x2 y2 C

R = (x, y) : 0 ≤ x ≤ 1, 2 ≤ y ≤ 2xx2

R P (x, y) = +  and Q(x, y) = 2xyx2 y2

( + )dx+2xy dy∮
C

x2 y2 = ( − ) dA∬
R

∂Q

∂x

∂P

∂y

= (2y−2y)dA = 0 dA = 0.∬
R

∬
R

f(x, y) = ( + )i +2xyjx2 y2 F (x, y) = +x
1

3
x3 y2 f ⋅ dr = 0∮C

Example 4.8

f(x, y) = P (x, y)i +Q(x, y)j

P (x, y) =  and Q(x, y) = ,
−y

+x2 y2

x

+x2 y2

R = (x, y) : 0 < + ≤ 1x2 y2 C : + = 1x2 y2

f ⋅ dr = 2π∮
C

= = ⇒ ( − ) dA = 0 dA = 0
∂Q

∂x

+y2 x2

( +x2 y2)2

∂P

∂y
∬

R

∂Q

∂x

∂P

∂y
∬

R

R C

(0, 0) R R

R R = (x, y) : 1/4 ≤ + ≤ 1x2 y2

C  of R to be C = ∪C1 C2 C1 + = 1x2 y2 C2

+ = 1/4x2 y2

f ⋅ dr = 0∮
C

R
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We would still have , so for this  we would have

which shows that Green’s Theorem holds for the annular region .

It turns out that Green’s Theorem can be extended to multiply connected regions, that is, regions like the annulus in Example 4.8,
which have one or more regions cut out from the interior, as opposed to discrete points being cut out. For such regions, the “outer”
boundary and the “inner” boundaries are traversed so that  is always on the left side.

Figure 4.3.4 Multiply connected regions

The intuitive idea for why Green’s Theorem holds for multiply connected regions is shown in Figure 4.3.4 above. The idea is to cut
“slits” between the boundaries of a multiply connected region  so that  is divided into subregions which do not have any
“holes”. For example, in Figure 4.3.4(a) the region  is the union of the regions , which are divided by the slits
indicated by the dashed lines. Those slits are part of the boundary of both , and we traverse then in the manner indicated
by the arrows. Notice that along each slit the boundary of  is traversed in the opposite direction as that of , which means that
the line integrals of \textbf{f} along those slits cancel each other out. Since  do not have holes in them, then Green’s
Theorem holds in each subregion, so that

But since the line integrals along the slits cancel out, we have

and so

which shows that Green’s Theorem holds in the region . A similar argument shows that the theorem holds in the region with two
holes shown in Figure 4.3.4(b).

We know from Corollary 4.6 that when a smooth vector field  on a region  (whose boundary is a
piecewise smooth, simple closed curve ) has a potential in , then . And if the potential  is smooth in ,

then , and so we know that

Conversely, if  in  then

( − ) dA = 0∬
R

∂Q

∂x

∂P

∂y
R

f ⋅ dr = ( − ) dA,∮
C

∬

R

∂Q

∂x

∂P

∂y

R

R

R R

R  and R1 R2

 and R1 R2

R1 R2

 and R1 R2

f ⋅ dr = ( − ) dA and  f ⋅ dr =∬ ( − ) dA.∮
bdy of R1

∬

R1

∂Q

∂x

∂P

∂y
∮
bdy of R2

R2
∂Q

∂x

∂P

∂y

f ⋅ dr = f ⋅ dr + f ⋅ dr,∮
∪C1 C2

∮
bdy of R1

∮
bdy of R2

f ⋅ dr = ( − ) dA+ ( − ) dA = ( − ) dA,∮
∪C1 C2

∬

R1

∂Q

∂x

∂P

∂y
∬

R2

∂Q

∂x

∂P

∂y
∬

R

∂Q

∂x

∂P

∂y

R

f(x, y) = P (x, y)i +Q(x, y)j R

C R f ⋅ dr = 0∮
C

F (x, y) R

= P  and  = Q
∂F

∂x

∂F

∂y

= ⇒ =  in R
F∂2

∂y∂x

F∂2

∂x∂y

∂P

∂y

∂Q

∂x

=
∂P

∂y

∂Q

∂x
R
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For a simply connected region (i.e. a region with no holes), the following can be shown:

The following statements are equivalent for a simply connected region  in  :

a.  has a smooth potential  in 
b.  is independent of the path for any curve  in 
c.  for every simple closed curve  in 

d.  in  (in this case, the differential form  is exact)

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation
License, Version 1.2.

16.4: Green's Theorem is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.3: Green’s Theorem by Michael Corral is licensed GNU FDL.

f ⋅ dr = ( − ) dA 0 dA = 0∮
C

∬

R

∂Q

∂x

∂P

∂y
∬

R

R

R R
2

f(x, y) = P (x, y)i +Q(x, y)j F (x, y) R

f ⋅ dr∫
C

C R

f ⋅ dr = 0∮C C R

=
∂P

∂y

∂Q

∂x
R Pdx+Qdy
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16.5: Curl and Divergence
In this final section we will establish some relationships between the gradient, divergence and curl, and we will also introduce a
new quantity called the Laplacian. We will then show how to write these quantities in cylindrical and spherical coordinates.

Gradient
For a real-valued function  on , the gradient  is a vector-valued function on , that is, its value at a point 

 is the vector

in , where each of the partial derivatives is evaluated at the point . So in this way, you can think of the symbol  as
being “applied” to a real-valued function  to produce a vector .

It turns out that the divergence and curl can also be expressed in terms of the symbol . This is done by thinking of  as a vector
in , namely

Here, the symbols  are to be thought of as “partial derivative operators” that will get “applied” to a real-valued

function, say , to produce the partial derivatives . For instance,  “applied” to 

.

Is  really a vector? Strictly speaking, no, since  are not actual numbers. But it helps to think of  as a vector,

especially with the divergence and curl, as we will soon see. The process of “applying”  to a real-valued function 

 is normally thought of as multiplying the quantities:

For this reason,  is often referred to as the “del operator”, since it “operates” on functions.

Divergence
For example, it is often convenient to write the divergence div f as , since for a vector field 

, the dot product of f with  (thought of as a vector) makes sense:

We can also write curl f in terms of , namely as , since for a vector field 
, we have:

f(x, y, z) R
3 ∇f(x, y, z) R

3

(x, y, z)

∇f(x, y, z) =( , , ) = i + j + k
∂f

∂x

∂f

∂y

∂f

∂z

∂f

∂x

∂f

∂y

∂f

∂z

R
3 (x, y, z) ∇

f ∇f

∇ ∇
R

3

∇ = i + j + k.
∂

∂x

∂

∂y

∂

∂z
(16.5.1)

,  and 
∂

∂x

∂

∂y

∂

∂z

f(x, y, z) ,  and 
∂f

∂x

∂f

∂y

∂f

∂z

∂

∂x

f(x, y, z) produces 
∂f

∂x

∇ ,  and 
∂

∂x

∂

∂y

∂

∂z
∇

, ,
∂

∂x

∂

∂y

∂

∂z
f(x, y, z)

( ) (f) = , ( ) (f) = , ( ) (f) =
∂

∂x

∂f

∂x

∂

∂y

∂f

∂y

∂

∂z

∂f

∂z

∇

∇ ⋅ f

f(x, y, z) = (x, y, z)i + (x, y, z)j + (x, y, z)kf1 f2 f3 ∇

∇ ⋅ f =( i + j + k) ⋅ ( (x, y, z)i + (x, y, z)j + (x, y, z)k)
∂

∂x

∂

∂y

∂

∂z
f1 f2 f3

=( ) ( ) +( ) ( ) +( ) ( )
∂

∂x
f1

∂

∂y
f2

∂

∂z
f3

= + +
∂f1

∂x

∂f2

∂y

∂f3

∂z

= div f

∇ ∇ × f

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k
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For a real-valued function , the gradient  is a vector field, so we can take its

divergence:

Note that this is a real-valued function, to which we will give a special name:

For a real-valued function , the Laplacian of , denoted by , is given by

Often the notation  is used for the Laplacian instead of , using the convention .

Let  be the position vector field on . Then  is a real-valued
function. Find

a. the gradient of 
b. the divergence of 
c. the curl of 
d. the Laplacian of 

Solution:

(a) 

(b) 

(c)

∇ × f =

∣

∣

∣
∣
∣
∣
∣

i

∂

∂x

P (x, y, z)

j

∂

∂y

Q(x, y, z)

k

∂

∂z

R(x, y, z)

∣

∣

∣
∣
∣
∣
∣

=( − ) i −( − ) j +( − )k
∂R

∂y

∂Q

∂z

∂R

∂x

∂P

∂z

∂Q

∂x

∂P

∂y

=( − ) i +( − ) j +( − )k
∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y

= curl f

f(x, y, z) ∇f(x, y, z) = i + j + k
∂f

∂x

∂f

∂y

∂f

∂z

div ∇f = ∇ ⋅ ∇f

=( i + j + k) ⋅( i + j + k)
∂

∂x

∂

∂y

∂

∂z

∂f

∂x

∂f

∂y

∂f

∂z

= ( )+ ( )+ ( )
∂

∂x

∂f

∂x

∂

∂y

∂f

∂y

∂

∂z

∂f

∂z

= + +
f∂2

∂x2

f∂2

∂y2

f∂2

∂z2

Definition 4.7: Laplacian

f(x, y, z) f Δf

Δf(x, y, z) = ∇ ⋅ ∇f = + + .
f∂2

∂x2

f∂2

∂y2

f∂2

∂z2
(16.5.2)

f∇2 Δf = ∇ ⋅ ∇∇2

Example 4.17

r(x, y, z) = xi +yj +zk R
3 ∥r(x, y, z) = r ⋅ r = + +∥2 x2 y2 z2

∥r∥2

r

r

∥r∥2

∇∥r = 2xi +2yj +2zk = 2r∥2

∇ ⋅ r = (x) + (y) + (z) = 1 +1 +1 = 3
∂

∂x

∂

∂y

∂

∂z

∇ ×r = = (0 −0)i −(0 −0)j +(0 −0)k = 0

∣

∣

∣
∣
∣
∣
∣

i

∂

∂x

x

j

∂

∂y

y

k

∂

∂z

z

∣

∣

∣
∣
∣
∣
∣
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(d) 

Note that we could have calculated  another way, using the  notation along with parts (a) and (b):

Notice that in Example 4.17 if we take the curl of the gradient of  we get

The following theorem shows that this will be the case in general:

For any smooth real-valued function .

We see by the smoothness of f that

since the mixed partial derivatives in each component are equal.

If a vector field  has a potential, then curl .

Another way of stating Theorem 4.15 is that gradients are irrotational. Also, notice that in Example 4.17 if we take the divergence
of the curl of r we trivially get

The following theorem shows that this will be the case in general:

For any smooth vector field 

The proof is straightforward and left as an exercise for the reader.

The flux of the curl of a smooth vector field  through any closed surface is zero.

Proof: Let  be a closed surface which bounds a solid . The flux of  through  is

Δ∥r = ( + + ) + ( + + ) + ( + + ) = 2 +2 +2 = 6∥2 ∂2

∂x2
x2 y2 z2 ∂2

∂y2
x2 y2 z2 ∂2

∂z2
x2 y2 z2

Δ∥r∥2 ∇

Δ∥r = ∇ ⋅ ∇∥r = ∇ ⋅ 2r = 2∇ ⋅ r = 2(3) = 6∥2 ∥2

∥r∥2

∇ ×(∇∥r ) = ∇ ×2r = 2∇ ×r = 20 = 0.∥2

Theorem 4.15.

f(x, y, z), ∇ ×(∇f) = 0

Proof

∇ ×(∇f) =

∣

∣

∣
∣
∣
∣
∣
∣

i

∂

∂x

∂f

∂x

j

∂

∂y

∂f

∂y

k

∂

∂z

∂f

∂z

∣

∣

∣
∣
∣
∣
∣
∣

=( − ) i −( − ) j +( − ) k = 0,
f∂2

∂y∂z

f∂2

∂z∂y

f∂2

∂x∂z

f∂2

∂z∂x

f∂2

∂x∂y

f∂2

∂y∂x

(16.5.3)

(16.5.4)

□

Corollary 4.16

f(x, y, z) f = 0

∇ ⋅ (∇ ×r) = ∇ ⋅ 0 = 0. (16.5.5)

Theorem 4.17.

f(x, y, z), ∇ ⋅ (∇ × f) = 0.

Corollary 4.18

f(x, y, z)

Σ S ∇ × f Σ
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There is another method for proving Theorem 4.15 which can be useful, and is often used in physics. Namely, if the surface integral
 for all surfaces  in some solid region (usually all of  ), then we must have  throughout that

region. The proof is not trivial, and physicists do not usually bother to prove it. But the result is true, and can also be applied to
double and triple integrals.

For instance, to prove Theorem 4.15, assume that  is a smooth real-valued function on . Let  be a simple closed curve
in  and let  be any capping surface for  (i.e.  is orientable and its boundary is ). Since  is a vector field, then

Since the choice of  was arbitrary, then we must have  throughout , where n is any unit vector. Using i, j
and k in place of n, we see that we must have  in , which completes the proof.

A system of electric charges has a charge density  and produces an electrostatic field  at points  in
space. Gauss’ Law states that

for any closed surface  which encloses the charges, with  being the solid region enclosed by . Show that .
This is one of Maxwell’s Equations.

Solution

By the Divergence Theorem, we have

Often (especially in physics) it is convenient to use other coordinate systems when dealing with quantities such as the gradient,
divergence, curl and Laplacian. We will present the formulas for these in cylindrical and spherical coordinates.

Recall from Section 1.7 that a point  can be represented in cylindrical coordinates 
 At each point 

(∇ × f) ⋅ dσ∬

Σ

= ∇ ⋅ (∇ × f)dV  (by the Divergence Theorem)∭

S

= 0 dV  (by Theorem 4.17)∭

S

= 0

(16.5.6)

(16.5.7)

(16.5.8)

(QED)

f(x, y, z)dσ = 0∬
Σ

Σ R
3 f(x, y, z) = 0

f(x, y, z) R
3 C

R
3 Σ C Σ C ∇f

(∇ ×(∇f)) ⋅ n dσ∬

Σ

= ∇f ⋅ dr by Stokes’ Theorem, so∮
C

= 0 by Corollary 4.13.

Σ (∇ ×(∇f)) ⋅ n = 0 R
3

∇ ×(∇f) = 0 R
3

Example 4.18

ρ(x, y, z) E(x, y, z) (x, y, z)

E ⋅ dσ = 4π ρ dV∬

Σ

∭

S

Σ S Σ ∇ ⋅ E = 4πρ

∇ ⋅ EdV∭

S

(∇ ⋅ E −4πρ)dV∭

S

∇ ⋅ E −4πρ

∇ ⋅ E

= E ⋅ dσ∬

Σ

= 4π ρ dV  by Gauss’ Law, so combining the integrals gives∭

S

= 0 , so

= 0 since Σ and hence S was arbitrary, so

= 4πρ.

(x, y, z)
(r, θ, z),  where x = r cosθ, y = r sinθ, z = z.
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 respectively (see Figure 4.6.1). Then 
form an orthonormal set of vectors. Note, by the right-hand rule, that 

Figure 4.6.1 Orthonormal vectors  in cylindrical coordinates (left) and spherical coordinates (right).

Similarly, a point  can be represented in spherical coordinates , where 
 At each point , let  be unit vectors in the direction of increasing

, respectively (see Figure 4.6.2). Then the vectors  are orthonormal. By the right-hand rule, we see that 
.

We can now summarize the expressions for the gradient, divergence, curl and Laplacian in Cartesian, cylindrical and spherical
coordinates in the following tables:

: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

(r, θ, z),  let  , ,  be unit vectors in the direction of increasing r, θ, z,er eθ ez , ,er eθ ez

× = .ez er eθ

, ,er eθ ez

(x, y, z) (ρ, θ,φ)
x = ρ sinφ cosθ, y = ρ sinφ sinθ, z = ρ cosφ. (ρ, θ,φ) , ,eρ eθ eφ

ρ, θ,φ , ,eρ eθ eφ

× =eθ eρ eφ

Cartesian

(x, y, z) F f = i + j + kf1 f2 f3

∇F = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

∇ ⋅ f = + +
∂f1

∂x

∂f2

∂y

∂f3

∂z

∇ × f =( − ) i +( − ) j +( − )k
∂f3

∂y

∂f2

∂z

∂f1

∂z

∂f3

∂x

∂f2

∂x

∂f1

∂y

ΔF = + +
F∂2

∂x2

F∂2

∂y2

F∂2

∂z2

Cylindrical

(r, θ, z) F f = + +frer fθeθ fzez

∇F = + +
∂F

∂r
er

1

r

∂F

∂θ
eθ

∂F

∂z
ez

∇ ⋅ f = (r ) + +
1

r

∂

∂r
fr

1

r

∂fθ
∂θ

∂fz
∂z

∇ × f =( − ) +( − ) + ( (r ) − )
1

r

∂fz
∂θ

∂fθ
∂z

er

∂fr
∂z

∂fz
∂r

eθ

1

r

∂

∂r
fθ

∂fr
∂θ

ez

ΔF = (r )+ +
1

r

∂

∂r

∂F

∂r

1

r2

F∂2

∂θ2

F∂2

∂z2
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: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

The derivation of the above formulas for cylindrical and spherical coordinates is straightforward but extremely tedious. The basic
idea is to take the Cartesian equivalent of the quantity in question and to substitute into that formula using the appropriate
coordinate transformation. As an example, we will derive the formula for the gradient in spherical coordinates.

Goal: Show that the gradient of a real-valued function  in spherical coordinates is:

Idea: In the Cartesian gradient formula , put the Cartesian basis vectors i, j, k in terms of the

spherical coordinate basis vectors  and functions of . Then put the partial derivatives  in terms

of  and functions of .

Step 1: Get formulas for  in terms of i, j, k.

We can see from Figure 4.6.2 that the unit vector  in the  direction at a general point  is 

 is the position vector of the point in Cartesian coordinates. Thus,

so using , we get:

Now, since the angle  is measured in the -plane, then the unit vector  direction must be parallel to the -plane. That
is, . To figure out what  are, note that since , then in particular  when 

-plane. That occurs when the angle . Putting  into the formula for 
, and we see that a vector perpendicular to that is . Since this vector is

also a unit vector and points in the (positive)  direction, it must be :

Lastly, since  we get:

Step 2: Use the three formulas from Step 1 to solve for i, j, k in terms of .

This comes down to solving a system of three equations in three unknowns. There are many ways of doing this, but we will do it by
combining the formulas for , which will give us an equation involving just i and j. This, with the formula
for , will then leave us with a system of two equations in two unknowns (i and j), which we will use to solve first for j then for i.
Lastly, we will solve for k.

Spherical

(ρ, θ,φ) F f = + +fρeρ fθeθ fφeφ

∇F = + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

∇ ⋅ f = ( ) + sinφ + (sinφ )
1

ρ2

∂

∂ρ
ρ2fρ

1

ρ

∂fθ
∂θ

1

ρ sinφ

∂

∂φ
fθ

∇ × f = ( (sinφ ) − ) + ( (ρ ) − ) +( − (ρ ))
1

ρ sinφ

∂

∂φ
fθ

∂fφ
∂θ

eρ

1

ρ

∂

∂ρ
fφ

∂fρ
∂φ

eθ

1

ρ sinφ

∂fρ
∂θ

1

ρ

∂

∂ρ
fθ eφ

ΔF = ( )+ + (sinφ )
1

ρ2

∂

∂ρ
ρ2

∂F

∂ρ

1

φρ2 sin2

F∂2

∂θ2

1

sinφρ2

∂

∂φ

∂F

∂φ

F (ρ, θ,φ)

∇F = + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

∇F (x, y, z) = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

, ,eρ eθ eφ ρ, θ and φ , ,
∂F

∂x

∂F

∂y

∂F

∂z

, ,
∂F

∂ρ

∂F

∂θ

∂F

∂φ
ρ, θ and φ

, ,eρ eθ eφ

eρ ρ (ρ, θ,φ)

= ,  where r = xi +yj +zkeρ

r

∥r∥

= = ,eρ

r

∥r∥

xi +yj +zk

+ +x2 y2 z2− −−−−−−−−−
√

x = ρ sinφ cosθ, y = ρ sinφ sinθ, z = ρ cosφ,  and ρ = + +x2 y2 z2
− −−−−−−−−−

√

= sinφ cosθi +sinφ sinθj +cosφkeρ

θ xy  in the θeθ xy

 is of the form ai +bj +0keθ a and b ⊥eθ eρ ⊥eθ eρ

 is in the xyeρ φ is π/2 φ = π/2
 gives  = cosθi +sinθj +0keρ eρ −sinθi +cosθj +0k

θ eθ

= −sinθi +cosθj +0keθ

= × ,eφ eθ eρ

= cosφ cosθi +cosφ sinθj −sinφkeφ

, ,eρ eθ eφ

 and   to eliminate keρ eφ

eθ
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First, note that

so that

and so:

Likewise, we see that

and so:

Lastly, we see that:

Step 3: Get formulas for .

By the Chain Rule, we have

which yields:

Step 4: Use the three formulas from Step 3 to solve for  in terms of .

Again, this involves solving a system of three equations in three unknowns. Using a similar process of elimination as in Step 2, we
get:

sinφ +cosφ = cosθi +sinθjeρ eφ

sinθ(sinφ +cosφ ) +cosθ = ( θ+ θ)j = j,eρ eφ eθ sin2 cos2

j = sinφ sinθ +cosθ +cosφ sinθeρ eθ eφ

cosθ(sinφ +cosφ ) −sinθ = ( θ+ θ)i = i,eρ eφ eθ cos2 sin2

i = sinφ cosθ −sinθ +cosφ cosθeρ eθ eφ

k = cosφ −sinφeρ eφ

, ,  in terms of  , ,
∂F

∂ρ

∂F

∂θ

∂F

∂φ

∂F

∂x

∂F

∂y

∂F

∂z

∂F

∂ρ

∂F

∂θ

∂F

∂φ

= + + ,
∂F

∂x

∂x

∂ρ

∂F

∂y

∂y

∂ρ

∂F

∂z

∂z

∂ρ

= + + ,
∂F

∂x

∂x

∂θ

∂F

∂y

∂y

∂θ

∂F

∂z

∂z

∂θ

= + + ,
∂F

∂x

∂x

∂φ

∂F

∂y

∂y

∂φ

∂F

∂z

∂z

∂φ

∂F

∂ρ

∂F

∂θ

∂F

∂φ

= sinφ cosθ +sinφ sinθ +cosφ
∂F

∂x

∂F

∂y

∂F

∂z

= −ρ sinφ sinθ +ρ sinφ cosθ
∂F

∂x

∂F

∂y

= ρ cosφ cosθ +ρ cosφ sinθ −ρ sinφ
∂F

∂x

∂F

∂y

∂F

∂z

(16.5.9)

, ,
∂F

∂x

∂F

∂y

∂F

∂z
, ,

∂F

∂ρ

∂F

∂θ

∂F

∂φ

∂F

∂x

∂F

∂y

∂F

∂z

= (ρ φ cosθ −sinθ +sinφ cosφ cosθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ φ sinθ +cosθ +sinφ cosφ sinθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ cosφ −sinφ )
1

ρ

∂F

∂ρ

∂F

∂φ

(16.5.10)
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Step 5: Substitute the formulas for i, j, k from Step 2 and the formulas for  from Step 4 into the Cartesian gradient

formula .

Doing this last step is perhaps the most tedious, since it involves simplifying  terms! Namely,

which we see has 8 terms involving , 6 terms involving , and 8 terms involving . But the algebra is straightforward and
yields the desired result:

In Example 4.17 we showed that  in Cartesian coordinates.
Verify that we get the same answers if we switch to spherical coordinates.

Solution

Since  (so that  ). The gradient
of  in spherical coordinates is

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation
License, Version 1.2.

16.5: Curl and Divergence is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

4.6: Gradient, Divergence, Curl, and Laplacian by Michael Corral is licensed GNU FDL.

, ,
∂F

∂x

∂F

∂y

∂F

∂z

∇F (x, y, z) = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

3 ×3 +3 ×3 +2 ×2 = 22

∇F = (ρ φ cosθ −sinθ +sinφ cosφ cosθ ) (sinφ cosθ −sinθ +cosφ cosθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ φ sinθ +cosθ +sinφ cosφ sinθ ) (sinφ sinθ +cosθ +cosφ sinθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ cosφ −sinφ ) (cosφ −sinφ ),
1

ρ

∂F

∂ρ

∂F

∂φ
eρ eφ

eρ eθ eφ

∇F = + + ✓
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ (16.5.11)

Example 4.19

∇∥r = 2r and  Δ ∥r = 6,  where r(x, y, z) = xi +yj +zk∥2 ∥2

∥r = + + =  in spherical coordinates, let F (ρ, θ,φ) =∥2 x2 y2 z2 ρ2 ρ2 F (ρ, θ,φ) = ∥r∥2

F

∇F

ΔF

= + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

= 2ρ + (0) + (0)eρ

1

ρ sinφ
eθ

1

ρ
eφ

= 2ρ = 2ρ ,  as we showed earlier, soeρ

r

∥r∥

= 2ρ = 2r,  as expected. And the Laplacian is
r

ρ

= ( )+ + (sinφ )
1

ρ2

∂

∂ρ
ρ2 ∂F

∂ρ

1

φρ2 sin2

F∂2

∂θ2

1

sinφρ2

∂

∂φ

∂F

∂φ

= ( 2ρ) + (0) + (sinφ(0))
1

ρ2

∂

∂ρ
ρ2 1

sinφρ2

1

sinφρ2

∂

∂φ

= (2 ) +0 +0
1

ρ2

∂

∂ρ
ρ3

= (6 ) = 6,  as expected.
1

ρ2
ρ2
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16.6: Parametric Surfaces and Their Areas
We have now seen many kinds of functions. When we talked about parametric curves, we defined them as functions from  to 
(plane curves) or  to  (space curves). Because each of these has its domain , they are one dimensional (you can only go
forward or backward). In this section, we investigate how to parameterize two dimensional surfaces. Below is the definition.

A parametric surface is a function with domain  and range .

We typically use the variables  and  for the domain and , , and  for the range. We often use vector notation to exhibit
parametric surfaces.

A sphere of radius 7 can be parameterized by

Notice that we have just used spherical coordinates with the radius held at 7.

We can use a computer to graph a parametric surface. Below is the graph of the surface

Represent the surface

parametrically.

Solution

The idea is similar to parametric curves. We just let  and , to get

A surface is created by revolving the curve

about the x-axis. Find parametric equations for this surface.

R R
2

R R
3

R

Definition: Parametric Surfaces

R
2

R
3

u v x y z

Example 16.6.1

r(u, v) = 7 cosu sinv +7 sinu sinv +7 cosvî ĵ k̂ (16.6.1)

r(u, v) = sinu +cosv +exp(2 +2 ) .î ĵ u
1

3 v
1

3 k̂ (16.6.2)

Example 16.6.2

z = cos(x−y)ex (16.6.3)

x = u y = v

r(u, v) = u +v + cos(u−v) .î ĵ eu k̂ (16.6.4)

Example 16.6.3

y = cosx (16.6.5)
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Solution

For a fixed value of , we get a circle of radius . Now use polar coordinates (in the yz-plane) to get

Since  and , we can substitute  for  in the above equation to get

Normal Vectors and Tangent Planes

We have already learned how to find a normal vector of a surface that is presented as a function of tow variables, namely find the
gradient vector. To find the normal vector to a surface  that is defined parametrically, we proceed as follows.

The partial derivatives

will lie on the tangent plane to the surface at the point . This is true, because fixing one variable constant and letting the
other vary, produced a curve on the surface through .  will be tangent to this curve. The tangent plane contains
all vectors tangent to curves passing through the point.

To find a normal vector, we just cross the two tangent vectors.

Find the equation of the tangent plane to the surface

at the point .

Solution

We have

so that

Now cross these vectors together to get

We now have the normal vector and a point . We use the normal vector-point equation for a plane

x cosx

r(u, v) = u +r cosv +r sinv .î ĵ k̂ (16.6.6)

u = x r = cosx cosu r

r(u, v) = u +cosu cosv +cosu sinv .î ĵ k̂ (16.6.7)

r(t)

( , ) and ( , )ru u0 v0 rv u0 v0 (16.6.8)

( , )u0 v0

( , )u0 v0 ( , )ru u0 v0

Example 16.6.4

r(u, v) = ( − ) +(u+v) +(uv)u2 v2
î ĵ k̂ (16.6.9)

(1, 2)

(u, v) = (2u) + +vru î ĵ k̂ (16.6.10)

(u, v) = (−2v) + +urv î ĵ k̂ (16.6.11)

(1, 2) = 2 + +2ru î ĵ k̂ (16.6.12)

(1, 2) = −4 + +rv î ĵ k̂ (16.6.13)

r(1, 2) = −3 +3 +3 .î ĵ k̂ (16.6.14)

×ru rv =

∣

∣

∣
∣
∣

î

2

−4

ĵ

1

1

k̂

2

1

∣

∣

∣
∣
∣

= − −10 +6 .î ĵ k̂

(16.6.15)

(16.6.16)

(−3, 3, 2)
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Surface Area
To find the surface area of a parametrically defined surface, we proceed in a similar way as in the case as a surface defined by a
function. Instead of projecting down to the region in the xy-plane, we project back to a region in the uv-plane. We cut the region
into small rectangles which map approximately to small parallelograms with adjacent defining vectors r  and r . The area of these
parallelograms will equal the magnitude of the cross product of r  and r . Finally add the areas up and take the limit as the
rectangles get small. This will produce a double integral.

Let  be a smooth surface defined parametrically by

where  and  are contained in a region . Then the surface area of  is given by

Since the magnitude of a cross product involves a square root, the integral in the surface area formula is usually impossible or
nearly impossible to evaluate without power series or by approximation techniques.

Find the surface area of the surface given by

Solution

We calculate

The cross product is

The surface area formula gives

This integral is probably impossible to compute exactly. Instead, a calculator can be used to obtain a surface area of 70.9.

Larry Green (Lake Tahoe Community College)

Integrated by Justin Marshall.

16.6: Parametric Surfaces and Their Areas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.7: Parametric Surfaces has no license indicated.

−1(x+3) −10(y−3) +6(z−2) = 0 (16.6.17)

−x−10y+6z = −15 or x+10y−6z = 15. (16.6.18)

u v

u v

Definition: Area of a Parametric Surface

S

r(u, v) = x(u, v) +y(u, v) +z(u, v)î ĵ k̂ (16.6.19)

u v R S

SA = || × || dudv.∬
R

ru rv (16.6.20)

Example 16.6.5

r(u, v) = ( ) +(u−v) +( ) 0 ≤ u ≤ 2 1 ≤ v≤ 4.v2
î ĵ u2

k̂ (16.6.21)

(u, v) = +2uru ĵ k̂ (16.6.22)

(u, v) = (2v) + .rv î ĵ (16.6.23)

||r ×r|| =

∣

∣

∣
∣
∣

î

0

2v

ĵ

1

−1

k̂

2u

0

∣

∣

∣
∣
∣

= ||2u +4uv −2v ||î ĵ k̂

= 2 .+4 +u2 u2v2 v2− −−−−−−−−−−−−
√

(16.6.24)

(16.6.25)

(16.6.26)

SA = 2 dvdu.∫
2

0

∫
4

1

4 +u2v2 v2− −−−−−−−−
√ (16.6.27)
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16.8: Stokes' Theorem
So far the only types of line integrals which we have discussed are those along curves in . But the definitions and properties
which were covered in Sections 4.1 and 4.2 can easily be extended to include functions of three variables, so that we can now
discuss line integrals along curves in .

For a real-valued function  and a curve  in , parametrized by , the line
integral of  with respect to arc length  is

The line integral of  along  with respect to  is

The line integral of  along  with respect to  is

The line integral of  along  with respect to  is

Similar to the two-variable case, if  then the line integral  can be thought of as the total area of the
“picket fence” of height  at each point along the curve  in .

Vector fields in  are defined in a similar fashion to those in , which allows us to define the line integral of a vector field along
a curve in .

For a vector field  and a curve  in  with a smooth parametrization 
, the line integral of  along  is

where  is the position vector for points on .

Similar to the two-variable case, if  represents the force applied to an object at a point  then the line integral 
 represents the work done by that force in moving the object along the curve  in .

Some of the most important results we will need for line integrals in  are stated below without proof (the proofs are similar to
their two-variable equivalents).

For a vector field  and a curve  with a smooth parametrization 
 and position vector ,

R
2

R
3

Definition : Line Integrals16.8.1

f(x, y, z) C R
3 x = x(t), y = y(t), z = z(t), a ≤ t ≤ b

f(x, y, z) along C s

f(x, y, z)ds = f(x(t), y(t), z(t)) dt.∫
C

∫
b

a

x'(t +y'(t +z'(t)2 )2 )2
− −−−−−−−−−−−−−−−−

√ (16.8.1)

f(x, y, z) C x

f(x, y, z)dx = f(x(t), y(t), z(t))x'(t)dt.∫
C

∫
b

a

(16.8.2)

f(x, y, z) C y

f(x, y, z)dy = f(x(t), y(t), z(t))y'(t)dt.∫
C

∫
b

a

(16.8.3)

f(x, y, z) C z

f(x, y, z)dz = f(x(t), y(t), z(t))z'(t)dt.∫
C

∫
b

a

(16.8.4)

f(x, y, z) ≥ 0 f(x, y, z)ds∫
C

f(x, y, z) C R
3

R
3

R
2

R
3

Definition 16.8.2

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k C R
3

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b f C

f ⋅ dr∫
C

= P (x, y, z)dx+ Q(x, y, z)dy+ R(x, y, z)dz∫
C

∫
C

∫
C

= f(x(t), y(t), z(t)) ⋅ r'(t)dt,∫
b

a

(16.8.5)

(16.8.6)

r(t) = x(t)i +y(t)j +z(t)k C

f(x, y, z) (x, y, z)

f ⋅ dr∫C C R
3

R
3

Theorem 16.8.1

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k C

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b r(t) = x(t)i +y(t)j +z(t)k
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where  is the unit tangent vector to  at .

If  is a continuously differentiable function of  are
differentiable functions of  is a differentiable function of , and

Also, if  are continuously differentiable function of , then

and

Let  be a vector field in some solid , with  continuously
differentiable functions on . Let  be a smooth curve in  parametrized by .
Suppose that there is a real-valued function  such that . Then

where  are the endpoints of .

If a vector field \(\textbf{f}\) has a potential in a solid , then  for any closed curve  in  (i.e. 
for any real-valued function .

Let  and let  be the curve in  parametrized by

Evaluate . (Note:  is called a conical helix. See Figure 4.5.1).

Solution

Since , we have

so since  along the curve , then

f ⋅ dr = f ⋅ T ds,∫
C

∫
C

(16.8.7)

T(t) =
r'(t)

∥r'(t)∥
C (x(t), y(t), z(t))

Theorem : Chain Rule16.8.2

w = f(x, y, z) x, y,  and z,  and x = x(t), y = y(t) and z = z(t)
t,  then w t

= + + .
dw

dt

∂w

∂x

dx

dt

∂w

∂y

dy

dt

∂w

∂z

dz

dt
(16.8.8)

x = x( , ), y = y( , ) and z = z( , )t1 t2 t1 t2 t1 t2 ( , )t1 t2

= + +
∂w

∂t1

∂w

∂x

∂x

∂t1

∂w

∂y

∂y

∂t1

∂w

∂z

∂z

∂t1
(16.8.9)

= + +
∂w

∂t2

∂w

∂x

∂x

∂t2

∂w

∂y

∂y

∂t2

∂w

∂z

∂z

∂t2
(16.8.10)

Theorem : Potential16.8.3

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k S P ,Q and R
S C S x = x(t), y = y(t), z = z(t), a ≤ t ≤ b

F (x, y, z) ∇F = f on S

f ⋅ dr = F (B) −F (A),∫
C

(16.8.11)

A = (x(a), y(a), z(a)) and B = (x(b), y(b), z(b)) C

Corollary

S f ⋅ dr = 0∮C C S ∇F ⋅ dr = 0∮C
F (x, y, z))

Example 16.8.1

f(x, y, z) = z C R
3

x = t sin t, y = t cos t, z = t, 0 ≤ t ≤ 8π.

f(x, y, z)ds∫C C

x'(t) = sin t+ t cos t, y'(t) = cos t− t sin t,  and z'(t) = 1

x'(t +y'(t +z'(t)2 )2 )2 = ( t+2t sin t cos t+ t) +( t−2t sin t cos t+ t) +1sin2 t2 cos2 cos2 t2 sin2

= ( t+ t) + t+ t+1t2 sin2 cos2 sin2 cos2

= +2,t2

f(x(t), y(t), z(t)) = z(t) = t C
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Figure 4.5.1 Conical helix 

Let  be a vector field in . Using the same curve  from Example 4.12, evaluate .

Solution:

It is easy to see that  is a potential for  (i.e. .

So by Theorem 4.12 we know that

We will now discuss a generalization of Green’s Theorem in  to orientable surfaces in , called Stokes’ Theorem. A surface 
in  is orientable if there is a continuous vector field N in  such that N is nonzero and normal to  (i.e. perpendicular to the
tangent plane) at each point of . We say that such an N is a normal vector field.

For example, the unit sphere  is orientable, since the continuous vector field  is
nonzero and normal to the sphere at each point. In fact,  is another normal vector field (see Figure 4.5.2). We see in
this case that  is what we have called an outward normal vector, and  is an inward normal vector. These
“outward” and “inward” normal vector fields on the sphere correspond to an “outer” and “inner” side, respectively, of the sphere.
That is, we say that the sphere is a two-sided surface. Roughly, “two-sided” means “orientable”. Other examples of two-sided, and
hence orientable, surfaces are cylinders, paraboloids, ellipsoids, and planes.

f(x, y, z)ds∫
C

= f(x(t), y(t), z(t)) dt∫
8π

0
x'(t +y'(t +z'(t)2 )2 )2
− −−−−−−−−−−−−−−−−

√

= t dt∫
8π

0
+2t2− −−−−

√

=( ( +2 ) = ((64 +2 −2 ) .
1

3
t2 )3/2 ∣

∣
8π

0

1

3
π2 )3/2 2–√

C

Example 16.8.2

f(x, y, z) = xi +yj +2zk R
3 C f ⋅ dr∫

C

F (x, y, z) = + +
x2

2

y2

2
z2 f(x, y, z) ∇F = f)

f ⋅ dr∫
C

= F (B) −F (A),  where A = (x(0), y(0), z(0)) and B = (x(8π), y(8π), z(8π)),  so

= F (8π sin8π, 8π cos 8π, 8π) −F (0 sin0, 0 cos 0, 0)

= F (0, 8π, 8π) −F (0, 0, 0)

= 0 + +(8π −(0 +0 +0) = 96 .
(8π)2

2
)2 π2

R
2

R
3 Σ

R
3

R
3 Σ

Σ

+ + = 1x2 y2 z2 N(x, y, z) = xi +yj +zk

−N(x, y, z)
N(x, y, z) −N(x, y, z)
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Figure 4.5.2

You may be wondering what kind of surface would not have two sides. An example is the Möbius strip, which is constructed by
taking a thin rectangle and connecting its ends at the opposite corners, resulting in a “twisted” strip (see Figure 4.5.3).

Figure 4.5.3: Möbius strip

If you imagine walking along a line down the center of the Möbius strip, as in Figure 4.5.3(b), then you arrive back at the same
place from which you started but upside down! That is, your orientation changed even though your motion was continuous along
that center line. Informally, thinking of your vertical direction as a normal vector field along the strip, there is a discontinuity at
your starting point (and, in fact, at every point) since your vertical direction takes two different values there. The Möbius strip has
only one side, and hence is nonorientable.

For an orientable surface  which has a boundary curve , pick a unit normal vector n such that if you walked along  with your
head pointing in the direction of n, then the surface would be on your left. We say in this situation that n is a positive unit normal
vector and that  is traversed n-positively. We can now state Stokes’ Theorem:

Let  be an orientable surface in  whose boundary is a simple closed curve , and let 
 be a smooth vector field defined on some subset of  that contains .

Then

where

n is a positive unit normal vector over , and  is traversed n-positively.

Proof: As the general case is beyond the scope of this text, we will prove the theorem only for the special case where  is the graph
of  for some smooth real-valued function  varying over a region  in .

Projecting  onto the -plane, we see that the closed curve  (the boundary curve of ) projects onto a closed curve  which is
the boundary curve of  (see Figure 4.5.4). Assuming that  has a smooth parametrization, its projection  in the -plane also
has a smooth parametrization, say

Σ C C

C

Theorem : Stoke's Theorem16.8.4

Σ R
3 C

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k R
3 Σ

f ⋅ dr = (curl f) ⋅ n dσ,∮
C

∬

Σ

(16.8.12)

curl f =( − ) i +( − ) j +( − )k,
∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y
(16.8.13)

Σ C

Σ

z = z(x, y) z(x, y),  with (x, y) D R
2

Σ xy C Σ CD

D C CD xy
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Figure 4.5.4

and so  can be parametrized (in  ) as

since the curve  is part of the surface . Now, by the Chain Rule (Theorem 4.4 in Section 4.2), for 
, we know that

and so

where

for . Thus, by Green’s Theorem applied to the region , we have

Thus,

Now, by Equation  in Theorem 4.11, we have

: x = x(t), y = y(t), a ≤ t ≤ b,CD

C R
3

C : x = x(t), y = y(t), z = z(x(t), y(t)), a ≤ t ≤ b,

C z = z(x, y)
z = z(x(t), y(t)) as a function of t

z'(t) = x'(t) + y'(t),
∂z

∂x

∂z

∂y

f ⋅ dr∮
C

= P (x, y, z)dx+Q(x, y, z)dy+R(x, y, z)dz∫
C

= (Px'(t) +Qy'(t) +R( x'(t) + y'(t))) dt∫
b

a

∂z

∂x

∂z

∂y

= ((P +R )x'(t) +(Q+R ) y'(t)) dt∫
b

a

∂z

∂x

∂z

∂y

= (x, y)dx+ (x, y)dy,∫
CD

P
~

Q
~

(x, y) = P (x, y, z(x, y)) +R(x, y, z(x, y)) (x, y),  andP
~ ∂z

∂x

(x, y) = Q(x, y, z(x, y)) +R(x, y, z(x, y)) (x, y)Q
~ ∂z

∂y

(x, y) in D D

f ⋅ dr = ( − ) dA.∮
C

∬

D

∂Q
~

∂x

∂P
~

∂y
(16.8.14)

∂Q
~

∂x
= (Q(x, y, z(x, y)) +R(x, y, z(x, y)) (x, y)) ,  so by the Product Rule we get

∂

∂x

∂z

∂y

= (Q(x, y, z(x, y))) +( R(x, y, z(x, y))) (x, y) +R(x, y, z(x, y)) ( (x, y))
∂

∂x

∂

∂x

∂z

∂y

∂

∂x

∂z

∂y

16.8.9
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Similarly,

Thus,

In a similar fashion, we can calculate

So subtracting gives

since  by the smoothness of . Hence, by Equation ,

after factoring out a −1 from the terms in the first two products in Equation .

Now, recall from Section 2.3 (see p.76) that the vector  is normal to the tangent plane to the surface 

 at each point of . Thus,

is in fact a positive unit normal vector to  (see Figure 4.5.4). Hence, using the parametrization 

, of the surface , we have  and , and so 

. So we see that using Equation  for curl f, we have

(Q(x, y, z(x, y)))
∂

∂x
= + +

∂Q

∂x

∂x

∂x

∂Q

∂y

∂y

∂x

∂Q

∂z

∂z

∂x

= ⋅ 1 + ⋅ 0 +
∂Q

∂x

∂Q

∂y

∂Q

∂z

∂z

∂x

= + .
∂Q

∂x

∂Q

∂z

∂z

∂x

(R(x, y, z(x, y))) = + .
∂

∂x

∂R

∂x

∂R

∂z

∂z

∂x

∂Q
~

∂x
= + +( + ) +R(x, y, z(x, y))

∂Q

∂x

∂Q

∂z

∂z

∂x

∂R

∂x

∂R

∂z

∂z

∂x

∂z

∂y

z∂2

∂x∂y

= + + + +R .
∂Q

∂x

∂Q

∂z

∂z

∂x

∂R

∂x

∂z

∂y

∂R

∂z

∂z

∂x

∂z

∂y

z∂2

∂x∂y

= + + + +R .
∂P

~

∂y

∂P

∂y

∂P

∂z

∂z

∂y

∂R

∂y

∂z

∂x

∂R

∂z

∂z

∂y

∂z

∂x

z∂2

∂y∂x

− =( − ) +( − ) +( − )
∂Q

~

∂x

∂P
~

∂y

∂Q

∂z

∂R

∂y

∂z

∂x

∂R

∂x

∂P

∂z

∂z

∂y

∂Q

∂x

∂P

∂y
(16.8.15)

=
z∂2

∂x∂y

z∂2

∂y∂x
z = z(x, y) 16.8.14

f ⋅ dr = (−( − ) −( − ) +( − )) dA∮
C

∬
D

∂R

∂y

∂Q

∂z

∂z

∂x

∂P

∂z

∂R

∂x

∂z

∂y

∂Q

∂x

∂P

∂y
(16.8.16)

16.8.15

N = −  i − j +k
∂z

∂x

∂z

∂y
z = z(x, y) Σ

n = =
N

∥N∥

−  i − j +k
∂z

∂x

∂z

∂y

1 + +( )
∂z

∂x

2

( )
∂z

∂y

2
− −−−−−−−−−−−−−−−−−

√

Σ

r(x, y) = xi +yj +z(x, y)k,  for (x, y) in D Σ = i + k
∂r

∂x

∂z

∂x
= j + k

∂r

∂y

∂z

∂y

∥ × ∥ =
∂r

∂x

∂r

∂y
1 + +( )

∂z

∂x

2

( )
∂z

∂y

2
− −−−−−−−−−−−−−−−−−

√ 16.8.13
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which, upon comparing to Equation , proves the Theorem.

Note: The condition in Stokes’ Theorem that the surface  have a (continuously varying) positive unit normal vector n and a
boundary curve  traversed n-positively can be expressed more precisely as follows: if  is the position vector for  and 

 is the unit tangent vector to , then the vectors T, n, T  n form a right-handed system.

Also, it should be noted that Stokes’ Theorem holds even when the boundary curve  is piecewise smooth.

Verify Stokes’ Theorem for  when  is the paraboloid  such that  (see Figure
4.5.5).

Figure 4.5.5 

Solution:

The positive unit normal vector to the surface  is

and curl f = (1−0)i+(1−0)j+(1−0)k = i+j+k, so

Since  can be parametrized as , then

(curl f) ⋅ n dσ∬

Σ

= (curl f) × dA∬

D

∥
∥

∂r

∂x

∂r

∂y
∥
∥

= (( − ) i +( − ) j +( − )k) ⋅(− i − j +k) dA∬

D

∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y

∂z

∂x

∂z

∂y

= (−( − ) −( − ) +( − )) dA,∬

D

∂R

∂y

∂Q

∂z

∂z

∂x

∂P

∂z

∂R

∂x

∂z

∂y

∂Q

∂x

∂P

∂y

16.8.16

(QED)

Σ
C r(t) C

T(t) = r'(t)/∥r'(t)∥ C ×

C

Example 16.8.3

f(x, y, z) = zi +xj +yk Σ z = +x2 y2 z ≤ 1

z = +x2 y2

z = z(x, y) = +x2 y2

n = = ,

− i − j +k
∂z

∂x

∂z

∂y

1 + +( )
∂z

∂x

2

( )
∂z

∂y

2
− −−−−−−−−−−−−−−−−−

√

−2xi −2yj +k

1 +4 +4x2 y2− −−−−−−−−−−
√

(curl f) ⋅ n = (−2x−2y+1)/ .1 +4 +4x2 y2
− −−−−−−−−−−

√

Σ r(x, y) = xi +yj +( + )k for (x, y) in the region D = (x, y) : + ≤ 1x2 y2 x2 y2
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The boundary curve  is the unit circle  laying in the plane  (see Figure 4.5.5), which can be parametrized
as . So

So we see that , as predicted by Stokes’ Theorem.

The line integral in the preceding example was far simpler to calculate than the surface integral, but this will not always be the
case.

Let  be the elliptic paraboloid , and let  be its boundary curve. Calculate 

, where  is traversed counterclockwise

Solution

The surface is similar to the one in Example , except now the boundary curve  is the ellipse  laying in

the plane . In this case, using Stokes’ Theorem is easier than computing the line integral directly. As in Example 4.14, at

each point  on the surface  the vector

(curl f) ⋅ n dσ∬

Σ

= (curl f) × dA∬

D

∥
∥

∂r

∂x

∂r

∂y
∥
∥

= dA∬

D

−2x−2y+1

1 +4 +4x2 y2− −−−−−−−−−−
√

1 +4 +4x2 y2
− −−−−−−−−−−

√

= (−2x−2y+1)dA,  so switching to polar coordinates gives∬

D

= (−2r cosθ−2r sinθ+1) r dr dθ∫
2π

0
∫

1

0

= (−2 cosθ−2 sinθ+r)dr dθ∫
2π

0
∫

1

0
r2 r2

= (− cosθ− sinθ+ ) dθ∫
2π

0

2r3

3

2r3

3

r2

2
∣
∣
r=1

r=0

= (− cosθ− sinθ+ ) dθ∫
2π

0

2

3

2

3

1

2

= − sinθ+ cosθ+ θ = π.
2

3

2

3

1

2
∣
∣
2π

0

C + = 1x2 y2 z = 1
x = cos t, y = sin t, z = 1 for 0 ≤ t ≤ 2π

f ⋅ dr∮
C

= ((1)(−sin t) +(cos t)(cos t) +(sin t)(0))dt∫
2π

0

= (−sin t+ ) dt (here we used  t = )∫
2π

0

1 +cos 2t

2
cos2 1 +cos 2t

2

= cos t+ + = π.
t

2

sin2t

4
∣
∣
2π

0

f ⋅ dr = (curl f) ⋅ ndσ∮C ∬
Σ

Example 16.8.4

Σ z = +  for z ≤ 1
x2

4

y2

9
C

f ⋅ dr for f(x, y, z) = (9xz+2y)i +(2x+ )j +(−2 +2z)k∮C y2 y2 C

16.8.3 C + = 1
x2

4

y2

9
z = 1

(x, y, z(x, y)) z = z(x, y) = +
x2

4

y2

9

n = = ,

− i − j +k
∂z

∂x

∂z

∂y

1 + +( )
∂z

∂x

2

( )
∂z

∂y

2
− −−−−−−−−−−−−−−−−−

√

− i − j +k
x

2

2y

9

1 + +
x2

4

4y2

9

− −−−−−−−−−−
√
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is a positive unit normal vector to . And calculating the curl of f gives

so

and so by Stokes’ Theorem

In physical applications, for a simple closed curve  the line integral  is often called the circulation of f around . For
example, if E represents the electrostatic field due to a point charge, then it turns out that curl , which means that the
circulation  by Stokes’ Theorem. Vector fields which have zero curl are often called irrotational fields.

In fact, the term curl was created by the 19th century Scottish physicist James Clerk Maxwell in his study of electromagnetism,
where it is used extensively. In physics, the curl is interpreted as a measure of circulation density. This is best seen by using another
definition of curl f which is equivalent to the definition given by Equation . Namely, for a point ,

where  is the surface area of a surface  containing the point  and with a simple closed boundary curve  and positive
unit normal vector n at . In the limit, think of the curve  shrinking to the point , which causes , the surface it
bounds, to have smaller and smaller surface area. That ratio of circulation to surface area in the limit is what makes the curl a rough
measure of circulation density (i.e. circulation per unit area).

Figure 4.5.6 Curl and rotation

An idea of how the curl of a vector field is related to rotation is shown in Figure 4.5.6. Suppose we have a vector field 
which is always parallel to the -plane at each point  and that the vectors grow larger the further the point  is from
the -axis. For example, . Think of the vector field as representing the flow of water, and imagine dropping
two wheels with paddles into that water flow, as in Figure 4.5.6. Since the flow is stronger (i.e. the magnitude of f is larger) as you
move away from the -axis, then such a wheel would rotate counterclockwise if it were dropped to the right of the -axis, and it
would rotate clockwise if it were dropped to the left of the -axis. In both cases the curl would be nonzero (curl  in
our example) and would obey the right-hand rule, that is, curl  points in the direction of your thumb as you cup your right
hand in the direction of the rotation of the wheel. So the curl points outward (in the positive -direction) if  and points inward
(in the negative -direction) if . Notice that if all the vectors had the same direction and the same magnitude, then the wheels
would not rotate and hence there would be no curl (which is why such fields are called irrotational, meaning no rotation).

Σ

curl f = (−4y−0)i +(9x−0)j +(2 −2)k = −4yi +9xj +0k,

(curl f) ⋅ n = = = 0,
(−4y)(− ) +(9x)(− ) +(0)(1)

x

2

2y

9

1 + +
x2

4

4y2

9

− −−−−−−−−−−
√

2xy−2xy+0

1 + +
x2

4

4y2

9

− −−−−−−−−−−
√

f ⋅ dr = (curl f) ⋅ n dσ = 0 dσ = 0.∮
C

∬

Σ

∬

Σ

C f ⋅ dr∮
C

C

E = 0

E ⋅ dr = 0∮
C

16.8.13 (x, y, z) in R3

n ⋅ (curl f(x, y, z) = f ⋅ dr,lim
S→0

1

S
∮
C

(16.8.17)

S Σ (x, y, z) C

(x, y, z) C (x, y, z) Σ

f(x, y, z)
xy (x, y, z) (x, y, z)

y f(x, y, z) = (1 + )jx2

y y

y f(x, y, z) = 2xk

f(x, y, z)
z x > 0

z x < 0
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Finally, by Stokes’ Theorem, we know that if  is a simple closed curve in some solid region  in  and if  is a smooth
vector field such that curl , then

where  is any orientable surface inside  whose boundary is  (such a surface is sometimes called a capping surface for ). So
similar to the two-variable case, we have a threedimensional version of a result from Section 4.3, for solid regions in  which are
simply connected (i.e. regions having no holes):

The following statements are equivalent for a simply connected solid region  in  :

a.  has a smooth potential 
b.  is independent of the path for any curve  in 
c.  for every simple closed curve  in 

d.  in  (i.e. curl )

Part (d) is also a way of saying that the differential form  is exact.

Determine if the vector field  has a potential in .

Solution

Since  is simply connected, we just need to check whether curl f = 0 throughout , that is,

throughout , where . But we see that

Thus,  does not have a potential in .
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C S R
3 f(x, y, z)

f = 0 in S

f ⋅ dr = (curl f ⋅ n dσ = 0 ⋅ n dσ = 0 dσ = 0,∮
C

∬

Σ

∬

Σ

∬

Σ

Σ S C C

R
3

S R
3

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k F (x, y, z) in S
f ⋅ dr∫C C S

f ⋅ dr = 0∮
C

C S

= , = ,  and  =
∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y
S f = 0 in S

P dx+Q dy+Rdz

Example 16.8.5

f(x, y, z) = xyzi +xzj +xyk R
3

R
3

R
3

= , = , and  =
∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y

R
3 P (x, y, z) = xyz,Q(x, y, z) = xz,  and R(x, y, z) = xy

= xy, = y ⇒ ≠  for some (x, y, z) in  .
∂P

∂z

∂R

∂x

∂P

∂z

∂R

∂x
R

3

f(x, y, z) R
3
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16.9: The Divergence Theorem
In this final section we will establish some relationships between the gradient, divergence and curl, and we will also introduce a
new quantity called the Laplacian. We will then show how to write these quantities in cylindrical and spherical coordinates.

Gradient
For a real-valued function  on , the gradient  is a vector-valued function on , that is, its value at a point 

 is the vector

in , where each of the partial derivatives is evaluated at the point . So in this way, you can think of the symbol  as
being “applied” to a real-valued function  to produce a vector .

It turns out that the divergence and curl can also be expressed in terms of the symbol . This is done by thinking of  as a vector
in , namely

Here, the symbols  are to be thought of as “partial derivative operators” that will get “applied” to a real-valued

function, say , to produce the partial derivatives . For instance,  “applied” to 

.

Is  really a vector? Strictly speaking, no, since  are not actual numbers. But it helps to think of  as a vector,

especially with the divergence and curl, as we will soon see. The process of “applying”  to a real-valued function 

 is normally thought of as multiplying the quantities:

For this reason,  is often referred to as the “del operator”, since it “operates” on functions.

Divergence
For example, it is often convenient to write the divergence div f as , since for a vector field 

, the dot product of f with  (thought of as a vector) makes sense:

We can also write curl f in terms of , namely as , since for a vector field 
, we have:

f(x, y, z) R
3 ∇f(x, y, z) R

3

(x, y, z)

∇f(x, y, z) =( , , ) = i + j + k
∂f

∂x

∂f

∂y

∂f

∂z

∂f

∂x

∂f

∂y

∂f

∂z

R
3 (x, y, z) ∇

f ∇f

∇ ∇
R

3

∇ = i + j + k.
∂

∂x

∂

∂y

∂

∂z
(16.9.1)

,  and 
∂

∂x

∂

∂y

∂

∂z

f(x, y, z) ,  and 
∂f

∂x

∂f

∂y

∂f

∂z

∂

∂x

f(x, y, z) produces 
∂f

∂x

∇ ,  and 
∂

∂x

∂

∂y

∂

∂z
∇

, ,
∂

∂x

∂

∂y

∂

∂z
f(x, y, z)

( ) (f) = , ( ) (f) = , ( ) (f) =
∂

∂x

∂f

∂x

∂

∂y

∂f

∂y

∂

∂z

∂f

∂z

∇

∇ ⋅ f

f(x, y, z) = (x, y, z)i + (x, y, z)j + (x, y, z)kf1 f2 f3 ∇

∇ ⋅ f =( i + j + k) ⋅ ( (x, y, z)i + (x, y, z)j + (x, y, z)k)
∂

∂x

∂

∂y

∂

∂z
f1 f2 f3

=( ) ( ) +( ) ( ) +( ) ( )
∂

∂x
f1

∂

∂y
f2

∂

∂z
f3

= + +
∂f1

∂x

∂f2

∂y

∂f3

∂z

= div f

∇ ∇ × f

f(x, y, z) = P (x, y, z)i +Q(x, y, z)j +R(x, y, z)k
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For a real-valued function , the gradient  is a vector field, so we can take its

divergence:

Note that this is a real-valued function, to which we will give a special name:

For a real-valued function , the Laplacian of , denoted by , is given by

Often the notation  is used for the Laplacian instead of , using the convention .

Let  be the position vector field on . Then  is a real-valued
function. Find

a. the gradient of 
b. the divergence of 
c. the curl of 
d. the Laplacian of 

Solution:

(a) 

(b) 

(c)

∇ × f =

∣

∣

∣
∣
∣
∣
∣

i

∂

∂x

P (x, y, z)

j

∂

∂y

Q(x, y, z)

k

∂

∂z

R(x, y, z)

∣

∣

∣
∣
∣
∣
∣

=( − ) i −( − ) j +( − )k
∂R

∂y

∂Q

∂z

∂R

∂x

∂P

∂z

∂Q

∂x

∂P

∂y

=( − ) i +( − ) j +( − )k
∂R

∂y

∂Q

∂z

∂P

∂z

∂R

∂x

∂Q

∂x

∂P

∂y

= curl f

f(x, y, z) ∇f(x, y, z) = i + j + k
∂f

∂x

∂f

∂y

∂f

∂z

div ∇f = ∇ ⋅ ∇f

=( i + j + k) ⋅( i + j + k)
∂

∂x

∂

∂y

∂

∂z

∂f

∂x

∂f

∂y

∂f

∂z

= ( )+ ( )+ ( )
∂

∂x

∂f

∂x

∂

∂y

∂f

∂y

∂

∂z

∂f

∂z

= + +
f∂2

∂x2

f∂2

∂y2

f∂2

∂z2

Definition 4.7: Laplacian

f(x, y, z) f Δf

Δf(x, y, z) = ∇ ⋅ ∇f = + + .
f∂2

∂x2

f∂2

∂y2

f∂2

∂z2
(16.9.2)

f∇2 Δf = ∇ ⋅ ∇∇2

Example 4.17

r(x, y, z) = xi +yj +zk R
3 ∥r(x, y, z) = r ⋅ r = + +∥2 x2 y2 z2

∥r∥2

r

r

∥r∥2

∇∥r = 2xi +2yj +2zk = 2r∥2

∇ ⋅ r = (x) + (y) + (z) = 1 +1 +1 = 3
∂

∂x

∂

∂y

∂

∂z

∇ ×r = = (0 −0)i −(0 −0)j +(0 −0)k = 0

∣

∣

∣
∣
∣
∣
∣

i

∂

∂x

x

j

∂

∂y

y

k

∂

∂z

z

∣

∣

∣
∣
∣
∣
∣
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(d) 

Note that we could have calculated  another way, using the  notation along with parts (a) and (b):

Notice that in Example 4.17 if we take the curl of the gradient of  we get

The following theorem shows that this will be the case in general:

For any smooth real-valued function .

We see by the smoothness of f that

since the mixed partial derivatives in each component are equal.

If a vector field  has a potential, then curl .

Another way of stating Theorem 4.15 is that gradients are irrotational. Also, notice that in Example 4.17 if we take the divergence
of the curl of r we trivially get

The following theorem shows that this will be the case in general:

For any smooth vector field 

The proof is straightforward and left as an exercise for the reader.

The flux of the curl of a smooth vector field  through any closed surface is zero.

Proof: Let  be a closed surface which bounds a solid . The flux of  through  is

Δ∥r = ( + + ) + ( + + ) + ( + + ) = 2 +2 +2 = 6∥2 ∂2

∂x2
x2 y2 z2 ∂2

∂y2
x2 y2 z2 ∂2

∂z2
x2 y2 z2

Δ∥r∥2 ∇

Δ∥r = ∇ ⋅ ∇∥r = ∇ ⋅ 2r = 2∇ ⋅ r = 2(3) = 6∥2 ∥2

∥r∥2

∇ ×(∇∥r ) = ∇ ×2r = 2∇ ×r = 20 = 0.∥2

Theorem 4.15.

f(x, y, z), ∇ ×(∇f) = 0

Proof

∇ ×(∇f) =

∣

∣

∣
∣
∣
∣
∣
∣

i

∂

∂x

∂f

∂x

j

∂

∂y

∂f

∂y

k

∂

∂z

∂f

∂z

∣

∣

∣
∣
∣
∣
∣
∣

=( − ) i −( − ) j +( − ) k = 0,
f∂2

∂y∂z

f∂2

∂z∂y

f∂2

∂x∂z

f∂2

∂z∂x

f∂2

∂x∂y

f∂2

∂y∂x

(16.9.3)

(16.9.4)

□

Corollary 4.16

f(x, y, z) f = 0

∇ ⋅ (∇ ×r) = ∇ ⋅ 0 = 0. (16.9.5)

Theorem 4.17.

f(x, y, z), ∇ ⋅ (∇ × f) = 0.

Corollary 4.18

f(x, y, z)

Σ S ∇ × f Σ
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There is another method for proving Theorem 4.15 which can be useful, and is often used in physics. Namely, if the surface integral
 for all surfaces  in some solid region (usually all of  ), then we must have  throughout that

region. The proof is not trivial, and physicists do not usually bother to prove it. But the result is true, and can also be applied to
double and triple integrals.

For instance, to prove Theorem 4.15, assume that  is a smooth real-valued function on . Let  be a simple closed curve
in  and let  be any capping surface for  (i.e.  is orientable and its boundary is ). Since  is a vector field, then

Since the choice of  was arbitrary, then we must have  throughout , where n is any unit vector. Using i, j
and k in place of n, we see that we must have  in , which completes the proof.

A system of electric charges has a charge density  and produces an electrostatic field  at points  in
space. Gauss’ Law states that

for any closed surface  which encloses the charges, with  being the solid region enclosed by . Show that .
This is one of Maxwell’s Equations.

Solution

By the Divergence Theorem, we have

Often (especially in physics) it is convenient to use other coordinate systems when dealing with quantities such as the gradient,
divergence, curl and Laplacian. We will present the formulas for these in cylindrical and spherical coordinates.

Recall from Section 1.7 that a point  can be represented in cylindrical coordinates 
 At each point 

(∇ × f) ⋅ dσ∬

Σ

= ∇ ⋅ (∇ × f)dV  (by the Divergence Theorem)∭

S

= 0 dV  (by Theorem 4.17)∭

S

= 0

(16.9.6)

(16.9.7)

(16.9.8)

(QED)

f(x, y, z)dσ = 0∬
Σ

Σ R
3 f(x, y, z) = 0

f(x, y, z) R
3 C

R
3 Σ C Σ C ∇f

(∇ ×(∇f)) ⋅ n dσ∬

Σ

= ∇f ⋅ dr by Stokes’ Theorem, so∮
C

= 0 by Corollary 4.13.

Σ (∇ ×(∇f)) ⋅ n = 0 R
3

∇ ×(∇f) = 0 R
3

Example 4.18

ρ(x, y, z) E(x, y, z) (x, y, z)

E ⋅ dσ = 4π ρ dV∬

Σ

∭

S

Σ S Σ ∇ ⋅ E = 4πρ

∇ ⋅ EdV∭

S

(∇ ⋅ E −4πρ)dV∭

S

∇ ⋅ E −4πρ

∇ ⋅ E

= E ⋅ dσ∬

Σ

= 4π ρ dV  by Gauss’ Law, so combining the integrals gives∭

S

= 0 , so

= 0 since Σ and hence S was arbitrary, so

= 4πρ.

(x, y, z)
(r, θ, z),  where x = r cosθ, y = r sinθ, z = z.
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 respectively (see Figure 4.6.1). Then 
form an orthonormal set of vectors. Note, by the right-hand rule, that 

Figure 4.6.1 Orthonormal vectors  in cylindrical coordinates (left) and spherical coordinates (right).

Similarly, a point  can be represented in spherical coordinates , where 
 At each point , let  be unit vectors in the direction of increasing

, respectively (see Figure 4.6.2). Then the vectors  are orthonormal. By the right-hand rule, we see that 
.

We can now summarize the expressions for the gradient, divergence, curl and Laplacian in Cartesian, cylindrical and spherical
coordinates in the following tables:

: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

(r, θ, z),  let  , ,  be unit vectors in the direction of increasing r, θ, z,er eθ ez , ,er eθ ez

× = .ez er eθ

, ,er eθ ez

(x, y, z) (ρ, θ,φ)
x = ρ sinφ cosθ, y = ρ sinφ sinθ, z = ρ cosφ. (ρ, θ,φ) , ,eρ eθ eφ

ρ, θ,φ , ,eρ eθ eφ

× =eθ eρ eφ

Cartesian

(x, y, z) F f = i + j + kf1 f2 f3

∇F = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

∇ ⋅ f = + +
∂f1

∂x

∂f2

∂y

∂f3

∂z

∇ × f =( − ) i +( − ) j +( − )k
∂f3

∂y

∂f2

∂z

∂f1

∂z

∂f3

∂x

∂f2

∂x

∂f1

∂y

ΔF = + +
F∂2

∂x2

F∂2

∂y2

F∂2

∂z2

Cylindrical

(r, θ, z) F f = + +frer fθeθ fzez

∇F = + +
∂F

∂r
er

1

r

∂F

∂θ
eθ

∂F

∂z
ez

∇ ⋅ f = (r ) + +
1

r

∂

∂r
fr

1

r

∂fθ
∂θ

∂fz
∂z

∇ × f =( − ) +( − ) + ( (r ) − )
1

r

∂fz
∂θ

∂fθ
∂z

er

∂fr
∂z

∂fz
∂r

eθ

1

r

∂

∂r
fθ

∂fr
∂θ

ez

ΔF = (r )+ +
1

r

∂

∂r

∂F

∂r

1

r2

F∂2

∂θ2

F∂2

∂z2
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: Scalar function ; Vector field 

gradient : 

divergence : 

curl : 

Laplacian : 

The derivation of the above formulas for cylindrical and spherical coordinates is straightforward but extremely tedious. The basic
idea is to take the Cartesian equivalent of the quantity in question and to substitute into that formula using the appropriate
coordinate transformation. As an example, we will derive the formula for the gradient in spherical coordinates.

Goal: Show that the gradient of a real-valued function  in spherical coordinates is:

Idea: In the Cartesian gradient formula , put the Cartesian basis vectors i, j, k in terms of the

spherical coordinate basis vectors  and functions of . Then put the partial derivatives  in terms

of  and functions of .

Step 1: Get formulas for  in terms of i, j, k.

We can see from Figure 4.6.2 that the unit vector  in the  direction at a general point  is 

 is the position vector of the point in Cartesian coordinates. Thus,

so using , we get:

Now, since the angle  is measured in the -plane, then the unit vector  direction must be parallel to the -plane. That
is, . To figure out what  are, note that since , then in particular  when 

-plane. That occurs when the angle . Putting  into the formula for 
, and we see that a vector perpendicular to that is . Since this vector is

also a unit vector and points in the (positive)  direction, it must be :

Lastly, since  we get:

Step 2: Use the three formulas from Step 1 to solve for i, j, k in terms of .

This comes down to solving a system of three equations in three unknowns. There are many ways of doing this, but we will do it by
combining the formulas for , which will give us an equation involving just i and j. This, with the formula
for , will then leave us with a system of two equations in two unknowns (i and j), which we will use to solve first for j then for i.
Lastly, we will solve for k.

Spherical

(ρ, θ,φ) F f = + +fρeρ fθeθ fφeφ

∇F = + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

∇ ⋅ f = ( ) + sinφ + (sinφ )
1

ρ2

∂

∂ρ
ρ2fρ

1

ρ

∂fθ
∂θ

1

ρ sinφ

∂

∂φ
fθ

∇ × f = ( (sinφ ) − ) + ( (ρ ) − ) +( − (ρ ))
1

ρ sinφ

∂

∂φ
fθ

∂fφ
∂θ

eρ

1

ρ

∂

∂ρ
fφ

∂fρ
∂φ

eθ

1

ρ sinφ

∂fρ
∂θ

1

ρ

∂

∂ρ
fθ eφ

ΔF = ( )+ + (sinφ )
1

ρ2

∂

∂ρ
ρ2

∂F

∂ρ

1

φρ2 sin2

F∂2

∂θ2

1

sinφρ2

∂

∂φ

∂F

∂φ

F (ρ, θ,φ)

∇F = + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

∇F (x, y, z) = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

, ,eρ eθ eφ ρ, θ and φ , ,
∂F

∂x

∂F

∂y

∂F

∂z

, ,
∂F

∂ρ

∂F

∂θ

∂F

∂φ
ρ, θ and φ

, ,eρ eθ eφ

eρ ρ (ρ, θ,φ)

= ,  where r = xi +yj +zkeρ

r

∥r∥

= = ,eρ

r

∥r∥

xi +yj +zk

+ +x2 y2 z2− −−−−−−−−−
√

x = ρ sinφ cosθ, y = ρ sinφ sinθ, z = ρ cosφ,  and ρ = + +x2 y2 z2
− −−−−−−−−−

√

= sinφ cosθi +sinφ sinθj +cosφkeρ

θ xy  in the θeθ xy

 is of the form ai +bj +0keθ a and b ⊥eθ eρ ⊥eθ eρ

 is in the xyeρ φ is π/2 φ = π/2
 gives  = cosθi +sinθj +0keρ eρ −sinθi +cosθj +0k

θ eθ

= −sinθi +cosθj +0keθ

= × ,eφ eθ eρ

= cosφ cosθi +cosφ sinθj −sinφkeφ

, ,eρ eθ eφ

 and   to eliminate keρ eφ

eθ
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First, note that

so that

and so:

Likewise, we see that

and so:

Lastly, we see that:

Step 3: Get formulas for .

By the Chain Rule, we have

which yields:

Step 4: Use the three formulas from Step 3 to solve for  in terms of .

Again, this involves solving a system of three equations in three unknowns. Using a similar process of elimination as in Step 2, we
get:

sinφ +cosφ = cosθi +sinθjeρ eφ

sinθ(sinφ +cosφ ) +cosθ = ( θ+ θ)j = j,eρ eφ eθ sin2 cos2

j = sinφ sinθ +cosθ +cosφ sinθeρ eθ eφ

cosθ(sinφ +cosφ ) −sinθ = ( θ+ θ)i = i,eρ eφ eθ cos2 sin2

i = sinφ cosθ −sinθ +cosφ cosθeρ eθ eφ

k = cosφ −sinφeρ eφ

, ,  in terms of  , ,
∂F

∂ρ

∂F

∂θ

∂F

∂φ

∂F

∂x

∂F

∂y

∂F

∂z

∂F

∂ρ

∂F

∂θ

∂F

∂φ

= + + ,
∂F

∂x

∂x

∂ρ

∂F

∂y

∂y

∂ρ

∂F

∂z

∂z

∂ρ

= + + ,
∂F

∂x

∂x

∂θ

∂F

∂y

∂y

∂θ

∂F

∂z

∂z

∂θ

= + + ,
∂F

∂x

∂x

∂φ

∂F

∂y

∂y

∂φ

∂F

∂z

∂z

∂φ

∂F

∂ρ

∂F

∂θ

∂F

∂φ

= sinφ cosθ +sinφ sinθ +cosφ
∂F

∂x

∂F

∂y

∂F

∂z

= −ρ sinφ sinθ +ρ sinφ cosθ
∂F

∂x

∂F

∂y

= ρ cosφ cosθ +ρ cosφ sinθ −ρ sinφ
∂F

∂x

∂F

∂y

∂F

∂z

(16.9.9)

, ,
∂F

∂x

∂F

∂y

∂F

∂z
, ,

∂F

∂ρ

∂F

∂θ

∂F

∂φ

∂F

∂x

∂F

∂y

∂F

∂z

= (ρ φ cosθ −sinθ +sinφ cosφ cosθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ φ sinθ +cosθ +sinφ cosφ sinθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ

= (ρ cosφ −sinφ )
1

ρ

∂F

∂ρ

∂F

∂φ

(16.9.10)
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Step 5: Substitute the formulas for i, j, k from Step 2 and the formulas for  from Step 4 into the Cartesian gradient

formula .

Doing this last step is perhaps the most tedious, since it involves simplifying  terms! Namely,

which we see has 8 terms involving , 6 terms involving , and 8 terms involving . But the algebra is straightforward and
yields the desired result:

In Example 4.17 we showed that  in Cartesian coordinates.
Verify that we get the same answers if we switch to spherical coordinates.

Solution

Since  (so that  ). The gradient
of  in spherical coordinates is

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation
License, Version 1.2.

16.9: The Divergence Theorem is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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, ,
∂F

∂x

∂F

∂y

∂F

∂z

∇F (x, y, z) = i + j + k
∂F

∂x

∂F

∂y

∂F

∂z

3 ×3 +3 ×3 +2 ×2 = 22

∇F = (ρ φ cosθ −sinθ +sinφ cosφ cosθ ) (sinφ cosθ −sinθ +cosφ cosθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ φ sinθ +cosθ +sinφ cosφ sinθ ) (sinφ sinθ +cosθ +cosφ sinθ )
1

ρ sinφ
sin2 ∂F

∂ρ

∂F

∂θ

∂F

∂φ
eρ eθ eφ

+ (ρ cosφ −sinφ ) (cosφ −sinφ ),
1

ρ

∂F

∂ρ

∂F

∂φ
eρ eφ

eρ eθ eφ

∇F = + + ✓
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ (16.9.11)

Example 4.19

∇∥r = 2r and  Δ ∥r = 6,  where r(x, y, z) = xi +yj +zk∥2 ∥2

∥r = + + =  in spherical coordinates, let F (ρ, θ,φ) =∥2 x2 y2 z2 ρ2 ρ2 F (ρ, θ,φ) = ∥r∥2

F

∇F

ΔF

= + +
∂F

∂ρ
eρ

1

ρ sinφ

∂F

∂θ
eθ

1

ρ

∂F

∂φ
eφ

= 2ρ + (0) + (0)eρ

1

ρ sinφ
eθ

1

ρ
eφ

= 2ρ = 2ρ ,  as we showed earlier, soeρ

r

∥r∥

= 2ρ = 2r,  as expected. And the Laplacian is
r

ρ

= ( )+ + (sinφ )
1

ρ2

∂

∂ρ
ρ2 ∂F

∂ρ

1

φρ2 sin2

F∂2

∂θ2

1

sinφρ2

∂

∂φ

∂F

∂φ

= ( 2ρ) + (0) + (sinφ(0))
1

ρ2

∂

∂ρ
ρ2 1

sinφρ2

1

sinφρ2

∂

∂φ

= (2 ) +0 +0
1

ρ2

∂

∂ρ
ρ3

= (6 ) = 6,  as expected.
1

ρ2
ρ2
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17.1: Second-Order Linear Equations

Recognize homogeneous and nonhomogeneous linear differential equations.
Determine the characteristic equation of a homogeneous linear equation.
Use the roots of the characteristic equation to find the solution to a homogeneous linear equation.
Solve initial-value and boundary-value problems involving linear differential equations.

When working with differential equations, usually the goal is to find a solution. In other words, we want to find a function (or
functions) that satisfies the differential equation. The technique we use to find these solutions varies, depending on the form of the
differential equation with which we are working. Second-order differential equations have several important characteristics that can
help us determine which solution method to use. In this section, we examine some of these characteristics and the associated
terminology.

Homogeneous Linear Equations
Consider the second-order differential equation

Notice that  and its derivatives appear in a relatively simple form. They are multiplied by functions of , but are not raised to any
powers themselves, nor are they multiplied together. As discussed in previously, first-order equations with similar characteristics
are said to be linear. The same is true of second-order equations. Also note that all the terms in this differential equation involve
either  or one of its derivatives. There are no terms involving only functions of . Equations like this, in which every term
contains  or one of its derivatives, are called homogeneous.

Not all differential equations are homogeneous. Consider the differential equation

The  term on the right side of the equal sign does not contain  or any of its derivatives. Therefore, this differential equation is
nonhomogeneous.

A second-order differential equation is linear if it can be written in the form

where  and  are real-valued functions and  is not identically zero. If —in other words,
if  for every value of —the equation is said to be a homogeneous linear equation. If  for some value of 
the equation is said to be a nonhomogeneous linear equation.

In linear differential equations,  and its derivatives can be raised only to the first power and they may not be multiplied by one
another. Terms involving  or  make the equation nonlinear. Functions of  and its derivatives, such as  or , are
similarly prohibited in linear differential equations.

Note that equations may not always be given in standard form (the form shown in the definition). It can be helpful to rewrite them
in that form to decide whether they are linear, or whether a linear equation is homogeneous.

Classify each of the following equations as linear or nonlinear. If the equation is linear, determine further whether it is
homogeneous or nonhomogeneous.

a. 
b. 
c. 

 Learning Objectives

x +2 +5 y = 0.y′′ x2y′ x3

y x

y x

y

x +2 +5 y = .y′′ x2y′ x3 x2

x2 y

 Definition: Homogeneous and Nonhomogeneous Linear Equations

(x) +a)1(x) + (x)y = r(x),a2 y′′ y′ a0 (17.1.1)

(x), (x), (x),a2 a1 a0 r(x) (x)a2 r(x) ≡ 0
r(x) = 0 x r(x) ≠ 0 x,

y

y2 y′−−√ y siny ey
′

 Example : Classifying Second-Order Equations17.1.1

+3 + =y′′ x4y′ x2y2 x3

(sinx) +(cosx) +3y = 0y′′ y′

4 +3tx +4x = 0t2x′′ x′
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d. 
e. 
f. 
g. 
h. 

Solution

a. This equation is nonlinear because of the  term.
b. This equation is linear. There is no term involving a power or function of  and the coefficients are all functions of .The

equation is already written in standard form, and  is identically zero, so the equation is homogeneous.
c. This equation is nonlinear. Note that, in this case,  is the dependent variable and is the independent variable. The second

term involves the product of  and , so the equation is nonlinear.
d. This equation is linear. Since  the equation is nonhomogeneous.
e. This equation is nonlinear, because of the  term.
f. This equation is linear. Rewriting it in standard form gives

With the equation in standard form, we can see that so the equation is nonhomogeneous.
g. This equation looks like it’s linear, but we should rewrite it in standard form to be sure. We get

This equation is, indeed, linear. With  it is nonhomogeneous.
h. This equation is nonlinear because of the  term.

Classify each of the following equations as linear or nonlinear. If the equation is linear, determine further whether it is
homogeneous or nonhomogeneous.

a. 
b. 

Hint

Write the equation in standard form (Equation ) if necessary. Check for powers or functions of  and its derivatives.

Answer a

Nonlinear Linear

Answer b

nonhomogeneous

Later in this section, we will see some techniques for solving specific types of differential equations. Before we get to that,
however, let’s get a feel for how solutions to linear differential equations behave. In many cases, solving differential equations
depends on making educated guesses about what the solution might look like. Knowing how various types of solutions behave will
be helpful.

Consider the linear, homogeneous differential equation

Looking at this equation, notice that the coefficient functions are polynomials, with higher powers of  associated with higher-
order derivatives of . Show that  is a solution to this differential equation.

Solution

5 +y = 4y′′ x5

(cosx) −sin +(sinx)y−cosx = 0y′′ y′

8t −6 +4ty−3 = 0y′′ t2y′ t2

sin( ) −(cosx) + y = −3x2 y′′ y′ x2 y′

+5x −3y = cosyy′′ y′

y2

y, x

r(x)
x t

x x′

r(x) = 4 ,x5

siny′

8 −6 +4ty = 3 .t2y′′ t2y′ t2

r(t) = 3 ,t2

sin( ) −(cosx+1) + y = −3.x2 y′′ y′ x2

r(x) = −3,
cosy

 Exercise 17.1.1

( )2 − +8 y = 0y′′ y′ x3

(sin t) +cos t−3t = 0y′′ y′

17.1.1 y

 Example : Verifying a Solution17.1.2

−xy' −3y = 0.x2y′′

x

y y = x3
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Let  Then  and  Substituting into the differential equation, we see that

Show that  is a solution to the differential equation

Hint

Calculate the derivatives and substitute them into the differential equation.

Answer

This requires calculating  and .

and

Inserting these derivatives along with  into Equation .

Yes, this is a solution to the differential equation in Equation .

Although simply finding any solution to a differential equation is important, mathematicians and engineers often want to go beyond
finding one solution to a differential equation to finding all solutions to a differential equation. In other words, we want to find a
general solution. Just as with first-order differential equations, a general solution (or family of solutions) gives the entire set of
solutions to a differential equation. An important difference between first-order and second-order equations is that, with second-
order equations, we typically need to find two different solutions to the equation to find the general solution. If we find two
solutions, then any linear combination of these solutions is also a solution. We state this fact as the following theorem.

If  and  are solutions to a linear homogeneous differential equation, then the function

where  and  are constants, is also a solution.

The proof of this superposition principle theorem is left as an exercise.

y = .x3 = 3y′ x2 = 6x.y′′

−x −3yx2y′′ y′ = (6x) −x(3 ) −3( )x2 x2 x3

= 6 −3 −3x3 x3 x3

= 0.

 Exercise 17.1.2

y = 2x2

−x +y = 0.
1

2
x2y′′ y′ (17.1.2)

y′ y′′

= = 4xy′ dy

dx

= = 4y′′ dy′

dx

y = 2x2 17.1.2

−x +y
1

2
x2y′′ y′

(4) −x(4x) +2
1

2
x2 x2

2 −4 +2x2 x2 x2

0=
?

0=
?

0=
✓

17.1.2

 Theorem: SUPERPOSITION PRINCIPLE

(x)y1 (x)y2

y(x) = (x) + (x),c1y1 c2y2 (17.1.3)

c1 c2
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Consider the differential equation

Given that  and  are solutions to this differential equation, show that  is a solution.

Solution

Although this can be done through a simple application of the Superposition principle (Equation ), but we can also
confirm it is a solution via an approach like in Example . We have

Then

Thus,  is a solution.

Consider the differential equation

Given that  and  are solutions to this differential equation, show that  is a solution.

Hint

Differentiate the function and substitute into the differential equation.

Answer

Although this can be a simple application of the Superposition principle (Equation ), we can also set through it like in
Example . We have

Then

Thus,  is a solution to the differential equation

Unfortunately, to find the general solution to a second-order differential equation, it is not enough to find any two solutions and
then combine them. Consider the differential equation

 Example : Verifying the Superposition Principle17.1.3

−4 −5y = 0.y′′ y′

e−x e5x 4 +e−x e5x

17.1.3
17.1.2

y(x)

(x)y′

(x)y′′

= 4 +e−x e5x

= −4 +5e−x e5x

= 4 +25 .e−x e5x

−4 −5yy′′ y′ (4 +25 ) −4(−4 +5 ) −5(4 + )=
?

e−x e5x e−x e5x e−x e5x

4 +25 +16 −20 −20 −5=
?

e−x e5x e−x e5x e−x e5x

0.=
✓

y(x) = 4 +e−x e5x

 Exercise 17.1.3

+5 +6y = 0.y′′ y′

e−2x e−3x 3 +6e−2x e−3x

17.1.3
17.1.2

y(x)

(x)y′

(x)y′′

= 3 +6e−2x e−3x

= −6 −18e−2x e−3x

= 12 +54 .e−2x e3x

+5 +6yy′′ y′ = (12 +54 ) +5(−6 −18 ) +6(3 +6 )e−2x e3x e−2x e−3x e−2x e3x

+ − − + +=
?

12e−2x 54e3x 30e−2x 90e3x 18e−2x 36e3x

0.=
✓

3 +6e−2x e−3x
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Both  and  are solutions (you can check this). However,

is not the general solution. This expression does not account for all solutions to the differential equation. In particular, it fails to
account for the function  which is also a solution to the differential equation. It turns out that to find the general solution to a
second-order differential equation, we must find two linearly independent solutions. We define that terminology here.

A set of functions  is said to be linearly dependent if there are constants , not all zero,
such that

for all  over the interval of interest. A set of functions that is not linearly dependent is said to be linearly independent.

In this chapter, we usually test sets of only two functions for linear independence, which allows us to simplify this definition. From
a practical perspective, we see that two functions are linearly dependent if either one of them is identically zero or if they are
constant multiples of each other.

First we show that if the functions meet the conditions given previously, then they are linearly dependent. If one of the functions is
identically zero—say, —then choose  and  and the condition for linear dependence is satisfied. If, on the
other hand, neither  nor  is identically zero, but  for some constant  then choose  and 

 and again, the condition is satisfied.

Next, we show that if two functions are linearly dependent, then either one is identically zero or they are constant multiples of one
another. Assume  and  are linearly independent. Then, there are constants,  and  not both zero, such that

for all  over the interval of interest. Then,

Now, since we stated that  and  can’t both be zero, assume  Then, there are two cases: either  or  If 
 then

so one of the functions is identically zero. Now suppose  Then,

and we see that the functions are constant multiples of one another.

Two functions,  and  are said to be linearly dependent if either one of them is identically zero or if 
 for some constant  and for all  over the interval of interest. Functions that are not linearly dependent are

said to be linearly independent.

Determine whether the following pairs of functions are linearly dependent or linearly independent.

a.  and 

+7 +12x = 0.x′′ x′

e−3t 2e−3t

x(t) = + (2 )c1e
−3t c2 e−3t

,e−4t

 Definition: Linearly Dependent functions

(x), (x), … , (x)f1 f2 fn , , … ,c1 c2 cn

(x) + (x) +⋯ + (x) = 0c1f1 c2f2 cnfn

x

(x) ≡ 0f2 = 0c1 = 1,c2

(x)f1 (x)f2 (x) = C (x)f1 f2 C, = Cc1

= −1,c2

(x)f1 (x)f2 c1 ,c2

(x) + (x) = 0c1f1 c2f2

x

(x) = − (x).c1f1 c2f2

c1 c2 ≠ 0.c2 = 0c1 ≠ 0.c1

= 0,c1

0

0

= − (x)c2f2

= (x),f2

≠ 0.c1

(x) =(− ) (x)f1
c2

c1
f2

 Theorem: Linear Dependence of Two Functions

(x)f1 (x),f2

(x) = C (x)f1 f2 C x

 Example : Testing for Linear Dependence17.1.4

(x) =f1 x2 (x) = 5f2 x2
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b.  and 
c.  and 
d.  and 

Solution

a.  so the functions are linearly dependent.
b. There is no constant  such that  so the functions are linearly independent.
c. There is no constant  such that  so the functions are linearly independent. Don’t get confused by the fact

that the exponents are constant multiples of each other. With two exponential functions, unless the exponents are equal, the
functions are linearly independent.

d. There is no constant  such that  so the functions are linearly independent.

Determine whether the following pairs of functions are linearly dependent or linearly independent:  and 

Hint

Are the functions constant multiples of one another?

Answer

Linearly independent

If we are able to find two linearly independent solutions to a second-order differential equation, then we can combine them to find
the general solution. This result is formally stated in the following theorem.

If  and  are linearly independent solutions to a second-order, linear, homogeneous differential equation, then the
general solution is given by

where  and  are constants.

When we say a family of functions is the general solution to a differential equation, we mean that

1. every expression of that form is a solution and
2. every solution to the differential equation can be written in that form, which makes this theorem extremely powerful.

If we can find two linearly independent solutions to a second order differential equation, we have, effectively, found all solutions to
the second order differential equation—quite a remarkable statement. The proof of this theorem is beyond the scope of this text.

If  and  are solutions to  what is the general solution?

Solution

Note that  and  are not constant multiples of one another, so they are linearly independent. Then, the general solution to
the differential equation is

(x) = sinxf1 (x) = cosxf2

(x) =f1 e3x (x) =f2 e−3x

(x) = 3xf1 (x) = 3x+1f2

(x) = 5 (x),f2 f1

C (x) = C (x),f1 f2

C (x) = C (x),f1 f2

C (x) = C (x),f1 f2

 Exercise 17.1.4

(x) =f1 ex

(x) = 3 .f2 e3x

 Theorem: General Solution to a Homogeneous Equation

(x)y1 (x)y2

y(x) = (x) + (x),c1y1 c2y2

c1 c2

 Example : Writing the General Solution17.1.5

(t) =y1 e3t (t) =y2 e−3t −9y = 0,y′′

y1 y2

y(t) = + .c1e
3t c2e

−3t
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If  and  are solutions to  what is the general solution?

Hint

Check for linear independence first.

Answer

Second-Order Equations with Constant Coefficients

Now that we have a better feel for linear differential equations, we are going to concentrate on solving second-order equations of
the form

where  and  are constants.

Since all the coefficients are constants, the solutions are probably going to be functions with derivatives that are constant multiples
of themselves. We need all the terms to cancel out, and if taking a derivative introduces a term that is not a constant multiple of the
original function, it is difficult to see how that term cancels out. Exponential functions have derivatives that are constant multiples
of the original function, so let’s see what happens when we try a solution of the form , where  (the lowercase Greek
letter lambda) is some constant.

If , then  and  Substituting these expressions into Equation , we get

Since  is never zero, this expression can be equal to zero for all  only if

We call this the characteristic equation of the differential equation.

The characteristic equation of the second order differential equation  is

The characteristic equation is very important in finding solutions to differential equations of this form. We can solve the
characteristic equation either by factoring or by using the quadratic formula

This gives three cases. The characteristic equation has

1. distinct real roots;
2. a single, repeated real root; or
3. complex conjugate roots.

We consider each of these cases separately.

Case 1: Distinct Real Roots

If the characteristic equation has distinct real roots  and , then  and  are linearly independent solutions to Example 
, and the general solution is given by

 Exercise 17.1.5

(x) =y1 e3x (x) = xy2 e3x −6 +9y = 0,y′′ y′

y(x) = + xc1e3x c2 e3x

a +b +cy = 0,y′′ y′ (17.2)

a, b, c

y(x) = eλx λ

y(x) = eλx (x) = λy′ eλx = .y′′ λ2eλx 17.1.1

a +b +cyy′′ y′ = a( ) +b(λ ) +cλ2eλx eλx eλx

= (a +bλ+c).eλx λ2

eλx x

aλ2 +bλ+c = 0.

 Definition: characteristic equation

a +b +cy = 0y′′ y′

a +bλ+c = 0.λ2

λ = .
−b± −4acb2

− −−−−−−
√

2a

λ1 λ2 e xλ1 e xλ2

17.1.1

y(x) = + ,c1e
xλ1 c2e

xλ2
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where  and  are constants.

For example, the differential equation  has the associated characteristic equation  This
factors into  which has roots  and  Therefore, the general solution to this differential
equation is

Case 2: Single Repeated Real Root

Things are a little more complicated if the characteristic equation has a repeated real root, . In this case, we know  is a solution
to Equation , but it is only one solution and we need two linearly independent solutions to determine the general solution. We
might be tempted to try a function of the form  where  is some constant, but it would not be linearly independent of 
Therefore, let’s try  as the second solution. First, note that by the quadratic formula,

But,  is a repeated root, so the discriminate ( ) is zero and . Thus, if , we have

Substituting both expressions into Equation , we see that

This shows that  is a solution to Equation . Since  and  are linearly independent, when the characteristic
equation has a repeated root , the general solution to Equation  is given by

where  and  are constants.

For example, the differential equation  has the associated characteristic equation

This factors into  which has a repeated root . Therefore, the general solution to this differential equation is

Case 3: Complex Conjugate Roots

The third case we must consider is when  In this case, when we apply the quadratic formula, we are taking the square
root of a negative number. We must use the imaginary number  to find the roots, which take the form  and 

 The complex number  is called the conjugate of . Thus, we see that when the discriminate  is
negative, the roots of our characteristic equation are always complex conjugates.

This creates a little bit of a problem for us. If we follow the same process we used for distinct real roots—using the roots of the
characteristic equation as the coefficients in the exponents of exponential functions—we get the functions  and  as
our solutions. However, there are problems with this approach. First, these functions take on complex (imaginary) values, and a
complete discussion of such functions is beyond the scope of this text. Second, even if we were comfortable with complex-value
functions, in this course we do not address the idea of a derivative for such functions. So, if possible, we’d like to find two linearly
independent real-value solutions to the differential equation. For purposes of this development, we are going to manipulate and
differentiate the functions  and  as if they were real-value functions. For these particular functions, this approach is

c1 c2

+9 +14y = 0y′′ y′ +9λ+14 = 0.λ2

(λ+2)(λ+7) = 0, = −2λ1 = −7.λ2

y(x) = + .c1e
−2x c2e

−7x

λ eλx

17.1.1
k ,eλx k .eλx

xeλx

λ = .
−b± −4acb2

− −−−−−−
√

2a

λ −4acb2 λ = −b

2a
y = xeλx

= +λxy′ eλx eλx

= 2λ + x .y′′ eλx λ2 eλx

17.1.1

a +by' +cyy′′ = a(2λ + x ) +b( +λx ) +cxeλx λ2 eλx eλx eλx eλx

= x (a +bλ+c) + (2aλ+b)eλx λ2 eλx

= x (0) + (2a(−b2a) +b)eλx eλx

= 0 + (0)eλx

0.=
✓

xeλx 17.1.1 eλx xeλx

λ 17.1.1

y(x) = + x ,c1e
λx c2 eλx

c1 c2

+12 +36y = 0y′′ y′

+12λ+36 = 0.λ2

(λ+6 = 0,)2 λ = −6

y(x) = + x .c1e
−6x c2 e−6x

−4ac < 0.b2

i = −1
−−−

√ = α+βiλ1

= α−βi.λ2 α+βi α−βi −4acb2

e(α+βi)x e(α−βi)x

e(α+βi)x e(α−βi)x
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valid mathematically, but be aware that there are other instances when complex-value functions do not follow the same rules as
real-value functions. Those of you interested in a more in-depth discussion of complex-value functions should consult a complex
analysis text.

Based on the roots  of the characteristic equation, the functions  and  are linearly independent solutions to
the differential equation and the general solution is given by

Using some smart choices for  and , and a little bit of algebraic manipulation, we can find two linearly independent, real-value
solutions to Equation  and express our general solution in those terms.

We encountered exponential functions with complex exponents earlier. One of the key tools we used to express these exponential
functions in terms of sines and cosines was Euler’s formula, which tells us that

for all real numbers .

Going back to the general solution, we have

Applying Euler’s formula (Equation ) together with the identities  and  we get

Now, if we choose  the second term is zero and we get

as a real-value solution to Equation . Similarly, if we choose  and , the first term of Equation  is zero
and we get

as a second, linearly independent, real-value solution to Equation .

Based on this, we see that if the characteristic equation has complex conjugate roots  then the general solution to Equation 
 is given by

where  and  are constants.

For example, the differential equation  has the associated characteristic equation  By the
quadratic formula, the roots of the characteristic equation are  Therefore, the general solution to this differential equation is

Summary of Results

We can solve second-order, linear, homogeneous differential equations with constant coefficients by finding the roots of the
associated characteristic equation. The form of the general solution varies, depending on whether the characteristic equation has
distinct, real roots; a single, repeated real root; or complex conjugate roots. The three cases are summarized in Table .

Table : Summary of Characteristic Equation Cases

α±βi e(α+βi)x e(α−βi)x

y(x) = + .c1e
(α+βi)x c2e

(α−βi)x

c1 c2

17.1.1

= cosθ+ i sinθeiθ
  

Euler’s formula

(17.1.4)

θ

y(x) = +c1e
(α+βi)x c2e

(α−βi)x

= +c1e
αxeβix c2e

αxe−βix

= ( + ).eαx c1e
βix c2e

−βix

17.1.4 cos(−x) = cosx sin(−x) = −sinx,

y(x) = [ (cosβx+ i sinβx) + (cos(−βx) + i sin(−βx))]eαx c1 c2

= [( + ) cosβx+( − )i sinβx].eαx c1 c2 c1 c2 (17.1.5)

= = ,c1 c2
1
2

y(x) = cosβxeαx

17.1.1 = −c1
i

2
=c2

i

2
17.1.5

y(x) = sinβxeαx

17.1.1

α±βi,
17.1.1

y(x) = cosβx+ sinβxc1e
αx c2e

αx

= ( cosβx+ sinβx),eαx c1 c2

c1 c2

−2 +5y = 0y′′ y′ −2λ+5 = 0.λ2

1 ±2i.

y(x) = ( cos 2x+ sin2x).ex c1 c2

17.1.1

17.1.1
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Characteristic Equation Roots General Solution to the Differential EquationCharacteristic Equation Roots General Solution to the Differential Equation

Distinct real roots,  and 

A repeated real root, 

Complex conjugate roots 

1. Write the differential equation in the form 
2. Find the corresponding characteristic equation 
3. Either factor the characteristic equation or use the quadratic formula to find the roots.
4. Determine the form of the general solution based on whether the characteristic equation has distinct, real roots; a single,

repeated real root; or complex conjugate roots.

Find the general solution to the following differential equations. Give your answers as functions of .

a. 
b. 
c. 
d. 
e. 
f. 

Solution

Note that all these equations are already given in standard form (step 1).

1. The characteristic equation is  (step 2). This factors into , so the roots of the
characteristic equation are  and  (step 3). Then the general solution to the differential equation is

2. The characteristic equation is  (step 2). Applying the quadratic formula, we see this equation has
complex conjugate roots  (step 3). Then the general solution to the differential equation is

3. The characteristic equation is  (step 2). This factors into  so the characteristic equation has
a repeated real root  (step 3). Then the general solution to the differential equation is

4. The characteristic equation is  (step 2). This factors into  so the roots of the characteristic equation
are  and  (step 3). Note that , so our first solution is just a constant. Then the general solution to
the differential equation is

5. The characteristic equation is  (step 2). This factors into  so the roots of the characteristic
equation are  and  (step 3). Then the general solution to the differential equation is

6. The characteristic equation is  (step 2). This has complex conjugate roots  (step 3). Note that 
, so the exponential term in our solution is just a constant. Then the general solution to the differential

equation is

λ1 λ2 y(x) = +c1e
xλ1 c2e

xλ2

λ y(x) = + xc1e
λx c2 eλx

α± βi y(x) = ( cosβx + sinβx)eαx c1 c2

 PROBLEM-SOLVING STRATEGY: USING THE CHARACTERISTIC EQUATION TO SOLVE SECOND-
ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

+b +cy = 0.a′′ y′

a +bλ+c = 0.λ2

 Example : Solving Second-Order Equations with Constant Coefficients17.1.6

x

+3 −4y = 0y′′ y′

+6 +13y = 0y′′ y′

+2 +y = 0y′′ y′

−5 = 0y′′ y′

−16y = 0y′′

+16y = 0y′′

+3λ−4 = 0λ2 (λ+4)(λ−1) = 0
= −4λ1 = 1λ2

y(x) = + .c1e
−4x c2e

x (step 1)

+6λ+13 = 0λ2

−3 ±2i

y(t) = ( cos 2t+ sin2t).e−3t c1 c2 (step 2)

+2λ+1 = 0λ2 (λ+1)2 = 0,
λ = −1

y(t) = + t .c1e
−t c2 e−t (step 3)

−5λλ2 λ(λ−5) = 0,
= 0λ1 = 5λ2 = = 1e0x e0

y(x) = + .c1 c2e
5x (step 4)

−16 = 0λ2 (λ+4)(λ−4) = 0,
= 4λ1 = −4λ2

y(x) = + .c1e
4x c2e

−4x (step 5)

+16 = 0λ2 ±4i
= = 1e0x e0

y(t) = cos 4t+ sin4t.c1 c2 (step 6)
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Find the general solution to the following differential equations:

a. 
b. 

Hint

Find the roots of the characteristic equation.

Answer a

Answer b

Initial-Value Problems and Boundary-Value Problems
So far, we have been finding general solutions to differential equations. However, differential equations are often used to describe
physical systems, and the person studying that physical system usually knows something about the state of that system at one or
more points in time. For example, if a constant-coefficient differential equation is representing how far a motorcycle shock
absorber is compressed, we might know that the rider is sitting still on his motorcycle at the start of a race, time  This means
the system is at equilibrium, so  and the compression of the shock absorber is not changing, so  With these
two initial conditions and the general solution to the differential equation, we can find the specific solution to the differential
equation that satisfies both initial conditions. This process is known as solving an initial-value problem. (Recall that we discussed
initial-value problems in Introduction to Differential Equations.) Note that second-order equations have two arbitrary constants in
the general solution, and therefore we require two initial conditions to find the solution to the initial-value problem.

Sometimes we know the condition of the system at two different times. For example, we might know  and 
These conditions are called boundary conditions, and finding the solution to the differential equation that satisfies the

boundary conditions is called solving a boundary-value problem.

Mathematicians, scientists, and engineers are interested in understanding the conditions under which an initial-value problem or a
boundary-value problem has a unique solution. Although a complete treatment of this topic is beyond the scope of this text, it is
useful to know that, within the context of constant-coefficient, second-order equations, initial-value problems are guaranteed to
have a unique solution as long as two initial conditions are provided. Boundary-value problems, however, are not as well behaved.
Even when two boundary conditions are known, we may encounter boundary-value problems with unique solutions, many
solutions, or no solution at all.

Solve the following initial-value problem: 

Solution

We already solved this differential equation in Example 17.6a. and found the general solution to be

Then

When  we have  and  Applying the initial conditions, we have

Then  Substituting this expression into the second equation, we see that

 Exercise 17.1.6

−2 +10y = 0y′′ y′

+14 +49y = 0y′′ y′

y(x) = ( cos 3x+ sin3x)ex c1 c2

y(x) = + xc1e
−7x c2 e−7x

t = .t0

y( ) = 0,t0 ( ) = 0.y′ t0

y( ) =t0 y0

y( ) = .t1 y1

 Example : Solving an Initial-Value Problem17.1.7

+3 −4y = 0, y(0) = 1, (0) = −9.y′′ y′ y′

y(x) = + .c1e
−4x c2e

x

(x) = −4 + .y′ c1e
−4x c2e

x

x = 0, y(0) = +c1 c2 (0) = −4 + .y′ c1 c2

+c1 c2

−4 +c1 c2

= 1

= −9.

= 1 − .c1 c2
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So,  and the solution to the initial-value problem is

Solve the initial-value problem 

Hint

Use the initial conditions to determine values for  and .

Answer

Solve the following initial-value problem and graph the solution:

Solution

We already solved this differential equation in Example . and found the general solution to be

Then

When  we have  and . Applying the initial conditions, we obtain

Therefore,  and the solution to the initial value problem is shown in the following graph.

−4(1 − ) +c2 c2

−4 +4 +c2 c2

5c2

c2

= −9

= −9

= −5

= −1.

= 2c1

y(x) = 2 − .e−4x ex

 Exercise 17.1.7

−3 −10y = 0, y(0) = 0, (0) = 7.y′′ y′ y′

c1 c2

y(x) = − +e−2x e5x

 Example : Solving an Initial-Value Problem and Graphing the Solution17.1.8

+6 +13y = 0, y(0) = 0, (0) = 2y′′ y′ y′

17.1.6b

y(x) = ( cos 2x+ sin2x).e−3x c1 c2

(x) = (−2 sin2x+2 cos 2x) −3 ( cos 2x+ sin2x).y′ e−3x c1 c2 e−3x c1 c2

x = 0, y(0) = c1 (0) = 2 −3y′ c2 c1

c1

−3 +2c1 c2

= 0

= 2.

= 0, = 1,c1 c2

y = sin2x.e−3x
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Solve the following initial-value problem and graph the solution: 

Hint

Use the initial conditions to determine values for  and 

Answer

The following initial-value problem models the position of an object with mass attached to a spring. Spring-mass systems are
examined in detail in Applications. The solution to the differential equation gives the position of the mass with respect to a
neutral (equilibrium) position (in meters) at any given time. (Note that for spring-mass systems of this type, it is customary to
define the downward direction as positive.)

Solve the initial-value problem and graph the solution. What is the position of the mass at time  sec? How fast is the mass
moving at time  sec? In what direction?

Solution

In Example Example . we found the general solution to this differential equation to be

Then

When  we have  and  Applying the initial conditions, we obtain

Thus,  and the solution to the initial value problem is

This solution is represented in the following graph. At time  the mass is at position 
m below equilibrium.

To calculate the velocity at time  we need to find the derivative. We have  so

Then . At time  the mass is moving upward at  m/sec.

 Exercise 17.1.8

−2 +10y = 0, y(0) = 2, (0) = −1y′′ y′ y′

c1 .c2

y(x) = (2 cos 3x−sin3x)ex

 Example : Initial-Value Problem Representing a Spring-Mass System17.1.9

+2 +y = 0, y(0) = 1, (0) = 0y′′ y′ y′

t = 2
t = 1

17.1.6c

y(t) = + t .c1e
−t c2 e−t

(t) = − + (−t + ).y′ c1e
−t c2 e−t e−t

t = 0, y(0) = c1 (0) = + .y′ c1 c2

= 1c1

− + = 0.c1 c2

= 1, = 1,c1 c2

y(t) = + t .e−t e−t

t = 2, y(2) = +2 = 3 ≈ 0.406e−2 e−2 e−2

t = 1, y(t) = + t ,e−t e−t

(t) = − + − t = −t .y′ e−t e−t e−t e−t

(1) = − ≈ −0.3679y′ e−1 t = 1, 0.3679
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Suppose the following initial-value problem models the position (in feet) of a mass in a spring-mass system at any given time.
Solve the initial-value problem and graph the solution. What is the position of the mass at time  sec? How fast is it
moving at time  sec? In what direction?

Hint

Use the initial conditions to determine values for  and .

Answer

At time  The mass is ft below equilibrium. At time 
 The mass is moving downward at a speed of  ft/sec.

In Example 17.6f. we solved the differential equation  and found the general solution to be 
 If possible, solve the boundary-value problem if the boundary conditions are the following:

a. 
b. 
c. 

Solution

We have

1. Applying the first boundary condition given here, we get  So the solution is of the form 
When we apply the second boundary condition, though, we get  for all values of .
The boundary conditions are not sufficient to determine a value for  so this boundary-value problem has infinitely many
solutions. Thus,  is a solution for any value of .

2. Applying the first boundary condition given here, we get  Applying the second boundary condition gives 
 so  In this case, we have a unique solution: .

3. Applying the first boundary condition given here, we get  However, applying the second boundary
condition gives  so  We cannot have  so this boundary value problem has no
solution.

 Exercise 17.1.9

t = 0.3
t = 0.1

+14 +49y = 0, y(0) = 0, (0) = 1y′′ y′ y′

c1 c2

y(t) = te−7t

t = 0.3, y(0.3) = 0.3 = 0.3 ≈ 0.0367.e(− 0.3)7∗
e−2.1 0.0367

t = 0.1, (0.1) = 0.3 ≈ 0.1490.y′ e−0.7 0.1490

 Example : Solving a Boundary-Value Problem17.1.10

+16y = 0y′′

y(t) = cos 4t+ sin4t.c1 c2

y(0) = 0, y( ) = 0π
4

y(0) = 1, y(0) = 1, y( ) = 0π
8

y( ) = 0, y( ) = 2π

8
3π
8

y(x) = cos 4t+ sin4t.c1 c2

y(0) = = 0.c1 y(t) = sin4t.c2

y( ) = sin(4( )) = sinπ = 0π

4
c2

π

4
c2 c2

,c2

y(t) = sin4tc2 c2

y(0) = = 1.c1

y( ) = = 0,π

8
c2 = 0.c2 y(t) = cos 4t

y( ) = = 0.π

8
c2

y( ) = − = 2,3π
8

c2 = −2.c2 = 0 = −2,c2
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Key Concepts
Second-order differential equations can be classified as linear or nonlinear, homogeneous or nonhomogeneous.
To find a general solution for a homogeneous second-order differential equation, we must find two linearly independent
solutions. If  and  are linearly independent solutions to a second-order, linear, homogeneous differential equation,
then the general solution is given by

To solve homogeneous second-order differential equations with constant coefficients, find the roots of the characteristic
equation. The form of the general solution varies depending on whether the characteristic equation has distinct, real roots; a
single, repeated real root; or complex conjugate roots.
Initial conditions or boundary conditions can then be used to find the specific solution to a differential equation that satisfies
those conditions, except when there is no solution or infinitely many solutions.

Key Equations
Linear second-order differential equation

Second-order equation with constant coefficients

Glossary

boundary conditions
the conditions that give the state of a system at different times, such as the position of a spring-mass system at two different
times

boundary-value problem
a differential equation with associated boundary conditions

characteristic equation
the equation  for the differential equation 

homogeneous linear equation
a second-order differential equation that can be written in the form , but  for
every value of 

nonhomogeneous linear equation
a second-order differential equation that can be written in the form , but  for
some value of 

linearly dependent
a set of functions  for whichthere are constants , not all zero, such that 

 for all  in the interval of interest

linearly independent
a set of functions  for which there are no constants , such that 

 for all  in the interval of interest
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(x)y1 (x)y2

y(x) = (x) + (x).c1y1 c2y2

(x) + (x) + (x)y = r(x)a2 y′′ a1 y′ a0

a +b +cy = 0y′′ y′

a +bλ+c = 0λ2 ay'' +by' +cy = 0

(x)y'' + (x)y' + (x)y = r(x)a2 a1 a0 r(x) = 0
x

(x)y'' + (x)y' + (x)y = r(x)a2 a1 a0 r(x) ≠ 0
x

(x), (x), … , (x)f1 f2 fn , , … ,c1 c2 cn
(x) + (x) +⋯ + (x) = 0c1f1 c2f2 cnfn x

(x), (x), … , (x)f1 f2 fn , , … ,c1 c2 cn
(x) + (x) +⋯ + (x) = 0c1f1 c2f2 cnfn x
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17.2: Nonhomogeneous Linear Equations
Now we consider second order equations of the form , with , , and  constant. Of course, if  this is
really a first order equation, so we assume . Also, much as in exercise 20 of section 17.5, if  we can solve the related
first order equation , and then solve  for . So we will only examine examples in which .

Suppose that  and  are solutions to , and consider the function . We substitute this
function into the left hand side of the differential equation and simplify:

So  is a solution to the homogeneous equation . Since we know how to find all such , then with just one
particular solution  we can express all possible solutions , namely, , where now  is the general solution to the
homogeneous equation. Of course, this is exactly how we approached the first order linear equation.

To make use of this observation we need a method to find a single solution . This turns out to be somewhat more difficult than
the first order case, but if  is of a certain simple form, we can find a solution using the method of undetermined coefficients,
sometimes more whimsically called the method of judicious guessing.

Solve the differential equation .

Solution

The general solution of the homogeneous equation is . We guess that a solution to the non-homogeneous
equation might look like  itself, namely, a quadratic . Substituting this guess into the differential equation
we get

We want this to equal , so we need

This is a system of three equations in three unknowns and is not hard to solve: , , . Thus the general
solution to the differential equation is .

So the "judicious guess'' is a function with the same form as  but with undetermined (or better, yet to be determined)
coefficients. This works whenever  is a polynomial.

Consider the initial value problem , , . The left hand side represents a mass-spring
system with no damping, i.e., . Unlike the homogeneous case, we now consider the force due to gravity, , assuming
the spring is vertical at the surface of the earth, so that . To be specific, let us take  and . The general
solution to the homogeneous equation is . For the solution to the non-homogeneous equation we
guess simply a constant , since  is a constant. Then  so . The
desired general solution is then . Substituting the initial conditions we get

so  and  and the solution is .

More generally, this method can be used when a function similar to  has derivatives that are also similar to ; in the
examples so far, since  was a polynomial, so were its derivatives. The method will work if  has the form 

a +b +cy = f(t)ÿ ẏ a b c a = 0

a ≠ 0 c = 0

a +bh = f(t)ḣ h = ẏ y c ≠ 0

(t)y1 (t)y2 a +b +cy = f(t)ÿ ẏ h = −y1 y2

a( − +b( − +c( − ) = a +b +c −(a +b +c ) = f(t) −f(t) = 0.y1 y2)′′ y1 y2)′ y1 y2 y′′
1 y′

1 y1 y′′
2 y′

2 y2 (17.2.1)

h a +b +cy = 0ÿ ẏ h

y2 y1 = h +y1 y2 h

y2

f(t)

Example :17.2.1

− −6y = 18 +5ÿ ẏ t2

A +Be3t e−2t

f(t) y = a +bt +ct2

− −6y = 2a −(2at +b) −6(a +bt +c) = −6a +(−2a −6b)t +(2a −b −6c).ÿ ẏ t2 t2 (17.2.2)

18 +5t2

−6a

−2a −6b

2a −b −6c

= 18

= 0

= 5

(17.2.3)

a = −3 b = 1 c = −2

A +B −3 + t −2e3t e−2t t2

f(t)

f(t)

Example :17.2.2

m +ky = −mgÿ y(0) = 2 (0) = 50ẏ

b = 0 −mg

g = 980 m = 1 k = 100

A cos(10t) +B sin(10t)

y = a −mg = −980 +100y = 100aÿ a = −980/100 = −9.8

A cos(10t) +B sin(10t) −9.8

2

50

= A −9.8

= 10B
(17.2.4)

A = 11.8 B = 5 11.8 cos(10t) +5 sin(10t) −9.8

f(t) f(t)

f(t) f(t)
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, where  and  are polynomials; when  this is simply , a polynomial. In the
most general form it is not simple to describe the appropriate judicious guess; we content ourselves with some examples to
illustrate the process.

Find the general solution to . The characteristic equation is , so the
solution to the homogeneous equation is . For a particular solution to the inhomogeneous equation we guess 

. Substituting we get

When  this is equal to , so the solution is .

Find the general solution to . Following the last example we might guess , but since this is a
solution to the homogeneous equation it cannot work. Instead we guess . Then

Then  and the solution is .

In general, if  and  is one of the roots of the characteristic equation, then we guess  instead of . If  is the
only root of the characteristic equation, then  will not work, and we must guess .

Find the general solution to . The characteristic equation is , so the general solution
to the homogeneous equation is . Guessing  for the particular solution, we get

The solution is thus .

It is common in various physical systems to encounter an  of the form .

Find the general solution to . The roots of the characteristic equation are , so the solution to
the homogeneous equation is . For a particular solution, we guess .
Substituting as usual:

To make this equal to  we need

which gives  and . The full solution is then

The function  is a damped oscillation as in example 17.5.3, while 
 is a simple undamped oscillation. As  increases, the sum 

approaches zero, so the solution \[e^{-3t}(A\cos(4t)+B\sin(4t))+(1/73)\cos(4t)+(8/219)\sin(4t)\[ becomes more and more like
the simple oscillation ---notice that the initial conditions don't matter to this long term
behavior. The damped portion is called the transient part of solution, and the simple oscillation is called the steady state part

p(t) cos(βt) +q(t) sin(βt)eαt eαt p(t) q(t) α = β = 0 p(t)

Example :17.2.3

+7 +10y =ÿ ẏ e3t +7r +10 = (r +5)(r +2)r2

A +Be−5t e−2t

Ce3t

9C +21C +10C = 40C.e3t e3t e3t e3t (17.2.5)

C = 1/40 f(t) = e3t A +B +(1/40)e−5t e−2t e3t

Example :17.2.4

+7 +10y =ÿ ẏ e−2t Ce−2t

Cte−2t

(−2C −2C +4Ct ) +7(C −2Ct ) +10Ct = (−3C).e−2t e−2t e−2t e−2t e−2t e−2t e−2t (17.2.6)

C = −1/3 A +B −(1/3)te−5t e−2t e−2t

f(t) = ekt k Ctekt Cekt k

Ctekt Ct2ekt

Example :17.2.5

−6 +9y =ÿ ẏ e3t −6r +9 = (r −3r2 )2

A +Bte3t e3t Ct2e3t

(9C +6Ct +6Ct +2C ) −6(3C +2Ct ) +9C = 2C.t2e3t e3t e3t e3t t2e3t e3t t2e3t e3t (17.2.7)

A +Bt +(1/2)e3t e3t t2e3t

f(t) a cos(ωt) +b sin(ωt)

Example :17.2.6

+6 +25y = cos(4t)ÿ ẏ −3 ±4i

(A cos(4t) +B sin(4t))e−3t C cos(4t) +D sin(4t)

(−16C cos(4t) +−16D sin(4t)) +6(−4C sin(4t) +4D cos(4t)) +25(C cos(4t) +D sin(4t))

= (24D +9C) cos(4t) +(−24C +9D) sin(4t).
(17.2.8)

cos(4t)

24D +9C

9D −24C

= 1

= 0
(17.2.9)

C = 1/73 D = 8/219

(A cos(4t) +B sin(4t)) +(1/73) cos(4t) +(8/219) sin(4t).e−3t (17.2.10)

(A cos(4t) +B sin(4t))e−3t

(1/73) cos(4t) +(8/219) sin(4t) t (A cos(4t) +B sin(4t))e−3t

(1/73) cos(4t) +(8/219) sin(4t)
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of solution. A physical example is a mass-spring system. If the only force on the mass is due to the spring, then the behavior of
the system is a damped oscillation. If in addition an external force is applied to the mass, and if the force varies according to a
function of the form , then the long term behavior will be a simple oscillation determined by the steady
state part of the general solution; the initial position of the mass will not matter.

As with the exponential form, such a simple guess may not work.

Find the general solution to . The roots of the characteristic equation are , so the solution to the
homogeneous equation is . Since both  and  are solutions to the homogeneous equation,

 is also, so it cannot be a solution to the non-homogeneous equation. Instead, we guess 
. Then substituting:

Thus , , and the solution is .

In general, if , and  are the roots of the characteristic equation, then instead of 
 we guess .

Contributors
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a cos(ωt) +b sin(ωt)

Example :17.2.4

+16y = −sin(4t)ÿ ±4i

A cos(4t) +B sin(4t) cos(4t) sin(4t)

C cos(4t) +D sin(4t)

Ct cos(4t) +Dt sin(4t)

(−16Ct cos(4t) −16D sin(4t) +8D cos(4t) −8C sin(4t))) +16(Ct cos(4t) +Dt sin(4t))

= 8D cos(4t) −8C sin(4t).
(17.2.11)

C = 1/8 D = 0 C cos(4t) +D sin(4t) +(1/8)t cos(4t)

f(t) = a cos(ωt) +b sin(ωt) ±ωi

C cos(ωt) +D sin(ωt) Ct cos(ωt) +Dt sin(ωt)
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17.3: Applications of Second-Order Differential Equations
Let us consider to the example of a mass on a spring. We now examine the case of forced oscillations, which we did not yet handle.
That is, we consider the equation

for some nonzero . The setup is again:  is mass,  is friction,  is the spring constant, and  is an external force acting on
the mass.

Figure 

What we are interested in is periodic forcing, such as noncentered rotating parts, or perhaps loud sounds, or other sources of
periodic force. Once we learn about Fourier series in Chapter 4, we will see that we cover all periodic functions by simply
considering  (or sine instead of cosine, the calculations are essentially the same).

Undamped Forced Motion and Resonance
First let us consider undamped  motion for simplicity. We have the equation

This equation has the complementary solution (solution to the associated homogeneous equation)

where  is the natural frequency (angular), which is the frequency at which the system “wants to oscillate” without

external interference.

Let us suppose that . We try the solution  and solve for . Note that we need not have sine in our trial
solution as on the left hand side we will only get cosines anyway. If you include a sine it is fine; you will find that its coefficient
will be zero.

We solve using the method of undetermined coefficients. We find that

We leave it as an exercise to do the algebra required.

The general solution is

or written another way

Hence it is a superposition of two cosine waves at different frequencies.

m +c +kx = F (t)x′′ x′

F (t) m c k F (t)

17.3.1

F (t) = cos(ωt)F0

c = 0

m +kx = cos(ωt)x′′ F0

= cos( t) + sin( t)xc C1 ω0 C2 ω0

=ω0
k
m

−−
√

≠ ωω0 = A cos(ωt)xp A

= cos(ωt)xp

F0

m( − )ω2
0 ω2

x = cos( t) + sin( t) + cos(ωt)C1 ω0 C2 ω0
F0

m( − )ω2
0 ω2

x = C cos( t −y) + cos(ωt)ω0
F0

m( − )ω2
0 ω2
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Take

Let us compute. First we read off the parameters: . The general solution is

Solve for  and  using the initial conditions. It is easy to see that  and . Hence

Figure : Graph of .

Notice the “beating” behavior in Figure . First use the trigonometric identity

to get that

Notice that  is a high frequency wave modulated by a low frequency wave.

Now suppose that . Obviously, we cannot try the solution  and then use the method of undetermined
coefficients. We notice that  solves the associated homogeneous equation. Therefore, we need to try 

. This time we do need the sine term since the second derivative of  does contain
sines. We write the equation

Plugging  into the left hand side we get

Hence  and . Our particular solution is  and our general solution is

 Example 17.3.1

0.5 +8x = 10 cos(πt), x(0) = 0, (0) = 0x′′ x′

ω = π, = = 4, = 10, m = 0.5ω0
8

0.5

−−−
√ F0

x = cos(4t) + sin(4t) + cos(πt)C1 C2
20

16 −π2

C1 C2 =C1
−20

16−π2
= 0C2

x = (cos(πt) −cos(4t))
20

16 −π2

17.3.2 (cos(πt) − cos(4t))20
16−π2

17.3.2

2 sin( ) sin( ) = cos B −cos A
A −B

2

A +B

2

x = (2 sin( t) sin( t))
20

16 −π2

4 −π

2

4 +π

2

x

= ωω0 A cos(ωt)
cos(ωt)

= At cos(ωt) +Bt sin(ωt)xp t cos(ωt)

+ x = cos(ωt)x′′ ω2 F0

m

xp

2Bω cos(ωt) −2Aω sin(ωt) = cos(ωt)
F0

m

A = 0 B =
F0

2mω
t sin(ωt)

F0

2mω
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The important term is the last one (the particular solution we found). We can see that this term grows without bound as .

In fact it oscillates between  and . The first two terms only oscillate between , which becomes smaller

and smaller in proportion to the oscillations of the last term as  gets larger. In Figure  we see the graph with 
.

Figure : Graph of .

By forcing the system in just the right frequency we produce very wild oscillations. This kind of behavior is called resonance
or perhaps pure resonance. Sometimes resonance is desired. For example, remember when as a kid you could start swinging by
just moving back and forth on the swing seat in the “correct frequency”? You were trying to achieve resonance. The force of
each one of your moves was small, but after a while it produced large swings.

On the other hand resonance can be destructive. In an earthquake some buildings collapse while others may be relatively
undamaged. This is due to different buildings having different resonance frequencies. So figuring out the resonance frequency
can be very important.

A common (but wrong) example of destructive force of resonance is the Tacoma Narrows bridge failure. It turns out there was
a different phenomenon at play.

Damped Forced Motion and Practical Resonance

In real life things are not as simple as they were above. There is, of course, some damping. Our equation becomes

for some . We have solved the homogeneous problem before. We let

We replace equation  with

The roots of the characteristic equation of the associated homogeneous problem are . The form of the

general solution of the associated homogeneous equation depends on the sign of , or equivalently on the sign of ,
as we have seen before. That is,

where . In any case, we can see that  as . Furthermore, there can be no conflicts when trying to

solve for the undetermined coefficients by trying . Let us plug in and solve for  and . We get (the
tedious details are left to reader)

x = cos(ωt) + sin(ωt) + t sin(ωt)C1 C2
F0

2mω

t → ∞
tF0

2mω

− tF0

2mω
± +C 2

1 C 2
2

− −−−−−−
√

t 17.3.3
= = 0, = 2, m = 1, ω = πC1 C2 F0

17.3.3 t sin(πt)1
π

1

m +c +kx = cos(ωt),x′′ x′ F0 (17.3.1)

c > 0

p = =
c

2m
ω0

k

m

−−−
√

(17.3.1)

+2p + x = cos(ωt)x′′ x′ ω2
0

F0

m

, = −p ±r1 r2 −p2 ω2
0

− −−−−−
√

−p2 ω2
0 −4kmc2

=xc

⎧

⎩
⎨

+ ,C1e tr1 C2e tr2

+ t ,C1ept C2 e−pt

( cos( t) + sin( t)),e−pt C1 ω1 C2 ω1

if  > 4km,c2

if  = 4km,c2

if  < 4km,c2

=ω1 −ω2
0 p2

− −−−−−
√ (t) → 0xc t → ∞

= A cos(ωt) +B sin(ωt)xp A B
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We get that

We also compute  to be

Thus our particular solution is

Or in the alternative notation we have amplitude  and phase shift  where (if )

Hence we have

If  we see that .

The exact formula is not as important as the idea. Do not memorize the above formula, you should instead remember the ideas
involved. For different forcing function , you will get a different formula for . So there is no point in memorizing this specific
formula. You can always recompute it later or look it up if you really need it.

For reasons we will explain in a moment, we call the transient solution and denote it by . We call the  we found above the
steady periodic solution and denote it by . The general solution to our problem is

We note that  goes to zero as , as all the terms involve an exponential with a negative exponent. Hence for large ,
the effect of  is negligible and we will essentially only see . Hence the name transient. Notice that  involves no arbitrary
constants, and the initial conditions will only affect . This means that the effect of the initial conditions will be negligible after
some period of time. Because of this behavior, we might as well focus on the steady periodic solution and ignore the transient
solution. See Figure  for a graph of different initial conditions.

(( − )B −2ωpA) sin(ωt) +(( − )A +2ωpB) cos(ωt) = cos(ωt)ω2
0 ω2 ω2

0 ω2 F0

m

A =
( − )ω2

0 ω2 F0

m +m(2ωp)2 ( − )ω2
0 ω2 2

B =
2ωpF0

m +m(2ωp)2 ( − )ω2
0 ω2 2

C = +A2 B2
− −−−−−−

√

C =
F0

m +(2ωp)
2

( − )ω2
0 ω2 2

− −−−−−−−−−−−−−−−
√

= cos(ωt) + sin(ωt)xP

( − )ω2
0 ω2 F0

m +m(2ωp)2 ( − )ω2
0 ω2 2

2ωpF0

m +m(2ωp)2 ( − )ω2
0 ω2 2

C γ ω ≠ ω0

tanγ = =
B

A

2ωp

−ω2
0

ω2

= cos(ωt −γ)xp

F0

m +(2ωp)
2

( − )ω2
0 ω2 2

− −−−−−−−−−−−−−−−
√

ω = ω0 A = 0, B = C = ,  and γ =
F0

2mωp

π

2

F xp

xc xtr xp

xsp

x = + = +xc xp xtr xsp

=xc xtr t → ∞ t

xtr xsp xsp

xtr
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Figure : Solutions with different initial conditions for parameters  and 

Notice that the speed at which  goes to zero depends on  (and hence ). The bigger  is (the bigger  is), the “faster” 
becomes negligible. So the smaller the damping, the longer the “transient region.” This agrees with the observation that when 

, the initial conditions affect the behavior for all time (i.e. an infinite “transient region”).

Let us describe what we mean by resonance when damping is present. Since there were no conflicts when solving with
undetermined coefficient, there is no term that goes to infinity. What we will look at however is the maximum value of the
amplitude of the steady periodic solution. Let  be the amplitude of . If we plot  as a function of  (with all other parameters
fixed) we can find its maximum. We call the  that achieves this maximum the practical resonance frequency. We call the maximal
amplitude  the practical resonance amplitude. Thus when damping is present we talk of practical resonance rather than pure
resonance. A sample plot for three different values of  is given in Figure . As you can see the practical resonance amplitude
grows as damping gets smaller, and any practical resonance can disappear when damping is large.

Figure : Graph of  showing practical resonance with parameters . The top line is with ,
the middle line with , and the bottom line with .

To find the maximum we need to find the derivative . Computation shows

This is zero either when  or when . In other words,  when

17.3.4 k = 1, m = 1, = 1, c = 0.7,F0 ω = 1.1.

xtr P c P c xtr

c = 0

C xsp C ω

ω

C(ω)
c 17.3.5

17.3.5 C(ω) k = 1, m = 1, = 1F0 c = 0.4
c = 0.8 c = 1.6

(ω)C ′

(ω) =C ′
−4ω(2 + − )p2 ω2 ω2

0 F0

m ( +( − ))(2ωp)2 ω2
0 ω2

3/2

ω = 0 2 + − = 0p2 ω2 ω2
0 (ω) = 0C ′
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It can be shown that if  is positive, then  is the practical resonance frequency (that is the point where  is

maximal, note that in this case  for small ). If  is the maximum, then essentially there is no practical resonance
since we assume that  in our system. In this case the amplitude gets larger as the forcing frequency gets smaller.

If practical resonance occurs, the frequency is smaller than . As the damping  (and hence ) becomes smaller, the practical
resonance frequency goes to . So when damping is very small,  is a good estimate of the resonance frequency. This behavior
agrees with the observation that when , then  is the resonance frequency.

Another interesting observation to make is that when , then . This means that if the forcing frequency gets too high it
does not manage to get the mass moving in the mass-spring system. This is quite reasonable intuitively. If we wiggle back and forth
really fast while sitting on a swing, we will not get it moving at all, no matter how forceful. Fast vibrations just cancel each other
out before the mass has any chance of responding by moving one way or the other.

The behavior is more complicated if the forcing function is not an exact cosine wave, but for example a square wave. A general
periodic function will be the sum (superposition) of many cosine waves of different frequencies. The reader is encouraged to come
back to this section once we have learned about the Fourier series.

Footnotes

K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks, American Journal
of Physics, 59(2), 1991, 118–124, http://www.ketchum.org/billah/Billah-Scanlan.pdf
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17.4: Series Solutions of Differential Equations

Use power series to solve first-order and second-order differential equations.

Previously, we studied how functions can be represented as power series, . We also saw that we can find series

representations of the derivatives of such functions by differentiating the power series term by term. This gives

and

In some cases, these power series representations can be used to find solutions to differential equations.

The examples and exercises in this section were chosen for which power solutions exist. However, it is not always the case that
power solutions exist. Those of you interested in a more rigorous treatment of this topic should review the differential equations
section of the LibreTexts.

1. Assume the differential equation has a solution of the form

2. Differentiate the power series term by term to get

and

3. Substitute the power series expressions into the differential equation.
4. Re-index sums as necessary to combine terms and simplify the expression.
5. Equate coefficients of like powers of  to determine values for the coefficients  in the power series.
6. Substitute the coefficients back into the power series and write the solution.

Find a power series solution for the following differential equations.

a. 
b. 

Solution

Part a

Assume

 Learning Objectives

y(x) =∑
n=0

∞

anxn

y'(x) = n∑
n=1

∞

anx
n−1

y'' (x) = n(n −1) .∑
n=2

∞

anx
n−2

 Problem-Solving Strategy: Finding Power Series Solutions to Differential Equations

y(x) = .∑
n=0

∞

anxn

y'(x) = n∑
n=1

∞

anxn−1

y'' (x) = n(n −1) .∑
n=2

∞

anxn−2

x an

 Example : Series Solutions to Differential Equations17.4.1

−y = 0y′′

( −1)y'' +6xy' +4y = −4x2
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Then,

and

We want to find values for the coefficients  such that

We want the indices on our sums to match so that we can express them using a single summation. That is, we want to rewrite
the first summation so that it starts with .

To re-index the first term, replace  with  inside the sum, and change the lower summation limit to  We get

This gives

Because power series expansions of functions are unique, this equation can be true only if the coefficients of each power of 
are zero. So we have

This recurrence relationship allows us to express each coefficient  in terms of the coefficient two terms earlier. This yields
one expression for even values of  and another expression for odd values of . Looking first at the equations involving even
values of , we see that

Thus, in general, when  is even,

For the equations involving odd values of  we see that

y(x) =∑
n=0

∞

anx
n (step 1)

y'(x) = n∑
n=1

∞

anx
n−1 (step 2A)

y'' (x) = n(n −1)∑
n=2

∞

anx
n−2 (step 2B)

an

y'' −y = 0

n(n −1) − = 0.∑
n=2

∞

anxn−2 ∑
n=0

∞

anxn (step 3)

n = 0

n n +2 n = 0.

n(n −1) = (n +2)(n +1) .∑
n=2

∞

anxn−2 ∑
n=0

∞

an+2xn

(n +2)(n +1) −∑
n=0

∞

an+2xn ∑
n=0

∞

anxn

[(n +2)(n +1) − ]∑
n=0

∞

an+2 an xn

= 0

= 0. (step 4)

x

(n +2)(n +1) − = 0 for n = 0, 1, 2, … .an+2 an

an

n n

n

a2

a4

a6

=
a0

2

= =
a2

4 ⋅ 3
a0

4!

= =
a4

6 ⋅ 5
a0

6!

⋮

n

= .an

a0

n!
(step 5)

n,

https://libretexts.org/
https://math.libretexts.org/@go/page/4568?pdf


17.4.3 https://math.libretexts.org/@go/page/4568

Therefore, in general, when  is odd,

Putting this together, we have

Re-indexing the sums to account for the even and odd values of  separately, we obtain

Analysis for part a.

As expected for a second-order differential equation, this solution depends on two arbitrary constants. However, note that our
differential equation is a constant-coefficient differential equation, yet the power series solution does not appear to have the
familiar form (containing exponential functions) that we are used to seeing. Furthermore, since  is the
general solution to this equation, we must be able to write any solution in this form, and it is not clear whether the power series
solution we just found can, in fact, be written in that form.

Fortunately, after writing the power series representations of  and  and doing some algebra, we find that if we choose

we then have  and  and

So we have, in fact, found the same general solution. Note that this choice of  and  is not obvious. This is a case when we
know what the answer should be, and have essentially “reverse-engineered” our choice of coefficients.

Part b

Assume

Then,

a3

a5

a7

= =
a1

3 ⋅ 2
a1

3!

= =
a3

5 ⋅ 4
a1

5!

= =
a5

7 ⋅ 6
a1

7!

⋮

n

= .an

a1

n!
(step 5)

y(x) =∑
n=0

∞

anxn

= + x + + + + +⋯ .a0 a1
a0

2
x2 a1

3!
x3 a0

4!
x4 a1

5!
x5

n

y(x) = + .a0∑
k=0

∞ 1
(2k)!

x2k a1∑
k=0

∞ 1
(2k +1)!

x2k+1 (step 6)

y(x) = +c1ex c2e−x

ex ,e−x

= , = ,c0
( + )a0 a1

2
c1

( − )a0 a1

2

= +a0 c0 c1 = − ,a1 c0 c1

y(x) = + x + + + + +⋯a0 a1
a0

2
x

2 a1

3!
x

3 a0

4!
x

4 a1

5!
x

5

= ( + ) +( − )x + + + + +⋯c0 c1 c0 c1
( + )c0 c1

2
x2 ( − )c0 c1

3!
x3 ( + )c0 c1

4!
x4 ( − )c0 c1

5!
x5

= +c0∑
n=0

∞
xn
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∞ (−x)n
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= + .c0ex c1e−x

c1 c2
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n=0

∞

anxn (step 1)
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and

We want to find values for the coefficients  such that

Taking the external factors inside the summations, we get

Now, in the first summation, we see that when  or , the term evaluates to zero, so we can add these terms back into
our sum to get

Similarly, in the third term, we see that when , the expression evaluates to zero, so we can add that term back in as well.
We have

Then, we need only shift the indices in our second term. We get

Thus, we have

y'(x) = n∑
n=1

∞

anx
n−1 (step 2)

y'' (x) = n(n −1)∑
n=2

∞

anx
n−2 (step 2)

an
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2 ∑
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anxn (step 3)
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Looking at the coefficients of each power of , we see that the constant term must be equal to , and the coefficients of all
other powers of  must be zero. Then, looking first at the constant term,

For , we have

Since  we see that

and thus

For even values of , we have

In general,

For odd values of  we have

In general,

Putting this together, we have

Find a power series solution for the following differential equations.

a. 
b. 

Hint

x −4
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6
4

a0 a0

= (3 +3) = 4 +4
8
6

a0 a0

⋮

= (k +1)( +1).a2k a0 (step 5)

n,

a3

a5

a7

=
5
3

a1

= =
7
5

a3
7
3

a1

= = = 3
9
7

a5
9
3

a1 a1

⋮

= .a2k+1
2k +3

3
a1 (step 5 continued)

y(x) = (k +1)( +1) + ( ) .∑
k=0

∞

a0 x
2k ∑

k=0

∞ 2k +3
3

a1x
2k+1 (step 6)

 Exercise 17.4.1

y' +2xy = 0
(x +1)y' = 3y
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Follow the problem-solving strategy.

Answer a

Answer b

Bessel functions

We close this section with a brief introduction to Bessel functions. Complete treatment of Bessel functions is well beyond the scope
of this course, but we get a little taste of the topic here so we can see how series solutions to differential equations are used in real-
world applications. The Bessel equation of order  is given by

This equation arises in many physical applications, particularly those involving cylindrical coordinates, such as the vibration of a
circular drum head and transient heating or cooling of a cylinder. In the next example, we find a power series solution to the Bessel
equation of order 0.

Find a power series solution to the Bessel equation of order 0 and graph the solution.

Solution

The Bessel equation of order 0 is given by

We assume a solution of the form . Then  and Substituting

this into the differential equation, we get

Then, , and for 

y(x) = =a0∑
n=0

∞ (−1)n

n!
x

2n
a0e

−x2

y(x) = (x +1a0 )3

n

y'' +xy' +( − )y = 0.x2 x2 n2

 Example : Power Series Solution to the Bessel Equation17.4.2

y'' +xy' + y = 0.x
2

x
2

y =∑
n=0

∞

anxn y'(x) = n∑
n=1

∞

anxn−1 (x) = n(n −1) .y′′ ∑
n=2

∞

anxn−2

n(n −1) +x n +x
2∑

n=2

∞

anx
n−2 ∑

n=1

∞

anx
n−1

x
2∑

n=0

∞

anx
n

n(n −1) + n +∑
n=2

∞

anxn ∑
n=1

∞

anxn ∑
n=0

∞

anxn+2

n(n −1) + n +∑
n=2

∞

anx
n ∑

n=1

∞

anx
n ∑

n=2

∞

an−2x
n

n(n −1) + x + n +∑
n=2

∞

anx
n

a1 ∑
n=2

∞

anx
n ∑

n=2

∞

an−2x
n

x + [n(n −1) +n + ]a1 ∑
n=2

∞

an an an−2 xn

x + [( −n) +n + ]a1 ∑
n=2

∞

n
2

an an an−2 x
n

x + [ + ]a1 ∑
n=2

∞

n2an an−2 xn

= 0

= 0

= 0

= 0

= 0

= 0

= 0.

Substitution.

Bring external factors within sums.

Re-index third sum.

Separate n = 1 term from second sum.

Collect summation terms.

Multiply through in first term.

Simplify.

= 0a1 n ≥ 2,
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Because , all odd terms are zero. Then, for even values of  we have

In general,

Thus, we have

The graph appears below.

Verify that the expression found in Example  is a solution to the Bessel equation of order 0.

Hint

Differentiate the power series term by term and substitute it into the differential equation.

Key Concepts
Power series representations of functions can sometimes be used to find solutions to differential equations.
Differentiate the power series term by term and substitute into the differential equation to find relationships between the power
series coefficients.

17.4: Series Solutions of Differential Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

17.4: Series Solutions of Differential Equations by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

+n
2
an an−2

an

= 0

= − .
1

n2
an−2

= 0a1 n,

a2

a4

a6

= −
1

22
a0

= − = .
1

42
a2

1

⋅42 22
a0

= − = −
1

62 a4
1

⋅ ⋅62 42 22
a0

= .a2k

(−1)k

(2 (k!)2k )2
a0

y(x) = .a0∑
k=0

∞ (−1)k

(2 (k!)2k )2
x2k
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Glossary
absolute convergence | if the series \displaystyle
\sum^∞_{n=1}|a_n| converges, the series \displaystyle
\sum^∞_{n=1}a_n is said to converge absolutely

absolute error | if B is an estimate of some
quantity having an actual value of A, then the absolute
error is given by |A−B|

absolute extremum | if f has an absolute
maximum or absolute minimum at c, we say f has an
absolute extremum at c

absolute maximum | if f(c)≥f(x) for all x in the
domain of f, we say f has an absolute maximum at c

absolute minimum | if f(c)≤f(x) for all x in the
domain of f, we say f has an absolute minimum at c

absolute value function | f(x)=\begin{cases}−x,
& \text{if } x<0\x, & \text{if } x≥0\end{cases}

acceleration | is the rate of change of the velocity,
that is, the derivative of velocity

acceleration vector | the second derivative of the
position vector

algebraic function | a function involving any
combination of only the basic operations of addition,
subtraction, multiplication, division, powers, and roots
applied to an input variable x

alternating series | a series of the form
\displaystyle \sum^∞_{n=1}(−1)^{n+1}b_n or
\displaystyle \sum^∞_{n=1}(−1)^nb_n, where b_n≥0,
is called an alternating series

alternating series test | for an alternating series of
either form, if b_{n+1}≤b_n for all integers n≥1 and
b_n→0, then an alternating series converges

amount of change | the amount of a function f(x)
over an interval [x,x+h] is f(x+h)−f(x)

angular coordinate | θ the angle formed by a line
segment connecting the origin to a point in the polar
coordinate system with the positive radial (x) axis,
measured counterclockwise

antiderivative | a function F such that F′(x)=f(x)
for all x in the domain of f is an antiderivative of f

arc length | the arc length of a curve can be thought
of as the distance a person would travel along the path
of the curve

arc-length function | a function s(t) that describes
the arc length of curve C as a function of t

arc-length parameterization | a
reparameterization of a vector-valued function in
which the parameter is equal to the arc length

arithmetic sequence | a sequence in which the
difference between every pair of consecutive terms is
the same is called an arithmetic sequence

asymptotically semi-stable solution | y=k if it
is neither asymptotically stable nor asymptotically
unstable

asymptotically stable solution | y=k if there
exists ε>0 such that for any value c∈(k−ε,k+ε) the
solution to the initial-value problem y′=f(x,y),y(x_0)=c
approaches k as x approaches infinity

asymptotically unstable solution | y=k if there
exists ε>0 such that for any value c∈(k−ε,k+ε) the
solution to the initial-value problem y′=f(x,y),y(x_0)=c
never approaches k as xapproaches infinity

autonomous differential equation | an
equation in which the right-hand side is a function of y
alone

average rate of change | is a function f(x) over an
interval [x,x+h] is \frac{f(x+h)−f(a)}{b−a}

average value of a function | (or f_{ave}) the
average value of a function on an interval can be found
by calculating the definite integral of the function and
dividing that value by the length of the interval

average velocity | the change in an object’s
position divided by the length of a time period; the
average velocity of an object over a time interval [t,a]
(if t<a or [a,t] if t>a), with a position given by s(t), that
is v_{ave}=\dfrac{s(t)−s(a)}{t−a}

base | the number b in the exponential function
f(x)=b^x and the logarithmic function f(x)=\log_bx

binomial series | the Maclaurin series for f(x)=
(1+x)^r; it is given by
(1+x)^r=\sum_{n=0}^∞(^r_n)x^n=1+rx+\dfrac{r(r−1)
}{2!}x^2+⋯+\dfrac{r(r−1)⋯(r−n+1)}{n!}x^n+⋯ for
|x|<1

binormal vector | a unit vector orthogonal to the
unit tangent vector and the unit normal vector

boundary conditions | the conditions that give the
state of a system at different times, such as the position
of a spring-mass system at two different times

boundary point | a point P_0 of R is a boundary
point if every δ disk centered around P_0 contains
points both inside and outside R

boundary-value problem | a differential
equation with associated boundary conditions

bounded above | a sequence \displaystyle {a_n} is
bounded above if there exists a constant \displaystyle
M such that \displaystyle a_n≤M for all positive
integers \displaystyle n

bounded below | a sequence \displaystyle {a_n} is
bounded below if there exists a constant \displaystyle
M such that \displaystyle M≤a_n for all positive
integers \displaystyle n

bounded sequence | a sequence \displaystyle
{a_n} is bounded if there exists a constant
\displaystyle M such that \displaystyle |a_n|≤M for all
positive integers \displaystyle n

cardioid | a plane curve traced by a point on the
perimeter of a circle that is rolling around a fixed
circle of the same radius; the equation of a cardioid is
r=a(1+\sin θ) or r=a(1+\cos θ)

carrying capacity | the maximum population of an
organism that the environment can sustain indefinitely

catenary | a curve in the shape of the function
y=a\cdot\cosh(x/a) is a catenary; a cable of uniform
density suspended between two supports assumes the
shape of a catenary

center of mass | the point at which the total mass of
the system could be concentrated without changing the
moment

centroid | the centroid of a region is the geometric
center of the region; laminas are often represented by
regions in the plane; if the lamina has a constant
density, the center of mass of the lamina depends only
on the shape of the corresponding planar region; in this
case, the center of mass of the lamina corresponds to
the centroid of the representative region

chain rule | the chain rule defines the derivative of a
composite function as the derivative of the outer
function evaluated at the inner function times the
derivative of the inner function

change of variables | the substitution of a
variable, such as u, for an expression in the integrand

characteristic equation | the equation
aλ^2+bλ+c=0 for the differential equation ay″+by′
+cy=0

circulation | the tendency of a fluid to move in the
direction of curve C. If C is a closed curve, then the
circulation of \vecs F along C is line integral ∫_C \vecs
F·\vecs T \,ds, which we also denote ∮_C\vecs F·\vecs
T \,ds.

closed curve | a curve for which there exists a
parameterization \vecs r(t), a≤t≤b, such that \vecs
r(a)=\vecs r(b), and the curve is traversed exactly once

closed curve | a curve that begins and ends at the
same point

closed set | a set S that contains all its boundary
points

comparison test | If 0≤a_n≤b_n for all n≥N and
\displaystyle \sum^∞_{n=1}b_n converges, then
\displaystyle \sum^∞_{n=1}a_n converges; if
a_n≥b_n≥0 for all n≥N and \displaystyle
\sum^∞_{n=1}b_n diverges, then \displaystyle
\sum^∞_{n=1}a_n diverges.

complementary equation | for the
nonhomogeneous linear differential equation a+2(x)y″
+a_1(x)y′+a_0(x)y=r(x), \nonumber the associated
homogeneous equation, called the complementary
equation, is a_2(x)y''+a_1(x)y′+a_0(x)y=0 \nonumber

component | a scalar that describes either the
vertical or horizontal direction of a vector

component functions | the component functions
of the vector-valued function \vecs
r(t)=f(t)\hat{\mathbf{i}}+g(t)\hat{\mathbf{j}} are f(t)
and g(t), and the component functions of the vector-
valued function \vecs
r(t)=f(t)\hat{\mathbf{i}}+g(t)\hat{\mathbf{j}}+h(t)\ha
t{\mathbf{k}} are f(t), g(t) and h(t)

composite function | given two functions f and g,
a new function, denoted g∘f, such that (g∘f)
(x)=g(f(x))

computer algebra system (CAS) | technology
used to perform many mathematical tasks, including
integration

concave down | if f is differentiable over an interval
I and f' is decreasing over I, then f is concave down
over I

concave up | if f is differentiable over an interval I
and f' is increasing over I, then f is concave up over I

concavity | the upward or downward curve of the
graph of a function

concavity test | suppose f is twice differentiable
over an interval I; if f''>0 over I, then f is concave up
over I; if f''< over I, then f is concave down over I

conditional convergence | if the series
\displaystyle \sum^∞_{n=1}a_n converges, but the
series \displaystyle \sum^∞_{n=1}|a_n| diverges, the
series \displaystyle \sum^∞_{n=1}a_n is said to
converge conditionally

conic section | a conic section is any curve formed
by the intersection of a plane with a cone of two
nappes

connected region | a region in which any two
points can be connected by a path with a trace
contained entirely inside the region

connected set | an open set S that cannot be
represented as the union of two or more disjoint,
nonempty open subsets

conservative field | a vector field for which there
exists a scalar function f such that \vecs ∇f=\vecs{F}
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constant multiple law for limits | the limit law
\lim_{x→a}cf(x)=c⋅\lim_{x→a}f(x)=cL \nonumber

constant multiple rule | the derivative of a
constant c multiplied by a function f is the same as the
constant multiplied by the derivative: \dfrac{d}
{dx}\big(cf(x)\big)=cf′(x)

constant rule | the derivative of a constant function
is zero: \dfrac{d}{dx}(c)=0, where c is a constant

constraint | an inequality or equation involving one
or more variables that is used in an optimization
problem; the constraint enforces a limit on the possible
solutions for the problem

continuity at a point | A function f(x) is
continuous at a point a if and only if the following
three conditions are satisfied: (1) f(a) is defined, (2)
\displaystyle \lim_{x→a}f(x) exists, and (3)
\displaystyle \lim{x→a}f(x)=f(a)

continuity from the left | A function is
continuous from the left at b if \displaystyle
\lim_{x→b^−}f(x)=f(b)

continuity from the right | A function is
continuous from the right at a if \displaystyle
\lim_{x→a^+}f(x)=f(a)

continuity over an interval | a function that can
be traced with a pencil without lifting the pencil; a
function is continuous over an open interval if it is
continuous at every point in the interval; a function
f(x) is continuous over a closed interval of the form
[a,b] if it is continuous at every point in (a,b), and it is
continuous from the right at a and from the left at b

contour map | a plot of the various level curves of a
given function f(x,y)

convergence of a series | a series converges if the
sequence of partial sums for that series converges

convergent sequence | a convergent sequence is a
sequence \displaystyle {a_n} for which there exists a
real number \displaystyle L such that \displaystyle a_n
is arbitrarily close to \displaystyle L as long as
\displaystyle n is sufficiently large

coordinate plane | a plane containing two of the
three coordinate axes in the three-dimensional
coordinate system, named by the axes it contains: the
xy-plane, xz-plane, or the yz-plane

critical point | if f'(c)=0 or f'(c) is undefined, we
say that c is a critical point of f

critical point of a function of two variables |
the point (x_0,y_0) is called a critical point of f(x,y) if
one of the two following conditions holds: 1.
f_x(x_0,y_0)=f_y(x_0,y_0)=0 2. At least one of
f_x(x_0,y_0) and f_y(x_0,y_0) do not exist

cross product | \vecs u×\vecs v=
(u_2v_3−u_3v_2)\mathbf{\hat i}−
(u_1v_3−u_3v_1)\mathbf{\hat j}+
(u_1v_2−u_2v_1)\mathbf{\hat k}, where \vecs
u=⟨u_1,u_2,u_3⟩ and \vecs v=⟨v_1,v_2,v_3⟩
determinant a real number associated with a square
matrix parallelepiped a three-dimensional prism with
six faces that are parallelograms torque the effect of a
force that causes an object to rotate triple scalar
product the dot product of a vector with the cross
product of two other vectors: \vecs u⋅(\vecs v×\vecs w)
vector product the cross product of two vectors.

cross-section | the intersection of a plane and a solid
object

cubic function | a polynomial of degree 3; that is, a
function of the form f(x)=ax^3+bx^2+cx+d, where a≠0

curl | the curl of vector field \vecs{F}=⟨P,Q,R⟩,
denoted \vecs ∇× \vecs{F} is the “determinant” of the
matrix \begin{vmatrix} \mathbf{\hat i} &
\mathbf{\hat j} & \mathbf{\hat k} \ \dfrac{\partial}
{\partial x} & \dfrac{\partial}{\partial y} &
\dfrac{\partial}{\partial z} \ P & Q & R
\end{vmatrix}. \nonumber and is given by the
expression (R_y−Q_z)\,\mathbf{\hat i} +
(P_z−R_x)\,\mathbf{\hat j} +(Q_x−P_y)\,\mathbf{\hat
k} ; it measures the tendency of particles at a point to
rotate about the axis that points in the direction of the
curl at the point

curvature | the derivative of the unit tangent vector
with respect to the arc-length parameter

cusp | a pointed end or part where two curves meet

cycloid | the curve traced by a point on the rim of a
circular wheel as the wheel rolls along a straight line
without slippage

cylinder | a set of lines parallel to a given line
passing through a given curve

cylindrical coordinate system | a way to
describe a location in space with an ordered triple
(r,θ,z), where (r,θ) represents the polar coordinates of
the point’s projection in the xy-plane, and z represents
the point’s projection onto the z-axis

decreasing on the interval I | a function
decreasing on the interval I if, for all
x_1,\,x_2∈I,\;f(x_1)≥f(x_2) if x_1<x_2

definite integral | a primary operation of calculus;
the area between the curve and the x-axis over a given
interval is a definite integral

definite integral of a vector-valued function
| the vector obtained by calculating the definite
integral of each of the component functions of a given
vector-valued function, then using the results as the
components of the resulting function

degree | for a polynomial function, the value of the
largest exponent of any term

density function | a density function describes how
mass is distributed throughout an object; it can be a
linear density, expressed in terms of mass per unit
length; an area density, expressed in terms of mass per
unit area; or a volume density, expressed in terms of
mass per unit volume; weight-density is also used to
describe weight (rather than mass) per unit volume

dependent variable | the output variable for a
function

derivative | the slope of the tangent line to a
function at a point, calculated by taking the limit of the
difference quotient, is the derivative

derivative function | gives the derivative of a
function at each point in the domain of the original
function for which the derivative is defined

derivative of a vector-valued function | the
derivative of a vector-valued function \vecs{r}(t) is
\vecs{r}′(t) = \lim \limits_{\Delta t \to 0} \frac{\vecs
r(t+\Delta t)−\vecs r(t)}{ \Delta t}, provided the limit
exists

difference law for limits | the limit law
\lim_{x→a}(f(x)−g(x))=\lim_{x→a}f(x)−
\lim_{x→a}g(x)=L−M \nonumber

difference quotient | of a function f(x) at a is
given by \dfrac{f(a+h)−f(a)}{h} or \dfrac{f(x)−f(a)}
{x−a}

difference rule | the derivative of the difference of
a function f and a function g is the same as the
difference of the derivative of f and the derivative of g:
\dfrac{d}{dx}\big(f(x)−g(x)\big)=f′(x)−g′(x)

differentiable | a function f(x,y) is differentiable at
(x_0,y_0) if f(x,y) can be expressed in the form
f(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x−x_0)+f_y(x_0,y_0)
(y−y_0)+E(x,y), where the error term E(x,y) satisfies
\lim_{(x,y)→(x_0,y_0)}\dfrac{E(x,y)}
{\sqrt{(x−x_0)^2+(y−y_0)^2}}=0

differentiable at a | a function for which f'(a)
exists is differentiable at a

differentiable function | a function for which
f'(x) exists is a differentiable function

differentiable on S | a function for which f'(x)
exists for each x in the open set S is differentiable on S

differential | the differential dx is an independent
variable that can be assigned any nonzero real number;
the differential dy is defined to be dy=f'(x)\,dx

differential calculus | the field of calculus
concerned with the study of derivatives and their
applications

differential equation | an equation involving a
function y=y(x) and one or more of its derivatives

differential form | given a differentiable function
y=f'(x), the equation dy=f'(x)\,dx is the differential
form of the derivative of y with respect to x

differentiation | the process of taking a derivative

direction angles | the angles formed by a nonzero
vector and the coordinate axes

direction cosines | the cosines of the angles formed
by a nonzero vector and the coordinate axes

direction field (slope field) | a mathematical
object used to graphically represent solutions to a first-
order differential equation; at each point in a direction
field, a line segment appears whose slope is equal to
the slope of a solution to the differential equation
passing through that point

direction vector | a vector parallel to a line that is
used to describe the direction, or orientation, of the
line in space

directional derivative | the derivative of a
function in the direction of a given unit vector

directrix | a directrix (plural: directrices) is a line
used to construct and define a conic section; a parabola
has one directrix; ellipses and hyperbolas have two

discontinuity at a point | A function is
discontinuous at a point or has a discontinuity at a
point if it is not continuous at the point

discriminant | the value 4AC−B^2, which is used
to identify a conic when the equation contains a term
involving xy, is called a discriminant

discriminant | the discriminant of the function
f(x,y) is given by the formula D=f_{xx}
(x_0,y_0)f_{yy}(x_0,y_0)−(f_{xy}(x_0,y_0))^2

disk method | a special case of the slicing method
used with solids of revolution when the slices are disks

divergence | the divergence of a vector field
\vecs{F}=⟨P,Q,R⟩, denoted \vecs ∇× \vecs{F}, is
P_x+Q_y+R_z; it measures the “outflowing-ness” of a
vector field

divergence of a series | a series diverges if the
sequence of partial sums for that series diverges

divergence test | if \displaystyle
\lim_{n→∞}a_n≠0, then the series \displaystyle
\sum^∞_{n=1}a_n diverges

divergent sequence | a sequence that is not
convergent is divergent

domain | the set of inputs for a function
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dot product or scalar product | \vecs{ u}
⋅\vecs{ v}=u_1v_1+u_2v_2+u_3v_3 where \vecs{
u}=⟨u_1,u_2,u_3⟩ and \vecs{ v}=⟨v_1,v_2,v_3⟩

double integral | of the function f(x,y) over the
region R in the xy-plane is defined as the limit of a
double Riemann sum, \iint_R f(x,y) \,dA =
\lim_{m,n\rightarrow \infty} \sum_{i=1}^m
\sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \,\Delta A.
\nonumber

double Riemann sum | of the function f(x,y) over
a rectangular region R is \sum_{i=1}^m \sum_{j=1}^n
f(x_{ij}^*, y_{ij}^*) \,\Delta A, \nonumber where R is
divided into smaller subrectangles R_{ij} and
(x_{ij}^*, y_{ij}^*) is an arbitrary point in R_{ij}

doubling time | if a quantity grows exponentially,
the doubling time is the amount of time it takes the
quantity to double, and is given by (\ln 2)/k

eccentricity | the eccentricity is defined as the
distance from any point on the conic section to its
focus divided by the perpendicular distance from that
point to the nearest directrix

ellipsoid | a three-dimensional surface described by
an equation of the form \dfrac{x^2}{a^2}+\dfrac{y^2}
{b^2}+\dfrac{z^2}{c^2}=1; all traces of this surface
are ellipses

elliptic cone | a three-dimensional surface described
by an equation of the form \dfrac{x^2}
{a^2}+\dfrac{y^2}{b^2}−\dfrac{z^2}{c^2}=0; traces
of this surface include ellipses and intersecting lines

elliptic paraboloid | a three-dimensional surface
described by an equation of the form z=\dfrac{x^2}
{a^2}+\dfrac{y^2}{b^2}; traces of this surface include
ellipses and parabolas

end behavior | the behavior of a function as x→∞
and x→−∞

epsilon-delta definition of the limit |
\displaystyle \lim_{x→a}f(x)=L if for every ε>0, there
exists a δ>0 such that if 0<|x−a|<δ, then |f(x)−L|<ε

equilibrium solution | any solution to the
differential equation of the form y=c, where c is a
constant

equivalent vectors | vectors that have the same
magnitude and the same direction

Euler’s Method | a numerical technique used to
approximate solutions to an initial-value problem

even function | a function is even if f(−x)=f(x) for
all x in the domain of f

explicit formula | a sequence may be defined by an
explicit formula such that \displaystyle a_n=f(n)

exponent | the value x in the expression b^x

exponential decay | systems that exhibit
exponential decay follow a model of the form
y=y_0e^{−kt}

exponential growth | systems that exhibit
exponential growth follow a model of the form
y=y_0e^{kt}

extreme value theorem | if f is a continuous
function over a finite, closed interval, then f has an
absolute maximum and an absolute minimum

Fermat’s theorem | if f has a local extremum at c,
then c is a critical point of f

first derivative test | let f be a continuous function
over an interval I containing a critical point c such that
f is differentiable over I except possibly at c; if f'
changes sign from positive to negative as x increases
through c, then f has a local maximum at c; if f'
changes sign from negative to positive as x increases
through c, then f has a local minimum at c; if f' does
not change sign as x increases through c, then f does
not have a local extremum at c

flux | the rate of a fluid flowing across a curve in a
vector field; the flux of vector field \vecs F across
plane curve C is line integral ∫_C \vecs F·\frac{\vecs
n(t)}{‖\vecs n(t)‖} \,ds

flux integral | another name for a surface integral of
a vector field; the preferred term in physics and
engineering

focal parameter | the focal parameter is the
distance from a focus of a conic section to the nearest
directrix

focus | a focus (plural: foci) is a point used to
construct and define a conic section; a parabola has
one focus; an ellipse and a hyperbola have two

formal definition of an infinite limit |
\displaystyle \lim_{x→a}f(x)=\infty if for every M>0,
there exists a δ>0 such that if 0<|x−a|<δ, then f(x)>M
\displaystyle \lim_{x→a}f(x)=-\infty if for every M>0,
there exists a δ>0 such that if 0<|x−a|<δ, then f(x)<-M

Frenet frame of reference | (TNB frame) a
frame of reference in three-dimensional space formed
by the unit tangent vector, the unit normal vector, and
the binormal vector

frustum | a portion of a cone; a frustum is
constructed by cutting the cone with a plane parallel to
the base

Fubini’s theorem | if f(x,y) is a function of two
variables that is continuous over a rectangular region R
= \big\{(x,y) \in \mathbb{R}^2 \,|\,a \leq x \leq b, \, c
\leq y \leq d\big\}, then the double integral of f over
the region equals an iterated integral,
\displaystyle\iint_R f(x,y) \, dA = \int_a^b \int_c^d
f(x,y) \,dx \, dy = \int_c^d \int_a^b f(x,y) \,dx \, dy
\nonumber

function | a set of inputs, a set of outputs, and a rule
for mapping each input to exactly one output

function of two variables | a function z=f(x,y)
that maps each ordered pair (x,y) in a subset D of R^2
to a unique real number z

Fundamental Theorem for Line Integrals |
the value of line integral \displaystyle \int_C\vecs
∇f⋅d\vecs r depends only on the value of f at the
endpoints of C: \displaystyle \int_C \vecs ∇f⋅d\vecs
r=f(\vecs r(b))−f(\vecs r(a))

fundamental theorem of calculus | (also,
evaluation theorem) we can evaluate a definite integral
by evaluating the antiderivative of the integrand at the
endpoints of the interval and subtracting

fundamental theorem of calculus | uses a
definite integral to define an antiderivative of a
function

fundamental theorem of calculus | the
theorem, central to the entire development of calculus,
that establishes the relationship between differentiation
and integration

general form | an equation of a conic section
written as a general second-degree equation

general form of the equation of a plane | an
equation in the form ax+by+cz+d=0, where \vecs
n=⟨a,b,c⟩ is a normal vector of the plane, P=
(x_0,y_0,z_0) is a point on the plane, and
d=−ax_0−by_0−cz_0

general solution (or family of solutions) | the
entire set of solutions to a given differential equation

generalized chain rule | the chain rule extended
to functions of more than one independent variable, in
which each independent variable may depend on one
or more other variables

geometric sequence | a sequence \displaystyle
{a_n} in which the ratio \displaystyle a_{n+1}/a_n is
the same for all positive integers \displaystyle n is
called a geometric sequence

geometric series | a geometric series is a series that
can be written in the form \displaystyle
\sum_{n=1}^∞ar^{n−1}=a+ar+ar^2+ar^3+⋯

gradient | the gradient of the function f(x,y) is
defined to be \vecs ∇f(x,y)=(∂f/∂x)\,\hat{\mathbf i}+
(∂f/∂y)\,\hat{\mathbf j}, which can be generalized to a
function of any number of independent variables

gradient field | a vector field \vecs{F} for which
there exists a scalar function f such that \vecs
∇f=\vecs{F}; in other words, a vector field that is the
gradient of a function; such vector fields are also
called conservative

graph of a function | the set of points (x,y) such
that x is in the domain of f and y=f(x)

graph of a function of two variables | a set of
ordered triples (x,y,z) that satisfies the equation
z=f(x,y) plotted in three-dimensional Cartesian space

Green’s theorem | relates the integral over a
connected region to an integral over the boundary of
the region

grid curves | curves on a surface that are parallel to
grid lines in a coordinate plane

growth rate | the constant r>0 in the exponential
growth function P(t)=P_0e^{rt}

half-life | if a quantity decays exponentially, the half-
life is the amount of time it takes the quantity to be
reduced by half. It is given by (\ln 2)/k

harmonic series | the harmonic series takes the
form \displaystyle \sum_{n=1}^∞\frac{1}
{n}=1+\frac{1}{2}+\frac{1}{3}+⋯

heat flow | a vector field proportional to the negative
temperature gradient in an object

helix | a three-dimensional curve in the shape of a
spiral

higher-order derivative | a derivative of a
derivative, from the second derivative to the
n^{\text{th}} derivative, is called a higher-order
derivative

higher-order partial derivatives | second-order
or higher partial derivatives, regardless of whether
they are mixed partial derivatives

homogeneous linear equation | a second-order
differential equation that can be written in the form
a_2(x)y″+a_1(x)y′+a_0(x)y=r(x), but r(x)=0 for every
value of x

Hooke’s law | this law states that the force required
to compress (or elongate) a spring is proportional to
the distance the spring has been compressed (or
stretched) from equilibrium; in other words, F=kx,
where k is a constant

horizontal asymptote | if \displaystyle
\lim_{x→∞}f(x)=L or \displaystyle
\lim_{x→−∞}f(x)=L, then y=L is a horizontal
asymptote of f

horizontal line test | a function f is one-to-one if
and only if every horizontal line intersects the graph of
f, at most, once

hydrostatic pressure | the pressure exerted by
water on a submerged object

hyperbolic functions | the functions denoted
\sinh,\,\cosh,\,\operatorname{tanh},\,\operatorname{cs
ch},\,\operatorname{sech}, and \coth, which involve
certain combinations of e^x and e^{−x}

hyperboloid of one sheet | a three-dimensional
surface described by an equation of the form
\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}−\dfrac{z^2}
{c^2}=1; traces of this surface include ellipses and
hyperbolas
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hyperboloid of two sheets | a three-dimensional
surface described by an equation of the form
\dfrac{z^2}{c^2}−\dfrac{x^2}{a^2}−\dfrac{y^2}
{b^2}=1; traces of this surface include ellipses and
hyperbolas

implicit differentiation | is a technique for
computing \dfrac{dy}{dx} for a function defined by
an equation, accomplished by differentiating both sides
of the equation (remembering to treat the variable y as
a function) and solving for \dfrac{dy}{dx}

improper double integral | a double integral
over an unbounded region or of an unbounded function

improper integral | an integral over an infinite
interval or an integral of a function containing an
infinite discontinuity on the interval; an improper
integral is defined in terms of a limit. The improper
integral converges if this limit is a finite real number;
otherwise, the improper integral diverges

increasing on the interval I | a function
increasing on the interval I if for all
x_1,\,x_2∈I,\;f(x_1)≤f(x_2) if x_1<x_2

indefinite integral | the most general
antiderivative of f(x) is the indefinite integral of f; we
use the notation \displaystyle \int f(x)\,dx to denote the
indefinite integral of f

indefinite integral of a vector-valued
function | a vector-valued function with a derivative
that is equal to a given vector-valued function

independence of path | a vector field \vecs{F}
has path independence if \displaystyle \int_{C_1}
\vecs F⋅d\vecs r=\displaystyle \int_{C_2} \vecs
F⋅d\vecs r for any curves C_1 and C_2 in the domain
of \vecs{F} with the same initial points and terminal
points

independent variable | the input variable for a
function

indeterminate forms | When evaluating a limit,
the forms \dfrac{0}{0},∞/∞, 0⋅∞, ∞−∞, 0^0, ∞^0, and
1^∞ are considered indeterminate because further
analysis is required to determine whether the limit
exists and, if so, what its value is.

index variable | the subscript used to define the
terms in a sequence is called the index

infinite discontinuity | An infinite discontinuity
occurs at a point a if \displaystyle
\lim_{x→a^−}f(x)=±∞ or \displaystyle
\lim_{x→a^+}f(x)=±∞

infinite limit | A function has an infinite limit at a
point a if it either increases or decreases without bound
as it approaches a

infinite limit at infinity | a function that becomes
arbitrarily large as x becomes large

infinite series | an infinite series is an expression of
the form \displaystyle a_1+a_2+a_3+⋯
=\sum_{n=1}^∞a_n

inflection point | if f is continuous at c and f
changes concavity at c, the point (c,f(c)) is an
inflection point of f

initial point | the starting point of a vector

initial population | the population at time t=0

initial value problem | a problem that requires
finding a function y that satisfies the differential
equation \dfrac{dy}{dx}=f(x) together with the initial
condition y(x_0)=y_0

initial value(s) | a value or set of values that a
solution of a differential equation satisfies for a fixed
value of the independent variable

initial velocity | the velocity at time t=0

initial-value problem | a differential equation
together with an initial value or values

instantaneous rate of change | the rate of
change of a function at any point along the function a,
also called f′(a), or the derivative of the function at a

instantaneous velocity | The instantaneous
velocity of an object with a position function that is
given by s(t) is the value that the average velocities on
intervals of the form [t,a] and [a,t] approach as the
values of t move closer to a, provided such a value
exists

integrable function | a function is integrable if the
limit defining the integral exists; in other words, if the
limit of the Riemann sums as n goes to infinity exists

integral calculus | the study of integrals and their
applications

integral test | for a series \displaystyle
\sum^∞_{n=1}a_n with positive terms a_n, if there
exists a continuous, decreasing function f such that
f(n)=a_n for all positive integers n, then
\sum_{n=1}^∞a_n \nonumber and ∫^∞_1f(x)\,dx
\nonumber either both converge or both diverge

integrand | the function to the right of the
integration symbol; the integrand includes the function
being integrated

integrating factor | any function f(x) that is
multiplied on both sides of a differential equation to
make the side involving the unknown function equal to
the derivative of a product of two functions

integration by parts | a technique of integration
that allows the exchange of one integral for another
using the formula \displaystyle ∫ u\,dv=uv−∫ v\,du

integration by substitution | a technique for
integration that allows integration of functions that are
the result of a chain-rule derivative

integration table | a table that lists integration
formulas

interior point | a point P_0 of \mathbb{R} is a
boundary point if there is a δ disk centered around P_0
contained completely in \mathbb{R}

Intermediate Value Theorem | Let f be
continuous over a closed bounded interval [a,b] if z is
any real number between f(a) and f(b), then there is a
number c in [a,b] satisfying f(c)=z

intermediate variable | given a composition of
functions (e.g., \displaystyle f(x(t),y(t))), the
intermediate variables are the variables that are
independent in the outer function but dependent on
other variables as well; in the function \displaystyle
f(x(t),y(t)), the variables \displaystyle x and
\displaystyle y are examples of intermediate variables

interval of convergence | the set of real numbers
x for which a power series converges

intuitive definition of the limit | If all values of
the function f(x) approach the real number L as the
values of x(≠a) approach a, f(x) approaches L

inverse function | for a function f, the inverse
function f^{−1} satisfies f^{−1}(y)=x if f(x)=y

inverse hyperbolic functions | the inverses of
the hyperbolic functions where \cosh and
\operatorname{sech} are restricted to the domain
[0,∞);each of these functions can be expressed in terms
of a composition of the natural logarithm function and
an algebraic function

inverse trigonometric functions | the inverses
of the trigonometric functions are defined on restricted
domains where they are one-to-one functions

iterated integral | for a function f(x,y) over the
region R is a. \displaystyle \int_a^b \int_c^d f(x,y) \,dx
\, dy = \int_a^b \left[\int_c^d f(x,y) \, dy\right] \, dx, b.
\displaystyle \int_c^d \int_a^b f(x,y) \, dx \, dy =
\int_c^d \left[\int_a^b f(x,y) \, dx\right] \, dy, where
a,b,c, and d are any real numbers and R = [a,b] \times
[c,d]

iterative process | process in which a list of
numbers x_0,x_1,x_2,x_3… is generated by starting
with a number x_0 and defining x_n=F(x_{n−1}) for
n≥1

Jacobian | the Jacobian J (u,v) in two variables is a 2
\times 2 determinant: J(u,v) = \begin{vmatrix}
\frac{\partial x}{\partial u} \frac{\partial y}{\partial u}
\nonumber \ \frac{\partial x}{\partial v} \frac{\partial
y}{\partial v} \end{vmatrix}; \nonumber the Jacobian
J (u,v,w) in three variables is a 3 \times 3 determinant:
J(u,v,w) = \begin{vmatrix} \frac{\partial x}{\partial u}
\frac{\partial y}{\partial u} \frac{\partial z}{\partial u}
\nonumber \ \frac{\partial x}{\partial v} \frac{\partial
y}{\partial v} \frac{\partial z}{\partial v} \nonumber \
\frac{\partial x}{\partial w} \frac{\partial y}{\partial
w} \frac{\partial z}{\partial w}\end{vmatrix}
\nonumber

jump discontinuity | A jump discontinuity occurs
at a point a if \displaystyle \lim_{x→a^−}f(x) and
\displaystyle \lim_{x→a^+}f(x) both exist, but
\displaystyle \lim_{x→a^−}f(x)≠\lim_{x→a^+}f(x)

Kepler’s laws of planetary motion | three laws
governing the motion of planets, asteroids, and comets
in orbit around the Sun

Lagrange multiplier | the constant (or constants)
used in the method of Lagrange multipliers; in the case
of one constant, it is represented by the variable λ

lamina | a thin sheet of material; laminas are thin
enough that, for mathematical purposes, they can be
treated as if they are two-dimensional

left-endpoint approximation | an approximation
of the area under a curve computed by using the left
endpoint of each subinterval to calculate the height of
the vertical sides of each rectangle

level curve of a function of two variables |
the set of points satisfying the equation f(x,y)=c for
some real number c in the range of f

level surface of a function of three variables
| the set of points satisfying the equation f(x,y,z)=c for
some real number c in the range of f

limaçon | the graph of the equation r=a+b\sin θ or
r=a+b\cos θ. If a=b then the graph is a cardioid

limit | the process of letting x or t approach a in an
expression; the limit of a function f(x) as x approaches
a is the value that f(x) approaches as x approaches a

limit at infinity | a function that approaches a limit
value L as x becomes large

limit comparison test | Suppose a_n,b_n≥0 for all
n≥1. If \displaystyle \lim_{n→∞}a_n/b_n→L≠0, then
\displaystyle \sum^∞_{n=1}a_n and \displaystyle
\sum^∞_{n=1}b_n both converge or both diverge; if
\displaystyle \lim_{n→∞}a_n/b_n→0 and
\displaystyle \sum^∞_{n=1}b_n converges, then
\displaystyle \sum^∞_{n=1}a_n converges. If
\displaystyle \lim_{n→∞}a_n/b_n→∞, and
\displaystyle \sum^∞_{n=1}b_n diverges, then
\displaystyle \sum^∞_{n=1}a_n diverges.

limit laws | the individual properties of limits; for
each of the individual laws, let f(x) and g(x) be defined
for all x≠a over some open interval containing a;
assume that L and M are real numbers so that
\lim_{x→a}f(x)=L and \lim_{x→a}g(x)=M; let c be a
constant

limit of a sequence | the real number LL to which
a sequence converges is called the limit of the
sequence
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limit of a vector-valued function | a vector-
valued function \vecs r(t) has a limit \vecs L as t
approaches a if \lim \limits{t \to a} \left| \vecs r(t) -
\vecs L \right| = 0

limits of integration | these values appear near the
top and bottom of the integral sign and define the
interval over which the function should be integrated

line integral | the integral of a function along a
curve in a plane or in space

linear | description of a first-order differential
equation that can be written in the form a(x)y′
+b(x)y=c(x)

linear approximation | the linear function
L(x)=f(a)+f'(a)(x−a) is the linear approximation of f at
x=a

linear approximation | given a function f(x,y)
and a tangent plane to the function at a point
(x_0,y_0), we can approximate f(x,y) for points near
(x_0,y_0) using the tangent plane formula

linear function | a function that can be written in
the form f(x)=mx+b

linearly dependent | a set of functions
f_1(x),f_2(x),…,f_n(x) for whichthere are constants
c_1,c_2,…c_n, not all zero, such that
c_1f_1(x)+c_2f_2(x)+⋯+c_nf_n(x)=0 for all \(x\) in
the interval of interest

linearly independent | a set of functions
f_1(x),f_2(x),…,f_n(x) for which there are no
constants c_1,c_2,…c_n, such that
c_1f_1(x)+c_2f_2(x)+⋯+c_nf_n(x)=0 for all \(x\) in
the interval of interest

local extremum | if f has a local maximum or local
minimum at c, we say f has a local extremum at c

local maximum | if there exists an interval I such
that f(c)≥f(x) for all x∈I, we say f has a local
maximum at c

local minimum | if there exists an interval I such
that f(c)≤f(x) for all x∈I, we say f has a local
minimum at c

logarithmic differentiation | is a technique that
allows us to differentiate a function by first taking the
natural logarithm of both sides of an equation,
applying properties of logarithms to simplify the
equation, and differentiating implicitly

logarithmic function | a function of the form
f(x)=\log_b(x) for some base b>0,\,b≠1 such that
y=\log_b(x) if and only if b^y=x

logistic differential equation | a differential
equation that incorporates the carrying capacity K and
growth rate rr into a population model

lower sum | a sum obtained by using the minimum
value of f(x) on each subinterval

L’Hôpital’s rule | If f and g are differentiable
functions over an interval a, except possibly at a, and
\displaystyle \lim_{x→a}f(x)=0=\lim_{x→a}g(x) or
\displaystyle \lim_{x→a}f(x) and \displaystyle
\lim_{x→a}g(x) are infinite, then \displaystyle
\lim_{x→a}\dfrac{f(x)}{g(x)}=\lim_{x→a}\dfrac{f′
(x)}{g′(x)}, assuming the limit on the right exists or is
∞ or −∞.

Maclaurin polynomial | a Taylor polynomial
centered at 0; the n^{\text{th}}-degree Taylor
polynomial for f at 0 is the n^{\text{th}}-degree
Maclaurin polynomial for f

Maclaurin series | a Taylor series for a function f
at x=0 is known as a Maclaurin series for f

magnitude | the length of a vector

major axis | the major axis of a conic section passes
through the vertex in the case of a parabola or through
the two vertices in the case of an ellipse or hyperbola;
it is also an axis of symmetry of the conic; also called
the transverse axis

marginal cost | is the derivative of the cost
function, or the approximate cost of producing one
more item

marginal profit | is the derivative of the profit
function, or the approximate profit obtained by
producing and selling one more item

marginal revenue | is the derivative of the revenue
function, or the approximate revenue obtained by
selling one more item

mass flux | the rate of mass flow of a fluid per unit
area, measured in mass per unit time per unit area

mathematical model | A method of simulating
real-life situations with mathematical equations

mean value theorem | if f is continuous over [a,b]
and differentiable over (a,b), then there exists c∈(a,b)
such that f′(c)=\frac{f(b)−f(a)}{b−a}

mean value theorem for integrals | guarantees
that a point c exists such that f(c) is equal to the
average value of the function

method of cylindrical shells | a method of
calculating the volume of a solid of revolution by
dividing the solid into nested cylindrical shells; this
method is different from the methods of disks or
washers in that we integrate with respect to the
opposite variable

method of Lagrange multipliers | a method of
solving an optimization problem subject to one or
more constraints

method of undetermined coefficients | a
method that involves making a guess about the form of
the particular solution, then solving for the coefficients
in the guess

method of variation of parameters | a method
that involves looking for particular solutions in the
form y_p(x)=u(x)y_1(x)+v(x)y_2(x), where y_1 and
y_2 are linearly independent solutions to the
complementary equations, and then solving a system
of equations to find u(x) and v(x)

midpoint rule | a rule that uses a Riemann sum of
the form \displaystyle M_n=\sum^n_{i=1}f(m_i)Δx,
where m_i is the midpoint of the i^{\text{th}}
subinterval to approximate \displaystyle ∫^b_af(x)\,dx

minor axis | the minor axis is perpendicular to the
major axis and intersects the major axis at the center of
the conic, or at the vertex in the case of the parabola;
also called the conjugate axis

mixed partial derivatives | second-order or
higher partial derivatives, in which at least two of the
differentiations are with respect to different variables

moment | if n masses are arranged on a number line,
the moment of the system with respect to the origin is
given by \displaystyle M=\sum^n_{i=1}m_ix_i; if,
instead, we consider a region in the plane, bounded
above by a function f(x) over an interval [a,b], then the
moments of the region with respect to the x- and y-
axes are given by \displaystyle
M_x=ρ∫^b_a\dfrac{[f(x)]^2}{2}\,dx and \displaystyle
M_y=ρ∫^b_axf(x)\,dx, respectively

monotone sequence | an increasing or decreasing
sequence

multivariable calculus | the study of the calculus
of functions of two or more variables

nappe | a nappe is one half of a double cone

natural exponential function | the function
f(x)=e^x

natural logarithm | the function \ln x=\log_ex

net change theorem | if we know the rate of
change of a quantity, the net change theorem says the
future quantity is equal to the initial quantity plus the
integral of the rate of change of the quantity

net signed area | the area between a function and
the x-axis such that the area below the x-axis is
subtracted from the area above the x-axis; the result is
the same as the definite integral of the function

Newton’s method | method for approximating
roots of f(x)=0; using an initial guess x_0; each
subsequent approximation is defined by the equation
x_n=x_{n−1}−\frac{f(x_{n−1})}{f'(x_{n−1})}

nonelementary integral | an integral for which
the antiderivative of the integrand cannot be expressed
as an elementary function

nonhomogeneous linear equation | a second-
order differential equation that can be written in the
form a_2(x)y″+a_1(x)y′+a_0(x)y=r(x), but r(x)≠0 for
some value of x

normal component of acceleration | the
coefficient of the unit normal vector \vecs N when the
acceleration vector is written as a linear combination
of \vecs T and \vecs N

normal plane | a plane that is perpendicular to a
curve at any point on the curve

normal vector | a vector perpendicular to a plane

normalization | using scalar multiplication to find a
unit vector with a given direction

number e | as m gets larger, the quantity (1+
(1/m)^m gets closer to some real number; we define
that real number to be e; the value of e is
approximately 2.718282

numerical integration | the variety of numerical
methods used to estimate the value of a definite
integral, including the midpoint rule, trapezoidal rule,
and Simpson’s rule

objective function | the function that is to be
maximized or minimized in an optimization problem

oblique asymptote | the line y=mx+b if f(x)
approaches it as x→∞ or x→−∞

octants | the eight regions of space created by the
coordinate planes

odd function | a function is odd if f(−x)=−f(x) for
all x in the domain of f

one-sided limit | A one-sided limit of a function is
a limit taken from either the left or the right

one-to-one function | a function f is one-to-one if
f(x_1)≠f(x_2) if x_1≠x_2

one-to-one transformation | a transformation T :
G \rightarrow R defined as T(u,v) = (x,y) is said to be
one-to-one if no two points map to the same image
point

open set | a set S that contains none of its boundary
points

optimization problem | calculation of a
maximum or minimum value of a function of several
variables, often using Lagrange multipliers

optimization problems | problems that are solved
by finding the maximum or minimum value of a
function

order of a differential equation | the highest
order of any derivative of the unknown function that
appears in the equation

orientation | the direction that a point moves on a
graph as the parameter increases
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orientation of a curve | the orientation of a curve
C is a specified direction of C

orientation of a surface | if a surface has an
“inner” side and an “outer” side, then an orientation is
a choice of the inner or the outer side; the surface
could also have “upward” and “downward”
orientations

orthogonal vectors | vectors that form a right
angle when placed in standard position

osculating circle | a circle that is tangent to a curve
C at a point P and that shares the same curvature

osculating plane | the plane determined by the unit
tangent and the unit normal vector

p-series | a series of the form \displaystyle
\sum^∞_{n=1}1/n^p

parallelogram method | a method for finding the
sum of two vectors; position the vectors so they share
the same initial point; the vectors then form two
adjacent sides of a parallelogram; the sum of the
vectors is the diagonal of that parallelogram

parameter | an independent variable that both x and
y depend on in a parametric curve; usually represented
by the variable t

parameter domain (parameter space) | the
region of the uv-plane over which the parameters u and
v vary for parameterization \vecs r(u,v) = \langle
x(u,v), \, y(u,v), \, z(u,v)\rangle

parameterization of a curve | rewriting the
equation of a curve defined by a function y=f(x) as
parametric equations

parameterized surface (parametric surface)
| a surface given by a description of the form \vecs
r(u,v) = \langle x(u,v), \, y(u,v), \, z(u,v)\rangle, where
the parameters u and v vary over a parameter domain
in the uv-plane

parametric curve | the graph of the parametric
equations x(t) and y(t) over an interval a≤t≤b
combined with the equations

parametric equations | the equations x=x(t) and
y=y(t) that define a parametric curve

parametric equations of a line | the set of
equations x=x_0+ta, y=y_0+tb, and z=z_0+tc
describing the line with direction vector v=⟨a,b,c⟩
passing through point (x_0,y_0,z_0)

partial derivative | a derivative of a function of
more than one independent variable in which all the
variables but one are held constant

partial differential equation | an equation that
involves an unknown function of more than one
independent variable and one or more of its partial
derivatives

partial fraction decomposition | a technique
used to break down a rational function into the sum of
simple rational functions

partial sum | the kth partial sum of the infinite
series \displaystyle \sum^∞_{n=1}a_n is the finite sum
\displaystyle
S_k=\sum_{n=1}^ka_n=a_1+a_2+a_3+⋯+a_k

particular solution | member of a family of
solutions to a differential equation that satisfies a
particular initial condition

particular solution | a solution y_p(x) of a
differential equation that contains no arbitrary
constants

partition | a set of points that divides an interval into
subintervals

percentage error | the relative error expressed as a
percentage

periodic function | a function is periodic if it has a
repeating pattern as the values of x move from left to
right

phase line | a visual representation of the behavior
of solutions to an autonomous differential equation
subject to various initial conditions

piecewise smooth curve | an oriented curve that
is not smooth, but can be written as the union of
finitely many smooth curves

piecewise-defined function | a function that is
defined differently on different parts of its domain

planar transformation | a function T that
transforms a region G in one plane into a region R in
another plane by a change of variables

plane curve | the set of ordered pairs (f(t),g(t))
together with their defining parametric equations
x=f(t) and y=g(t)

point-slope equation | equation of a linear
function indicating its slope and a point on the graph
of the function

polar axis | the horizontal axis in the polar
coordinate system corresponding to r≥0

polar coordinate system | a system for locating
points in the plane. The coordinates are r, the radial
coordinate, and θ, the angular coordinate

polar equation | an equation or function relating
the radial coordinate to the angular coordinate in the
polar coordinate system

polar rectangle | the region enclosed between the
circles r = a and r = b and the angles \theta = \alpha
and \theta = \beta; it is described as R = \{(r,
\theta)\,|\,a \leq r \leq b, \, \alpha \leq \theta \leq \beta\}

pole | the central point of the polar coordinate system,
equivalent to the origin of a Cartesian system

polynomial function | a function of the form
f(x)=a_nx^n+a_{n−1}x^{n−1}+…+a_1x+a_0

population growth rate | is the derivative of the
population with respect to time

potential function | a scalar function f such that
\vecs ∇f=\vecs{F}

power function | a function of the form f(x)=x^n
for any positive integer n≥1

power law for limits | the limit law \lim_{x→a}
(f(x))^n=(\lim_{x→a}f(x))^n=L^n \nonumber for
every positive integer n

power reduction formula | a rule that allows an
integral of a power of a trigonometric function to be
exchanged for an integral involving a lower power

power rule | the derivative of a power function is a
function in which the power on x becomes the
coefficient of the term and the power on x in the
derivative decreases by 1: If n is an integer, then
\dfrac{d}{dx}\left(x^n\right)=nx^{n−1}

power series | a series of the form
\sum_{n=0}^∞c_nx^n is a power series centered at
x=0; a series of the form \sum_{n=0}^∞c_n(x−a)^n is
a power series centered at x=a

principal unit normal vector | a vector
orthogonal to the unit tangent vector, given by the
formula \frac{\vecs T′(t)}{‖\vecs T′(t)‖}

principal unit tangent vector | a unit vector
tangent to a curve C

product law for limits | the limit law \lim_{x→a}
(f(x)⋅g(x))=\lim_{x→a}f(x)⋅\lim_{x→a}g(x)=L⋅M
\nonumber

product rule | the derivative of a product of two
functions is the derivative of the first function times
the second function plus the derivative of the second
function times the first function: \dfrac{d}
{dx}\big(f(x)g(x)\big)=f′(x)g(x)+g′(x)f(x)

projectile motion | motion of an object with an
initial velocity but no force acting on it other than
gravity

propagated error | the error that results in a
calculated quantity f(x) resulting from a measurement
error dx

quadratic function | a polynomial of degree 2;
that is, a function of the form f(x)=ax^2+bx+c where
a≠0

quadric surfaces | surfaces in three dimensions
having the property that the traces of the surface are
conic sections (ellipses, hyperbolas, and parabolas)

quotient law for limits | the limit law
\lim_{x→a}\dfrac{f(x)}
{g(x)}=\dfrac{\lim_{x→a}f(x)}
{\lim_{x→a}g(x)}=\dfrac{L}{M} for M≠0

quotient rule | the derivative of the quotient of two
functions is the derivative of the first function times
the second function minus the derivative of the second
function times the first function, all divided by the
square of the second function: \dfrac{d}
{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{f′(x)g(x)−g′
(x)f(x)}{\big(g(x)\big)^2}

radial coordinate | r the coordinate in the polar
coordinate system that measures the distance from a
point in the plane to the pole

radial field | a vector field in which all vectors
either point directly toward or directly away from the
origin; the magnitude of any vector depends only on its
distance from the origin

radians | for a circular arc of length s on a circle of
radius 1, the radian measure of the associated angle θ
is s

radius of convergence | if there exists a real
number R>0 such that a power series centered at x=a
converges for |x−a|<R and diverges for |x−a|>R, then R
is the radius of convergence; if the power series only
converges at x=a, the radius of convergence is R=0; if
the power series converges for all real numbers x, the
radius of convergence is R=∞

radius of curvature | the reciprocal of the
curvature

radius of gyration | the distance from an object’s
center of mass to its axis of rotation

range | the set of outputs for a function

ratio test | for a series \displaystyle
\sum^∞_{n=1}a_n with nonzero terms, let
\displaystyle ρ=\lim_{n→∞}|a_{n+1}/a_n|; if 0≤ρ<1,
the series converges absolutely; if ρ>1, the series
diverges; if ρ=1, the test is inconclusive

rational function | a function of the form
f(x)=p(x)/q(x), where p(x) and q(x) are polynomials

recurrence relation | a recurrence relation is a
relationship in which a term a_n in a sequence is
defined in terms of earlier terms in the sequence

region | an open, connected, nonempty subset of
\mathbb{R}^2

regular parameterization | parameterization
\vecs r(u,v) = \langle x(u,v), \, y(u,v), \, z(u,v)\rangle
such that r_u \times r_v is not zero for point (u,v) in
the parameter domain

regular partition | a partition in which the
subintervals all have the same width
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related rates | are rates of change associated with
two or more related quantities that are changing over
time

relative error | given an absolute error Δq for a
particular quantity, \frac{Δq}{q} is the relative error.

relative error | error as a percentage of the actual
value, given by \text{relative error}=\left|\frac{A−B}
{A}\right|⋅100\% \nonumber

remainder estimate | for a series \displaystyle
\sum^∞_{n=}1a_n with positive terms a_n and a
continuous, decreasing function f such that f(n)=a_n
for all positive integers n, the remainder \displaystyle
R_N=\sum^∞_{n=1}a_n−\sum^N_{n=1}a_n satisfies
the following estimate:
∫^∞_{N+1}f(x)\,dx<R_N<∫^∞_Nf(x)\,dx \nonumber

removable discontinuity | A removable
discontinuity occurs at a point a if f(x) is discontinuous
at a, but \displaystyle \lim_{x→a}f(x) exists

reparameterization | an alternative
parameterization of a given vector-valued function

restricted domain | a subset of the domain of a
function f

riemann sum | an estimate of the area under the
curve of the form A≈\displaystyle
\sum_{i=1}^nf(x^∗_i)Δx

right-endpoint approximation | the right-
endpoint approximation is an approximation of the
area of the rectangles under a curve using the right
endpoint of each subinterval to construct the vertical
sides of each rectangle

right-hand rule | a common way to define the
orientation of the three-dimensional coordinate system;
when the right hand is curved around the z-axis in such
a way that the fingers curl from the positive x-axis to
the positive y-axis, the thumb points in the direction of
the positive z-axis

RLC series circuit | a complete electrical path
consisting of a resistor, an inductor, and a capacitor; a
second-order, constant-coefficient differential equation
can be used to model the charge on the capacitor in an
RLC series circuit

rolle’s theorem | if f is continuous over [a,b] and
differentiable over (a,b), and if f(a)=f(b), then there
exists c∈(a,b) such that f′(c)=0

root function | a function of the form f(x)=x^{1/n}
for any integer n≥2

root law for limits | the limit law
\lim_{x→a}\sqrt[n]{f(x)}=\sqrt[n]
{\lim_{x→a}f(x)}=\sqrt[n]{L} for all L if n is odd and
for L≥0 if n is even

root test | for a series \displaystyle
\sum^∞_{n=1}a_n, let \displaystyle
ρ=\lim_{n→∞}\sqrt[n]{|a_n|}; if 0≤ρ<1, the series
converges absolutely; if ρ>1, the series diverges; if
ρ=1, the test is inconclusive

rose | graph of the polar equation r=a\cos 2θ or
r=a\sin 2θfor a positive constant a

rotational field | a vector field in which the vector
at point (x,y) is tangent to a circle with radius
r=\sqrt{x^2+y^2}; in a rotational field, all vectors flow
either clockwise or counterclockwise, and the
magnitude of a vector depends only on its distance
from the origin

rulings | parallel lines that make up a cylindrical
surface

saddle point | given the function z=f(x,y), the point
(x_0,y_0,f(x_0,y_0)) is a saddle point if both
f_x(x_0,y_0)=0 and f_y(x_0,y_0)=0, but f does not
have a local extremum at (x_0,y_0)

scalar | a real number

scalar equation of a plane | the equation
a(x−x_0)+b(y−y_0)+c(z−z_0)=0 used to describe a
plane containing point P=(x_0,y_0,z_0) with normal
vector n=⟨a,b,c⟩ or its alternate form ax+by+cz+d=0,
where d=−ax_0−by_0−cz_0

scalar line integral | the scalar line integral of a
function f along a curve C with respect to arc length is
the integral \displaystyle \int_C f\,ds, it is the integral
of a scalar function f along a curve in a plane or in
space; such an integral is defined in terms of a
Riemann sum, as is a single-variable integral

scalar multiplication | a vector operation that
defines the product of a scalar and a vector

scalar projection | the magnitude of the vector
projection of a vector

secant | A secant line to a function f(x) at a is a line
through the point (a,f(a)) and another point on the
function; the slope of the secant line is given by
m_{sec}=\dfrac{f(x)−f(a)}{x−a}

second derivative test | suppose f'(c)=0 and f'' is
continuous over an interval containing c; if f''(c)>0,
then f has a local minimum at c; if f''(c)<0, then f has a
local maximum at c; if f''(c)=0, then the test is
inconclusive

separable differential equation | any equation
that can be written in the form y'=f(x)g(y)

separation of variables | a method used to solve a
separable differential equation

sequence | an ordered list of numbers of the form
\displaystyle a_1,a_2,a_3,… is a sequence

sigma notation | (also, summation notation) the
Greek letter sigma (Σ) indicates addition of the values;
the values of the index above and below the sigma
indicate where to begin the summation and where to
end it

simple curve | a curve that does not cross itself

simple harmonic motion | motion described by
the equation x(t)=c_1 \cos (ωt)+c_2 \sin (ωt), as
exhibited by an undamped spring-mass system in
which the mass continues to oscillate indefinitely

simply connected region | a region that is
connected and has the property that any closed curve
that lies entirely inside the region encompasses points
that are entirely inside the region

Simpson’s rule | a rule that approximates
\displaystyle ∫^b_af(x)\,dx using the area under a
piecewise quadratic function. The approximation S_n
to \displaystyle ∫^b_af(x)\,dx is given by
S_n=\frac{Δx}
{3}\big(f(x_0)+4\,f(x_1)+2\,f(x_2)+4\,f(x_3)+2\,f(x_4
)+⋯+2\,f(x_{n−2})+4\,f(x_{n−1})+f(x_n)\big).
\nonumber

skew lines | two lines that are not parallel but do not
intersect

slicing method | a method of calculating the
volume of a solid that involves cutting the solid into
pieces, estimating the volume of each piece, then
adding these estimates to arrive at an estimate of the
total volume; as the number of slices goes to infinity,
this estimate becomes an integral that gives the exact
value of the volume

slope | the change in y for each unit change in x

slope-intercept form | equation of a linear
function indicating its slope and y-intercept

smooth | curves where the vector-valued function
\vecs r(t) is differentiable with a non-zero derivative

solid of revolution | a solid generated by revolving
a region in a plane around a line in that plane

solution curve | a curve graphed in a direction field
that corresponds to the solution to the initial-value
problem passing through a given point in the direction
field

solution to a differential equation | a function
y=f(x) that satisfies a given differential equation

space curve | the set of ordered triples (f(t),g(t),h(t))
together with their defining parametric equations
x=f(t), y=g(t) and z=h(t)

space-filling curve | a curve that completely
occupies a two-dimensional subset of the real plane

speed | is the absolute value of velocity, that is, |v(t)|
is the speed of an object at time t whose velocity is
given by v(t)

sphere | the set of all points equidistant from a given
point known as the center

spherical coordinate system | a way to describe
a location in space with an ordered triple (ρ,θ,φ),
where ρ is the distance between P and the origin (ρ≠0),
θ is the same angle used to describe the location in
cylindrical coordinates, and φ is the angle formed by
the positive z-axis and line segment \bar{OP}, where
O is the origin and 0≤φ≤π

squeeze theorem | states that if f(x)≤g(x)≤h(x) for
all x≠a over an open interval containing a and
\lim_{x→a}f(x)=L=\lim_ {x→a}h(x) where L is a real
number, then \lim_{x→a}g(x)=L

standard equation of a sphere | (x−a)^2+
(y−b)^2+(z−c)^2=r^2 describes a sphere with center
(a,b,c) and radius r

standard form | the form of a first-order linear
differential equation obtained by writing the
differential equation in the form y'+p(x)y=q(x)

standard form | an equation of a conic section
showing its properties, such as location of the vertex or
lengths of major and minor axes

standard unit vectors | unit vectors along the
coordinate axes: \hat{\mathbf i}=⟨1,0⟩,\, \hat{\mathbf
j}=⟨0,1⟩

standard-position vector | a vector with initial
point (0,0)

steady-state solution | a solution to a
nonhomogeneous differential equation related to the
forcing function; in the long term, the solution
approaches the steady-state solution

step size | the increment hh that is added to the xx
value at each step in Euler’s Method

Stokes’ theorem | relates the flux integral over a
surface S to a line integral around the boundary C of
the surface S

stream function | if \vecs F=⟨P,Q⟩ is a source-free
vector field, then stream function g is a function such
that P=g_y and Q=−g_x

sum law for limits | The limit law \lim_{x→a}
(f(x)+g(x))=\lim_{x→a}f(x)+\lim_{x→a}g(x)=L+M

sum rule | the derivative of the sum of a function f
and a function g is the same as the sum of the
derivative of f and the derivative of g: \dfrac{d}
{dx}\big(f(x)+g(x)\big)=f′(x)+g′(x)

surface | the graph of a function of two variables,
z=f(x,y)

surface area | the surface area of a solid is the total
area of the outer layer of the object; for objects such as
cubes or bricks, the surface area of the object is the
sum of the areas of all of its faces

surface area | the area of surface S given by the
surface integral \iint_S \,dS \nonumber
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surface independent | flux integrals of curl vector
fields are surface independent if their evaluation does
not depend on the surface but only on the boundary of
the surface

surface integral | an integral of a function over a
surface

surface integral of a scalar-valued function |
a surface integral in which the integrand is a scalar
function

surface integral of a vector field | a surface
integral in which the integrand is a vector field

symmetric equations of a line | the equations
\dfrac{x−x_0}{a}=\dfrac{y−y_0}{b}=\dfrac{z−z_0}
{c} describing the line with direction vector v=⟨a,b,c⟩
passing through point (x_0,y_0,z_0)

symmetry about the origin | the graph of a
function f is symmetric about the origin if (−x,−y) is
on the graph of f whenever (x,y) is on the graph

symmetry about the y-axis | the graph of a
function f is symmetric about the y-axis if (−x,y) is on
the graph of f whenever (x,y) is on the graph

symmetry principle | the symmetry principle
states that if a region R is symmetric about a line I,
then the centroid of R lies on I

table of values | a table containing a list of inputs
and their corresponding outputs

tangent | A tangent line to the graph of a function at
a point (a,f(a)) is the line that secant lines through
(a,f(a)) approach as they are taken through points on
the function with x-values that approach a; the slope of
the tangent line to a graph at a measures the rate of
change of the function at a

tangent line approximation (linearization) |
since the linear approximation of f at x=a is defined
using the equation of the tangent line, the linear
approximation of f at x=a is also known as the tangent
line approximation to f at x=a

tangent plane | given a function f(x,y) that is
differentiable at a point (x_0,y_0), the equation of the
tangent plane to the surface z=f(x,y) is given by
z=f(x_0,y_0)+f_x(x_0,y_0)(x−x_0)+f_y(x_0,y_0)
(y−y_0)

tangent vector | to \vecs{r}(t) at t=t_0 any vector
\vecs v such that, when the tail of the vector is placed
at point \vecs r(t_0) on the graph, vector \vecs{v} is
tangent to curve C

tangential component of acceleration | the
coefficient of the unit tangent vector \vecs T when the
acceleration vector is written as a linear combination
of \vecs T and \vecs N

Taylor polynomials | the n^{\text{th}}-degree
Taylor polynomial for f at x=a is p_n(x)=f(a)+f′(a)
(x−a)+\dfrac{f''(a)}{2!}(x−a)^2+⋯+\dfrac{f^{(n)}
(a)}{n!}(x−a)^n

Taylor series | a power series at a that converges to
a function f on some open interval containing a.

Taylor’s theorem with remainder | for a
function f and the n^{\text{th}}-degree Taylor
polynomial for f at x=a, the remainder R_n(x)=f(x)
−p_n(x) satisfies R_n(x)=\dfrac{f^{(n+1)}(c)}
{(n+1)!}(x−a)^{n+1} for somec between x and a; if
there exists an interval I containing a and a real
number M such that ∣f^{(n+1)}(x)∣≤M for all x in I,
then |R_n(x)|≤\dfrac{M}{(n+1)!}|x−a|^{n+1}

telescoping series | a telescoping series is one in
which most of the terms cancel in each of the partial
sums

term | the number \displaystyle a_n in the sequence
\displaystyle {a_n} is called the \displaystyle nth term
of the sequence

term-by-term differentiation of a power
series | a technique for evaluating the derivative of a
power series \displaystyle \sum_{n=0}^∞c_n(x−a)^n
by evaluating the derivative of each term separately to
create the new power series \displaystyle
\sum_{n=1}^∞nc_n(x−a)^{n−1}

term-by-term integration of a power series |
a technique for integrating a power series \displaystyle
\sum_{n=0}^∞c_n(x−a)^n by integrating each term
separately to create the new power series \displaystyle
C+\sum_{n=0}^∞c_n\dfrac{(x−a)^{n+1}}{n+1}

terminal point | the endpoint of a vector

theorem of Pappus for volume | this theorem
states that the volume of a solid of revolution formed
by revolving a region around an external axis is equal
to the area of the region multiplied by the distance
traveled by the centroid of the region

three-dimensional rectangular coordinate
system | a coordinate system defined by three lines
that intersect at right angles; every point in space is
described by an ordered triple (x,y,z) that plots its
location relative to the defining axes

threshold population | the minimum population
that is necessary for a species to survive

total area | total area between a function and the x-
axis is calculated by adding the area above the x-axis
and the area below the x-axis; the result is the same as
the definite integral of the absolute value of the
function

total differential | the total differential of the
function f(x,y) at (x_0,y_0) is given by the formula
dz=f_x(x_0,y_0)dx+fy(x_0,y_0)dy

trace | the intersection of a three-dimensional surface
with a coordinate plane

transcendental function | a function that cannot
be expressed by a combination of basic arithmetic
operations

transformation | a function that transforms a
region GG in one plane into a region RR in another
plane by a change of variables

transformation of a function | a shift, scaling,
or reflection of a function

trapezoidal rule | a rule that approximates
\displaystyle ∫^b_af(x)\,dx using the area of trapezoids.
The approximation T_n to \displaystyle ∫^b_af(x)\,dx
is given by T_n=\frac{Δx}{2}\big(f(x_0)+2\,
f(x_1)+2\, f(x_2)+⋯+2\, f(x_{n−1})+f(x_n)\big).
\nonumber

tree diagram | illustrates and derives formulas for
the generalized chain rule, in which each independent
variable is accounted for

triangle inequality | If a and b are any real
numbers, then |a+b|≤|a|+|b|

triangle inequality | the length of any side of a
triangle is less than the sum of the lengths of the other
two sides

triangle method | a method for finding the sum of
two vectors; position the vectors so the terminal point
of one vector is the initial point of the other; these
vectors then form two sides of a triangle; the sum of
the vectors is the vector that forms the third side; the
initial point of the sum is the initial point of the first
vector; the terminal point of the sum is the terminal
point of the second vector

trigonometric functions | functions of an angle
defined as ratios of the lengths of the sides of a right
triangle

trigonometric identity | an equation involving
trigonometric functions that is true for all angles θ for
which the functions in the equation are defined

trigonometric integral | an integral involving
powers and products of trigonometric functions

trigonometric substitution | an integration
technique that converts an algebraic integral
containing expressions of the form \sqrt{a^2−x^2},
\sqrt{a^2+x^2}, or \sqrt{x^2−a^2} into a
trigonometric integral

triple integral | the triple integral of a continuous
function f(x,y,z) over a rectangular solid box B is the
limit of a Riemann sum for a function of three
variables, if this limit exists

triple integral in cylindrical coordinates | the
limit of a triple Riemann sum, provided the following
limit exists: lim_{l,m,n\rightarrow\infty}
\sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n
f(r_{ijk}^*, \theta_{ijk}^*, s_{ijk}^*) r_{ijk}^*
\Delta r \Delta \theta \Delta z \nonumber

triple integral in spherical coordinates | the
limit of a triple Riemann sum, provided the following
limit exists: lim_{l,m,n\rightarrow\infty}
\sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n
f(\rho_{ijk}^*, \theta_{ijk}^*, \varphi_{ijk}^*)
(\rho_{ijk}^*)^2 \sin \, \varphi \Delta \rho \Delta \theta
\Delta \varphi \nonumber

Type I | a region D in the xy- plane is Type I if it lies
between two vertical lines and the graphs of two
continuous functions g_1(x) and g_2(x)

Type II | a region D in the xy-plane is Type II if it
lies between two horizontal lines and the graphs of two
continuous functions h_1(y) and h_2(h)

unbounded sequence | a sequence that is not
bounded is called unbounded

unit vector | a vector with magnitude 1

unit vector field | a vector field in which the
magnitude of every vector is 1

upper sum | a sum obtained by using the maximum
value of f(x) on each subinterval

variable of integration | indicates which variable
you are integrating with respect to; if it is x, then the
function in the integrand is followed by dx

vector | a mathematical object that has both
magnitude and direction

vector addition | a vector operation that defines the
sum of two vectors

vector difference | the vector difference \vecs{v}−
\vecs{w} is defined as \vecs{v}+(−
\vecs{w})=\vecs{v}+(−1)\vecs{w}

vector equation of a line | the equation \vecs
r=\vecs r_0+t\vecs v used to describe a line with
direction vector \vecs v=⟨a,b,c⟩ passing through point
P=(x_0,y_0,z_0), where \vecs r_0=⟨x_0,y_0,z_0⟩, is
the position vector of point P

vector equation of a plane | the equation \vecs
n⋅\vecd{PQ}=0, where P is a given point in the plane,
Q is any point in the plane, and \vecs n is a normal
vector of the plane

vector field | measured in ℝ^2, an assignment of a
vector \vecs{F}(x,y) to each point (x,y) of a subset D
of ℝ^2; in ℝ^3, an assignment of a vector \vecs{F}
(x,y,z) to each point (x,y,z) of a subset D of ℝ^3

vector line integral | the vector line integral of
vector field \vecs F along curve C is the integral of the
dot product of \vecs F with unit tangent vector \vecs T
of C with respect to arc length, ∫_C \vecs F·\vecs T\,
ds; such an integral is defined in terms of a Riemann
sum, similar to a single-variable integral

vector parameterization | any representation of a
plane or space curve using a vector-valued function

vector projection | the component of a vector that
follows a given direction
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vector sum | the sum of two vectors, \vecs{v} and
\vecs{w}, can be constructed graphically by placing
the initial point of \vecs{w} at the terminal point of
\vecs{v}; then the vector sum \vecs{v}+\vecs{w} is
the vector with an initial point that coincides with the
initial point of \vecs{v}, and with a terminal point that
coincides with the terminal point of \vecs{w}

vector-valued function | a function of the form
\vecs r(t)=f(t)\hat{\mathbf{i}}+g(t)\hat{\mathbf{j}} or
\vecs
r(t)=f(t)\hat{\mathbf{i}}+g(t)\hat{\mathbf{j}}+h(t)\ha
t{\mathbf{k}},where the component functions f, g,
and h are real-valued functions of the parameter t.

velocity vector | the derivative of the position
vector

vertex | a vertex is an extreme point on a conic
section; a parabola has one vertex at its turning point.
An ellipse has two vertices, one at each end of the
major axis; a hyperbola has two vertices, one at the
turning point of each branch

vertical asymptote | A function has a vertical
asymptote at x=a if the limit as x approaches a from
the right or left is infinite

vertical line test | given the graph of a function,
every vertical line intersects the graph, at most, once

vertical trace | the set of ordered triples (c,y,z) that
solves the equation f(c,y)=z for a given constant x=c or
the set of ordered triples (x,d,z) that solves the
equation f(x,d)=z for a given constant y=d

washer method | a special case of the slicing
method used with solids of revolution when the slices
are washers

work | the amount of energy it takes to move an
object; in physics, when a force is constant, work is
expressed as the product of force and distance

work done by a force | work is generally thought
of as the amount of energy it takes to move an object;
if we represent an applied force by a vector \vecs{ F}
and the displacement of an object by a vector \vecs{
s}, then the work done by the force is the dot product
of \vecs{ F} and \vecs{ s}.

zero vector | the vector with both initial point and
terminal point (0,0)

zeros of a function | when a real number x is a
zero of a function f,\;f(x)=0

δ ball | all points in \mathbb{R}^3 lying at a distance
of less than δ from (x_0,y_0,z_0)

δ disk | an open disk of radius δ centered at point
(a,b)
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